Update app.py
Browse files
app.py
CHANGED
|
@@ -8,11 +8,14 @@ import sys
|
|
| 8 |
import gc
|
| 9 |
import multiprocessing
|
| 10 |
import shutil
|
|
|
|
| 11 |
from datetime import datetime
|
| 12 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 13 |
from itertools import chain
|
| 14 |
|
| 15 |
import torch
|
|
|
|
|
|
|
| 16 |
import gradio as gr
|
| 17 |
import transformers
|
| 18 |
import datasets
|
|
@@ -41,6 +44,34 @@ if torch.cuda.is_available():
|
|
| 41 |
|
| 42 |
JOBS = {}
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
class JobStatus:
|
| 45 |
def __init__(self):
|
| 46 |
self.id = str(uuid.uuid4())
|
|
@@ -110,7 +141,7 @@ def background_train_task(job_id, hf_token, model_name, new_repo_name,
|
|
| 110 |
|
| 111 |
job = JOBS[job_id]
|
| 112 |
job.status = "RUNNING"
|
| 113 |
-
job.add_log("System: initializing Scratch
|
| 114 |
|
| 115 |
try:
|
| 116 |
if not hf_token.startswith("hf_"):
|
|
@@ -195,7 +226,7 @@ def background_train_task(job_id, hf_token, model_name, new_repo_name,
|
|
| 195 |
except:
|
| 196 |
continue
|
| 197 |
|
| 198 |
-
job.set_progress(0.15, "Model: Initializing Architecture
|
| 199 |
|
| 200 |
torch.cuda.empty_cache()
|
| 201 |
gc.collect()
|
|
@@ -207,6 +238,11 @@ def background_train_task(job_id, hf_token, model_name, new_repo_name,
|
|
| 207 |
trust_remote_code=True,
|
| 208 |
)
|
| 209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
if torch.cuda.is_available():
|
| 211 |
original_model = original_model.to(torch.float16).cuda()
|
| 212 |
|
|
@@ -231,20 +267,23 @@ def background_train_task(job_id, hf_token, model_name, new_repo_name,
|
|
| 231 |
dataloader_num_workers=4,
|
| 232 |
dataloader_pin_memory=True,
|
| 233 |
gradient_checkpointing=True,
|
| 234 |
-
torch_compile=False
|
|
|
|
|
|
|
| 235 |
)
|
| 236 |
|
| 237 |
dataset_iterable = IterableDataset.from_generator(process_stream_generator)
|
| 238 |
|
| 239 |
trainer = Trainer(
|
| 240 |
model=original_model,
|
|
|
|
| 241 |
train_dataset=dataset_iterable,
|
| 242 |
args=training_args,
|
| 243 |
data_collator=data_collator,
|
| 244 |
callbacks=[CustomTrainerCallback(job_id, hf_token, full_repo_id)]
|
| 245 |
)
|
| 246 |
|
| 247 |
-
job.set_progress(0.2, "Training:
|
| 248 |
trainer.train()
|
| 249 |
trainer.save_model(output_dir)
|
| 250 |
tokenizer.save_pretrained(output_dir)
|
|
@@ -279,14 +318,14 @@ def background_train_task(job_id, hf_token, model_name, new_repo_name,
|
|
| 279 |
inject_json(c_tok, "tokenizer_config.json")
|
| 280 |
inject_json(c_gen, "generation_config.json")
|
| 281 |
|
| 282 |
-
job.set_progress(0.95, "Network: Uploading Final Model...")
