Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,115 +1,251 @@
|
|
| 1 |
-
from threading import Thread
|
| 2 |
-
import json
|
| 3 |
-
import time
|
| 4 |
|
| 5 |
-
import torch
|
| 6 |
-
import gradio as gr
|
| 7 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
|
| 8 |
|
| 9 |
|
| 10 |
# ---------------------
|
| 11 |
# Model + Tokenizer
|
| 12 |
# ---------------------
|
| 13 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 14 |
|
| 15 |
-
MODEL_ID = "Ephraimmm/PIDGIN_gemma-3"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 19 |
-
MODEL_ID,
|
| 20 |
-
device_map="auto", # Let HF handle GPU placement
|
| 21 |
-
torch_dtype="auto", # Match the quantization dtype
|
| 22 |
-
trust_remote_code=True # Required for Unsloth models
|
| 23 |
-
)
|
| 24 |
|
| 25 |
-
tokenizer =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
|
|
|
| 27 |
|
| 28 |
-
print("Loading model...")
|
| 29 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 30 |
-
MODEL_ID,
|
| 31 |
-
device_map="auto",
|
| 32 |
-
quantization_config=bnb_config,
|
| 33 |
-
trust_remote_code=True,
|
| 34 |
-
)
|
| 35 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 36 |
|
| 37 |
|
| 38 |
-
#
|
| 39 |
-
#
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
add_generation_prompt=True,
|
| 51 |
return_tensors="pt"
|
| 52 |
).to(model.device)
|
| 53 |
|
| 54 |
-
streamer = TextIteratorStreamer(tokenizer,
|
| 55 |
|
| 56 |
generate_kwargs = dict(
|
| 57 |
-
input_ids=
|
| 58 |
streamer=streamer,
|
| 59 |
-
max_new_tokens=
|
| 60 |
-
temperature=
|
| 61 |
-
|
|
|
|
| 62 |
)
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
-
for
|
| 69 |
-
|
| 70 |
-
yield
|
| 71 |
|
| 72 |
-
|
| 73 |
-
#
|
| 74 |
-
#
|
| 75 |
-
# ---------------------
|
| 76 |
def save_chat(history):
|
| 77 |
-
|
| 78 |
-
for
|
| 79 |
-
|
| 80 |
-
|
| 81 |
|
| 82 |
-
|
| 83 |
-
with open(
|
| 84 |
-
json.dump(
|
| 85 |
|
| 86 |
-
return
|
| 87 |
|
| 88 |
-
|
| 89 |
-
# ---------------------
|
| 90 |
# Gradio UI
|
| 91 |
-
#
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
gr.
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
if __name__ == "__main__":
|
| 115 |
-
demo.launch()
