# Deployment Checklist - ZeroGPU Integration ## ✅ Pre-Deployment Verification ### Code Status - ✅ All code changes committed and pushed - ✅ FAISS-GPU implementation complete - ✅ Lazy-loaded local model fallback implemented - ✅ ZeroGPU API integration complete - ✅ Dockerfile configured correctly - ✅ Requirements.txt updated with faiss-gpu ### Files Ready - ✅ `Dockerfile` - Configured for HF Spaces - ✅ `main.py` - Entry point for HF Spaces - ✅ `requirements.txt` - All dependencies including faiss-gpu - ✅ `README.md` - Contains HF Spaces configuration --- ## 🚀 Deployment Steps ### 1. Verify Repository Status ```bash git status # Should show clean or only documentation changes git log --oneline -5 # Verify recent commits are pushed ``` ### 2. Hugging Face Spaces Configuration #### Space Settings 1. Go to: https://huggingface.co/spaces/JatinAutonomousLabs/Research_AI_Assistant 2. Navigate to **Settings** → **Repository secrets** #### Required Environment Variables **Basic Configuration:** ```bash HF_TOKEN=your_huggingface_token_here ``` **ZeroGPU API Configuration (Optional - for Runpod integration):** **Option A: Service Account Mode** ```bash USE_ZERO_GPU=true ZERO_GPU_API_URL=https://bm9njt1ypzvuqw-8000.proxy.runpod.net ZERO_GPU_EMAIL=service@example.com ZERO_GPU_PASSWORD=your-password ``` **Option B: Per-User Mode (Multi-tenant)** ```bash USE_ZERO_GPU=true ZERO_GPU_PER_USER_MODE=true ZERO_GPU_API_URL=https://bm9njt1ypzvuqw-8000.proxy.runpod.net ZERO_GPU_ADMIN_EMAIL=admin@example.com ZERO_GPU_ADMIN_PASSWORD=admin-password ``` **Note:** Runpod proxy URLs follow the format: `https://-8000.proxy.runpod.net` **Additional Optional Variables:** ```bash DB_PATH=sessions.db LOG_LEVEL=INFO MAX_WORKERS=4 ``` ### 3. Hardware Selection In HF Spaces Settings: - **GPU**: NVIDIA T4 Medium (recommended) - 24GB vRAM (sufficient for local model fallback) - 30GB RAM - 8 vCPU **Note:** With ZeroGPU API enabled, GPU is only needed for: - FAISS-GPU vector search (automatic CPU fallback if GPU unavailable) - Local model fallback (only loads if ZeroGPU fails) ### 4. Deployment Process **Automatic Deployment:** 1. Code is already pushed to `main` branch 2. HF Spaces will automatically: - Detect `sdk: docker` in README.md - Build Docker image from Dockerfile - Install dependencies from requirements.txt - Start application using `main.py` **Manual Trigger (if needed):** - Go to Space → Settings → Restart this Space ### 5. Monitor Deployment **Check Build Logs:** - Navigate to Space → Logs - Watch for: - ✅ Docker build success - ✅ Dependencies installed (including faiss-gpu) - ✅ Application startup - ✅ ZeroGPU client initialization (if configured) - ✅ Local model loader initialized (as fallback) **Expected Startup Messages:** ``` ✓ Local model loader initialized (models will load on-demand as fallback) ✓ ZeroGPU API client initialized (service account mode) ✓ FAISS GPU resources initialized ✓ Application ready for launch ``` ### 6. Verify Deployment **Health Check:** - Application should be accessible at: `https://huggingface.co/spaces/JatinAutonomousLabs/Research_AI_Assistant` - Health endpoint: `/health` should return `{"status": "healthy"}` **Test ZeroGPU Integration:** 1. Send a test message through the UI 2. Check logs for: `"Inference complete for {task_type} (ZeroGPU API)"` 3. Verify no local models are loaded (if ZeroGPU working) **Test Fallback:** 1. Temporarily disable ZeroGPU (set `USE_ZERO_GPU=false`) 2. Send a test message 3. Check logs for: `"Lazy loading local model {model_id} as fallback"` 4. Verify local model loads and works --- ## 🔍 Post-Deployment Verification ### 1. Check Application Status - [ ] Application loads without errors - [ ] UI is accessible - [ ] Health check endpoint responds ### 2. Verify ZeroGPU Integration - [ ] ZeroGPU client initializes (if configured) - [ ] API calls succeed - [ ] No local models loaded (if ZeroGPU working) - [ ] Usage statistics accessible (if per-user mode) ### 3. Verify FAISS-GPU - [ ] FAISS GPU resources initialize - [ ] Vector search works - [ ] Falls back to CPU if GPU unavailable ### 4. Verify Fallback Chain - [ ] ZeroGPU API tried first - [ ] Local models load only if ZeroGPU fails - [ ] HF Inference API used as final fallback ### 5. Monitor Resource Usage - [ ] GPU memory usage is low (if ZeroGPU working) - [ ] CPU usage is reasonable - [ ] No memory leaks --- ## 🐛 Troubleshooting ### Issue: Build Fails **Check:** - Dockerfile syntax is correct - Requirements.txt has all dependencies - Python 3.10 is available **Solution:** - Review build logs in HF Spaces - Test Docker build locally: `docker build -t test .` ### Issue: ZeroGPU Not Working **Check:** - Environment variables are set correctly - ZeroGPU API is accessible from HF Spaces - Network connectivity to Runpod **Solution:** - Verify API URL is correct - Check credentials are valid - Review ZeroGPU API logs ### Issue: FAISS-GPU Not Available **Check:** - GPU is available in HF Spaces - faiss-gpu package installed correctly **Solution:** - System will automatically fall back to CPU - Check logs for: `"FAISS GPU not available, using CPU"` ### Issue: Local Models Not Loading **Check:** - `use_local_models=True` in code - Transformers/torch available - GPU memory sufficient **Solution:** - Check logs for initialization errors - Verify GPU availability - Models will only load if ZeroGPU fails --- ## 📊 Expected Resource Usage ### With ZeroGPU API Enabled (Optimal) - **GPU Memory**: ~0-500MB (FAISS-GPU only, no local models) - **CPU**: Low (API calls only) - **RAM**: ~2-4GB (application + caching) ### With ZeroGPU Failing (Fallback Active) - **GPU Memory**: ~15GB (local models loaded) - **CPU**: Medium (model inference) - **RAM**: ~4-6GB (models + application) ### FAISS-GPU Usage - **GPU Memory**: ~100-500MB (depending on index size) - **CPU Fallback**: Automatic if GPU unavailable --- ## ✅ Deployment Complete Once all checks pass: - ✅ Application is live - ✅ ZeroGPU integration working - ✅ FAISS-GPU accelerated - ✅ Fallback chain operational - ✅ Monitoring in place **Next Steps:** - Monitor usage statistics - Review ZeroGPU API logs - Optimize based on usage patterns - Scale as needed --- **Last Updated:** 2025-01-07 **Deployment Status:** Ready **Version:** With ZeroGPU Integration + FAISS-GPU + Lazy Loading