Spaces:
Running
on
T4
Running
on
T4
Update auditqa/doc_process.py
Browse files- auditqa/doc_process.py +8 -5
auditqa/doc_process.py
CHANGED
|
@@ -6,7 +6,7 @@ from torch import cuda
|
|
| 6 |
from langchain_community.document_loaders import PyMuPDFLoader
|
| 7 |
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings
|
| 8 |
from langchain_community.vectorstores import Qdrant
|
| 9 |
-
|
| 10 |
from auditqa.reports import files, report_list
|
| 11 |
device = 'cuda' if cuda.is_available() else 'cpu'
|
| 12 |
|
|
@@ -93,15 +93,18 @@ def process_pdf():
|
|
| 93 |
print("done")
|
| 94 |
return qdrant_collections
|
| 95 |
|
| 96 |
-
def get_local_qdrant(
|
| 97 |
print(client.get_collections())
|
|
|
|
| 98 |
embeddings = HuggingFaceEmbeddings(
|
| 99 |
model_kwargs = {'device': device},
|
| 100 |
encode_kwargs = {'normalize_embeddings': True},
|
| 101 |
model_name="BAAI/bge-small-en-v1.5")
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
| 105 |
|
| 106 |
|
| 107 |
|
|
|
|
| 6 |
from langchain_community.document_loaders import PyMuPDFLoader
|
| 7 |
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings
|
| 8 |
from langchain_community.vectorstores import Qdrant
|
| 9 |
+
from qdrant_client import QdrantClient
|
| 10 |
from auditqa.reports import files, report_list
|
| 11 |
device = 'cuda' if cuda.is_available() else 'cpu'
|
| 12 |
|
|
|
|
| 93 |
print("done")
|
| 94 |
return qdrant_collections
|
| 95 |
|
| 96 |
+
def get_local_qdrant():
|
| 97 |
print(client.get_collections())
|
| 98 |
+
qdrant_collections = {}
|
| 99 |
embeddings = HuggingFaceEmbeddings(
|
| 100 |
model_kwargs = {'device': device},
|
| 101 |
encode_kwargs = {'normalize_embeddings': True},
|
| 102 |
model_name="BAAI/bge-small-en-v1.5")
|
| 103 |
+
list_ = ['Consolidated','District','Ministry','allreports']
|
| 104 |
+
for val in list_:
|
| 105 |
+
client = QdrantClient(path="./data/{val}")
|
| 106 |
+
qdrant_collections[val] = Qdrant(client=client, collection_name=val, embeddings=embeddings, )
|
| 107 |
+
return qdrant_collections
|
| 108 |
|
| 109 |
|
| 110 |
|