|
|
|
|
| 1 |
+
# from threading import Thread
|
| 2 |
+
# import json
|
| 3 |
+
# import time
|
| 4 |
|
| 5 |
+
# import torch
|
| 6 |
+
# import gradio as gr
|
| 7 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
|
| 8 |
|
| 9 |
|
| 10 |
# ---------------------
|
| 11 |
# Model + Tokenizer
|
| 12 |
# ---------------------
|
| 13 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 14 |
|
| 15 |
+
# MODEL_ID = "Ephraimmm/PIDGIN_gemma-3"
|
| 16 |
+
|
| 17 |
+
# print("Loading quantized model...")
|
| 18 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
| 19 |
+
# MODEL_ID,
|
| 20 |
+
# device_map="auto", # Let HF handle GPU placement
|
| 21 |
+
# torch_dtype="auto", # Match the quantization dtype
|
| 22 |
+
# trust_remote_code=True # Required for Unsloth models
|
| 23 |
+
# )
|
| 24 |
+
|
| 25 |
+
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 26 |
|
| 27 |
+
# from unsloth import FastLanguageModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
# model, tokenizer = FastLanguageModel.from_pretrained(
|
| 30 |
+
# model_name="Ephraimmm/PIDGIN_gemma-3",
|
| 31 |
+
# max_seq_length=2048,
|
| 32 |
+
# dtype=None, # Unsloth will pick the right dtype
|
| 33 |
+
# load_in_4bit=True, # because it’s a 4-bit model
|
| 34 |
+
# trust_remote_code=True,
|
| 35 |
+
# )
|
| 36 |
|
| 37 |
+
# FastLanguageModel.for_inference(model)
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
|
| 41 |
+
# print("Loading model...")
|
| 42 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
| 43 |
+
# MODEL_ID,
|
| 44 |
+
# device_map="auto",
|
| 45 |
+
# quantization_config=bnb_config,
|
| 46 |
+
# trust_remote_code=True,
|
| 47 |
+
# )
|
| 48 |
+
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# # ---------------------
|
| 52 |
+
# # Chat Streaming
|
| 53 |
+
# # ---------------------
|
| 54 |
+
# def stream_chat(message: str, history: list, system: str, temperature: float, max_new_tokens: int):
|
| 55 |
+
# conversation = [{"role": "system", "content": system or "You are a helpful assistant. Always reply in Pidgin english"}]
|
| 56 |
+
# for prompt, answer in history:
|
| 57 |
+
# conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
|
| 58 |
+
|
| 59 |
+
# conversation.append({"role": "user", "content": message})
|
| 60 |
+
|
| 61 |
+
# input_ids = tokenizer.apply_chat_template(
|
| 62 |
+
# conversation,
|
| 63 |
+
# add_generation_prompt=True,
|
| 64 |
+
# return_tensors="pt"
|
| 65 |
+
# ).to(model.device)
|
| 66 |
+
|
| 67 |
+
# streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 68 |
+
|
| 69 |
+
# generate_kwargs = dict(
|
| 70 |
+
# input_ids=input_ids,
|
| 71 |
+
# streamer=streamer,
|
| 72 |
+
# max_new_tokens=max_new_tokens,
|
| 73 |
+
# temperature=temperature,
|
| 74 |
+
# do_sample=(temperature > 0),
|
| 75 |
+
# )
|
| 76 |
+
|
| 77 |
+
# t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 78 |
+
# t.start()
|
| 79 |
+
|
| 80 |
+
# output = ""
|
| 81 |
+
# for new_token in streamer:
|
| 82 |
+
# output += new_token
|
| 83 |
+
# yield output
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
# # ---------------------
|
| 87 |
+
# # Save Chat
|
| 88 |
+
# # ---------------------
|
| 89 |
+
# def save_chat(history):
|
| 90 |
+
# conversation = []
|
| 91 |
+
# for prompt, answer in history:
|
| 92 |
+
# conversation.append({"role": "user", "content": prompt})
|
| 93 |
+
# conversation.append({"role": "assistant", "content": answer})
|
| 94 |
+
|
| 95 |
+
# filename = f"chat_{int(time.time())}.json"
|
| 96 |
+
# with open(filename, "w", encoding="utf-8") as f:
|
| 97 |
+
# json.dump(conversation, f, ensure_ascii=False, indent=2)
|
| 98 |
+
|
| 99 |
+
# return filename
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
# # ---------------------
|
| 103 |
+
# # Gradio UI
|
| 104 |
+
# # ---------------------
|
| 105 |
+
# chatbot = gr.Chatbot(height=450)
|
| 106 |
+
|
| 107 |
+
# with gr.Blocks(css=".duplicate-button {margin: auto !important;}") as demo:
|
| 108 |
+
# gr.HTML("<h1><center>Chat with PIDGIN Gemma-3</center></h1>")
|
| 109 |
|
| 110 |
+
# chat_interface = gr.ChatInterface(
|
| 111 |
+
# fn=stream_chat,
|
| 112 |
+
# chatbot=chatbot,
|
| 113 |
+
# fill_height=True,
|
| 114 |
+
# additional_inputs=[
|
| 115 |
+
# gr.Text(value="", label="System Prompt"),
|
| 116 |
+
# gr.Slider(0, 1, value=0.8, step=0.1, label="Temperature"),
|
| 117 |
+
# gr.Slider(128, 4096, value=1024, step=1, label="Max New Tokens"),
|
| 118 |
+
# ],
|
| 119 |
+
# )
|
| 120 |
|
| 121 |
+
# save_btn = gr.Button("💾 Save Chat")
|
| 122 |
+
# download = gr.File(label="Download Chat")
|
| 123 |
+
|
| 124 |
+
# save_btn.click(fn=save_chat, inputs=[chat_interface.chatbot], outputs=[download])
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
# if __name__ == "__main__":
|
| 128 |
+
# demo.launch()
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
import torch
|
| 132 |
+
import gc
|
| 133 |
+
import json
|
| 134 |
+
from threading import Thread
|
| 135 |
+
|
| 136 |
+
import gradio as gr
|
| 137 |
+
from unsloth import FastLanguageModel
|
| 138 |
+
from transformers import TextIteratorStreamer
|
| 139 |
+
|
| 140 |
+
# -------------------------------------------------------------------
|
| 141 |
+
# Load model with Unsloth (since it's already quantized 4-bit)
|
| 142 |
+
# -------------------------------------------------------------------
|
| 143 |
+
print("Clearing memory...")
|
| 144 |
+
torch.cuda.empty_cache()
|
| 145 |
+
gc.collect()
|
| 146 |
+
|
| 147 |
+
print("Loading Unsloth quantized model...")
|
| 148 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 149 |
+
model_name="Ephraimmm/PIDGIN_gemma-3", # Your fine-tuned model
|
| 150 |
+
max_seq_length=2048,
|
| 151 |
+
dtype=None,
|
| 152 |
+
load_in_4bit=True,
|
| 153 |
+
trust_remote_code=True,
|
| 154 |
+
)
|
| 155 |
+
FastLanguageModel.for_inference(model)
|
| 156 |
+
print("✅ Model loaded!")