|
| 283 |
|
| 284 |
upload_folder(
|
| 285 |
folder_path=output_dir,
|
| 286 |
path_in_repo=".",
|
| 287 |
repo_id=full_repo_id,
|
| 288 |
token=hf_token,
|
| 289 |
-
commit_message="Scratch Trained Model"
|
| 290 |
)
|
| 291 |
|
| 292 |
job.repo_url = f"https://huggingface.co/{full_repo_id}"
|
|
@@ -346,10 +385,10 @@ def load_from_url(request: gr.Request):
|
|
| 346 |
pass
|
| 347 |
return gr.update(selected="launch_tab"), ""
|
| 348 |
|
| 349 |
-
with gr.Blocks(title="Nucleus Enterprise") as demo:
|
| 350 |
with gr.Column():
|
| 351 |
gr.Markdown("# ⚛️ NUCLEUS ENTERPRISE")
|
| 352 |
-
gr.Markdown("Autonomous LLM Foundry |
|
| 353 |
|
| 354 |
with gr.Tabs() as main_tabs:
|
| 355 |
with gr.TabItem("���� LAUNCHPAD", id="launch_tab"):
|
|
@@ -359,7 +398,7 @@ with gr.Blocks(title="Nucleus Enterprise") as demo:
|
|
| 359 |
hf_token = gr.Textbox(label="HuggingFace Token", type="password", value=os.getenv("HF_TOKEN", ""))
|
| 360 |
model_name = gr.Textbox(label="Architecture Config Source", value="Qwen/Qwen2.5-0.5B")
|
| 361 |
|
| 362 |
-
repo_name = gr.Textbox(label="Output Repository", value="nucleus-
|
| 363 |
datasets = gr.Textbox(label="Datasets (CSV)", value="Salesforce/fineweb_deduplicated", lines=3)
|
| 364 |
|
| 365 |
reasoning = gr.Checkbox(label="Inject Reasoning (CoT/Math)", value=False)
|
|
@@ -374,7 +413,7 @@ with gr.Blocks(title="Nucleus Enterprise") as demo:
|
|
| 374 |
c_tok = gr.Code(label="tokenizer_config.json", language="json")
|
| 375 |
c_gen = gr.Code(label="generation_config.json", language="json")
|
| 376 |
|
| 377 |
-
btn_launch = gr.Button("INITIALIZE
|
| 378 |
|
| 379 |
with gr.TabItem("📡 TELEMETRY", id="monitor_tab"):
|
| 380 |
with gr.Row():
|
|
|
|
| 8 |
import gc
|
| 9 |
import multiprocessing
|
| 10 |
import shutil
|
| 11 |
+
import math
|
| 12 |
from datetime import datetime
|
| 13 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 14 |
from itertools import chain
|
| 15 |
|
| 16 |
import torch
|
| 17 |
+
import torch.nn as nn
|
| 18 |
+
import torch.nn.functional as F
|
| 19 |
import gradio as gr
|
| 20 |
import transformers
|
| 21 |
import datasets
|
|
|
|
| 44 |
|
| 45 |
JOBS = {}
|
| 46 |
|
| 47 |
+
def activation_quant(x):
|
| 48 |
+
scale = 127.0 / x.abs().max(dim=-1, keepdim=True).values.clamp_(min=1e-5)
|
| 49 |
+
y = (x * scale).round().clamp_(-128, 127) / scale
|
| 50 |
+
return y + x - x.detach()
|
| 51 |
+
|
| 52 |
+
def weight_quant(w):
|
| 53 |
+
scale = 1.0 / w.abs().mean().clamp_(min=1e-5)
|
| 54 |
+
u = (w * scale).round().clamp_(-1, 1) / scale
|
| 55 |
+
return u + w - w.detach()
|
| 56 |
+
|
| 57 |
+
class BitLinear(nn.Linear):
|
| 58 |
+
def forward(self, x):
|
| 59 |
+
w = weight_quant(self.weight)
|
| 60 |
+
x = activation_quant(x)
|
| 61 |
+
return F.linear(x, w, self.bias)
|
| 62 |
+
|
| 63 |
+
def convert_to_bitnet(model, copy_weights=False):
|
| 64 |
+
for name, module in model.named_children():
|
| 65 |
+
if isinstance(module, nn.Linear):
|
| 66 |
+
bit_linear = BitLinear(module.in_features, module.out_features, module.bias is not None)
|
| 67 |
+
if copy_weights:
|
| 68 |
+
bit_linear.weight.data = module.weight.data.clone()
|
| 69 |
+
if module.bias is not None:
|
| 70 |
+
bit_linear.bias.data = module.bias.data.clone()
|
| 71 |
+
setattr(model, name, bit_linear)
|
| 72 |
+
else:
|
| 73 |
+
convert_to_bitnet(module, copy_weights=copy_weights)
|
| 74 |
+
|
| 75 |
class JobStatus:
|
| 76 |
def __init__(self):
|
| 77 |
self.id = str(uuid.uuid4())
|
|
|
|
| 141 |
|
| 142 |
job = JOBS[job_id]
|
| 143 |
job.status = "RUNNING"
|
| 144 |
+
job.add_log("System: initializing BitNet Scratch Protocol...")
|
| 145 |
|
| 146 |
try:
|
| 147 |
if not hf_token.startswith("hf_"):
|
|
|
|
| 226 |
except:
|
| 227 |
continue
|
| 228 |
|
| 229 |
+
job.set_progress(0.15, "Model: Initializing Architecture & Converting to BitNet...")