|
| 157 |
+
|
| 158 |
+
# -------------------------------------------------------------------
|
| 159 |
+
# Chat function with streaming
|
| 160 |
+
# -------------------------------------------------------------------
|
| 161 |
+
def stream_chat(message, history):
|
| 162 |
+
# Build conversation in the right format
|
| 163 |
+
messages = [
|
| 164 |
+
{"role": "system", "content": "You be Naija assistant. Always reply for Pidgin English."}
|
| 165 |
+
]
|
| 166 |
+
for human, bot in history:
|
| 167 |
+
messages.append({"role": "user", "content": human})
|
| 168 |
+
messages.append({"role": "assistant", "content": bot})
|
| 169 |
+
|
| 170 |
+
messages.append({"role": "user", "content": message})
|
| 171 |
+
|
| 172 |
+
# Apply chat template
|
| 173 |
+
inputs = tokenizer.apply_chat_template(
|
| 174 |
+
messages,
|
| 175 |
add_generation_prompt=True,
|
| 176 |
return_tensors="pt"
|
| 177 |
).to(model.device)
|
| 178 |
|
| 179 |
+
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
| 180 |
|
| 181 |
generate_kwargs = dict(
|
| 182 |
+
input_ids=inputs,
|
| 183 |
streamer=streamer,
|
| 184 |
+
max_new_tokens=256,
|
| 185 |
+
temperature=0.8,
|
| 186 |
+
top_p=0.9,
|
| 187 |
+
do_sample=True,
|
| 188 |
)
|
| 189 |
|
| 190 |
+
# Run generation in a background thread
|
| 191 |
+
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 192 |
+
thread.start()
|
| 193 |
|
| 194 |
+
partial_text = ""
|
| 195 |
+
for new_text in streamer:
|
| 196 |
+
partial_text += new_text
|
| 197 |
+
yield partial_text
|
| 198 |
|
| 199 |
+
# -------------------------------------------------------------------
|
| 200 |
+
# Save chat as JSON file
|
| 201 |
+
# -------------------------------------------------------------------
|
|
|
|
| 202 |
def save_chat(history):
|
| 203 |
+
export_data = []
|
| 204 |
+
for human, bot in history:
|
| 205 |
+
export_data.append({"role": "user", "content": human})
|
| 206 |
+
export_data.append({"role": "assistant", "content": bot})
|
| 207 |
|
| 208 |
+
file_path = "conversation.json"
|
| 209 |
+
with open(file_path, "w", encoding="utf-8") as f:
|
| 210 |
+
json.dump(export_data, f, ensure_ascii=False, indent=4)
|
| 211 |
|
| 212 |
+
return file_path
|
| 213 |
|
| 214 |
+
# -------------------------------------------------------------------
|
|
|
|
| 215 |
# Gradio UI
|
| 216 |
+
# -------------------------------------------------------------------
|
| 217 |
+
with gr.Blocks(title="🇳🇬 Pidgin English Chatbot") as demo:
|
| 218 |
+
gr.HTML("<h1 style='text-align: center;'>🇳🇬 Pidgin English Chatbot</h1>")
|
| 219 |
+
|
| 220 |
+
chatbot = gr.Chatbot(height=400, show_label=False)
|
| 221 |
+
|
| 222 |
+
with gr.Row():
|
| 223 |
+
msg = gr.Textbox(placeholder="Type your message...", scale=4)
|
| 224 |
+
send = gr.Button("Send", variant="primary", scale=1)
|
| 225 |
+
|
| 226 |
+
with gr.Row():
|
| 227 |
+
clear = gr.Button("Clear Chat")
|
| 228 |
+
save_btn = gr.Button("💾 Save Conversation")
|
| 229 |
+
download_file = gr.File()
|
| 230 |
+
|
| 231 |
+
# Connect events
|
| 232 |
+
def respond(message, history):
|
| 233 |
+
if history is None:
|
| 234 |
+
history = []
|
| 235 |
+
stream = stream_chat(message, history)
|
| 236 |
+
response = ""
|
| 237 |
+
for partial in stream:
|
| 238 |
+
response = partial
|
| 239 |
+
yield history + [(message, response)], ""
|
| 240 |
+
yield history + [(message, response)], ""
|
| 241 |
+
|
| 242 |
+
msg.submit(respond, [msg, chatbot], [chatbot, msg])
|
| 243 |
+
send.click(respond, [msg, chatbot], [chatbot, msg])
|
| 244 |
+
clear.click(lambda: ([], ""), outputs=[chatbot, msg])
|
| 245 |
+
save_btn.click(save_chat, inputs=[chatbot], outputs=[download_file])
|
| 246 |
+
|
| 247 |
+
# -------------------------------------------------------------------
|
| 248 |
+
# Launch
|
| 249 |
+
# -------------------------------------------------------------------
|
| 250 |
if __name__ == "__main__":
|
| 251 |
+
demo.launch(share=True, debug=True)
|