|
| 230 |
|
| 231 |
torch.cuda.empty_cache()
|
| 232 |
gc.collect()
|
|
|
|
| 238 |
trust_remote_code=True,
|
| 239 |
)
|
| 240 |
|
| 241 |
+
convert_to_bitnet(original_model, copy_weights=False)
|
| 242 |
+
|
| 243 |
+
model_size = sum(t.numel() for t in original_model.parameters())
|
| 244 |
+
job.add_log(f"Model Size: {model_size/1000**2:.1f}M Parameters (1.58-bit)")
|
| 245 |
+
|
| 246 |
if torch.cuda.is_available():
|
| 247 |
original_model = original_model.to(torch.float16).cuda()
|
| 248 |
|
|
|
|
| 267 |
dataloader_num_workers=4,
|
| 268 |
dataloader_pin_memory=True,
|
| 269 |
gradient_checkpointing=True,
|
| 270 |
+
torch_compile=False,
|
| 271 |
+
lr_scheduler_type="cosine",
|
| 272 |
+
warmup_steps=0.1
|
| 273 |
)
|
| 274 |
|
| 275 |
dataset_iterable = IterableDataset.from_generator(process_stream_generator)
|
| 276 |
|
| 277 |
trainer = Trainer(
|
| 278 |
model=original_model,
|
| 279 |
+
tokenizer=tokenizer,
|
| 280 |
train_dataset=dataset_iterable,
|
| 281 |
args=training_args,
|
| 282 |
data_collator=data_collator,
|
| 283 |
callbacks=[CustomTrainerCallback(job_id, hf_token, full_repo_id)]
|
| 284 |
)
|
| 285 |
|
| 286 |
+
job.set_progress(0.2, "Training: BitNet Gradient Descent Initiated...")
|
| 287 |
trainer.train()
|
| 288 |
trainer.save_model(output_dir)
|
| 289 |
tokenizer.save_pretrained(output_dir)
|
|
|
|
| 318 |
inject_json(c_tok, "tokenizer_config.json")
|
| 319 |
inject_json(c_gen, "generation_config.json")
|
| 320 |
|
| 321 |
+
job.set_progress(0.95, "Network: Uploading Final BitNet Model...")
|
| 322 |
|
| 323 |
upload_folder(
|
| 324 |
folder_path=output_dir,
|
| 325 |
path_in_repo=".",
|
| 326 |
repo_id=full_repo_id,
|
| 327 |
token=hf_token,
|
| 328 |
+
commit_message="BitNet Scratch Trained Model"
|
| 329 |
)
|
| 330 |
|
| 331 |
job.repo_url = f"https://huggingface.co/{full_repo_id}"
|
|
|
|
| 385 |
pass
|
| 386 |
return gr.update(selected="launch_tab"), ""
|
| 387 |
|
| 388 |
+
with gr.Blocks(title="Nucleus Enterprise", theme=gr.themes.Base()) as demo:
|
| 389 |
with gr.Column():
|
| 390 |
gr.Markdown("# ⚛️ NUCLEUS ENTERPRISE")
|
| 391 |
+
gr.Markdown("Autonomous LLM Foundry | V9.0 BitNet Edition")
|
| 392 |
|
| 393 |
with gr.Tabs() as main_tabs:
|
| 394 |
with gr.TabItem("���� LAUNCHPAD", id="launch_tab"):
|
|
|
|
| 398 |
hf_token = gr.Textbox(label="HuggingFace Token", type="password", value=os.getenv("HF_TOKEN", ""))
|
| 399 |
model_name = gr.Textbox(label="Architecture Config Source", value="Qwen/Qwen2.5-0.5B")
|
| 400 |
|
| 401 |
+
repo_name = gr.Textbox(label="Output Repository", value="nucleus-bitnet-v1")
|
| 402 |
datasets = gr.Textbox(label="Datasets (CSV)", value="Salesforce/fineweb_deduplicated", lines=3)
|
| 403 |
|
| 404 |
reasoning = gr.Checkbox(label="Inject Reasoning (CoT/Math)", value=False)
|
|
|
|
| 413 |
c_tok = gr.Code(label="tokenizer_config.json", language="json")
|
| 414 |
c_gen = gr.Code(label="generation_config.json", language="json")
|
| 415 |
|
| 416 |
+
btn_launch = gr.Button("INITIALIZE BITNET TRAINING", variant="primary", size="lg")
|
| 417 |
|
| 418 |
with gr.TabItem("📡 TELEMETRY", id="monitor_tab"):
|
| 419 |
with gr.Row():
|