Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from unsloth import FastLanguageModel
|
|
@@ -6,6 +144,7 @@ import threading
|
|
| 6 |
from peft import PeftModel
|
| 7 |
import json
|
| 8 |
import time
|
|
|
|
| 9 |
|
| 10 |
# -----------------------------
|
| 11 |
# 1️⃣ Set device
|
|
@@ -22,7 +161,6 @@ base_model, tokenizer = FastLanguageModel.from_pretrained(
|
|
| 22 |
max_seq_length=2048,
|
| 23 |
dtype=torch.float16,
|
| 24 |
load_in_4bit=False,
|
| 25 |
-
# <- avoids unsloth compilation errors
|
| 26 |
)
|
| 27 |
|
| 28 |
# -----------------------------
|
|
@@ -33,7 +171,7 @@ lora_model = PeftModel.from_pretrained(base_model, lora_repo, adapter_name="adap
|
|
| 33 |
FastLanguageModel.for_inference(lora_model)
|
| 34 |
|
| 35 |
# -----------------------------
|
| 36 |
-
# 4️⃣ Streaming generation function
|
| 37 |
# -----------------------------
|
| 38 |
def generate_response(user_message):
|
| 39 |
messages = [
|
|
@@ -92,7 +230,11 @@ def chat(user_message):
|
|
| 92 |
|
| 93 |
def save_conversation():
|
| 94 |
if not chat_history:
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
conversation = []
|
| 98 |
for user_msg, bot_msg in chat_history:
|
|
@@ -126,12 +268,4 @@ with gr.Blocks() as demo:
|
|
| 126 |
save_button.click(save_conversation, outputs=download_file)
|
| 127 |
|
| 128 |
demo.launch()
|
| 129 |
-
# iface = gr.Interface(
|
| 130 |
-
# fn=generate_response,
|
| 131 |
-
# inputs=gr.Textbox(lines=2, placeholder="Enter your message..."),
|
| 132 |
-
# outputs=gr.Textbox(label="PIDGIN Assistant"),
|
| 133 |
-
# title="Nigerian PIDGIN Assistant",
|
| 134 |
-
# description="Chat with a Nigerian assistant that only speaks Pidgin English."
|
| 135 |
-
# )
|
| 136 |
|
| 137 |
-
# iface.launch()
|
|
|
|
| 1 |
+
# import gradio as gr
|
| 2 |
+
# import torch
|
| 3 |
+
# from unsloth import FastLanguageModel
|
| 4 |
+
# from transformers import TextIteratorStreamer
|
| 5 |
+
# import threading
|
| 6 |
+
# from peft import PeftModel
|
| 7 |
+
# import json
|
| 8 |
+
# import time
|
| 9 |
+
|
| 10 |
+
# # -----------------------------
|
| 11 |
+
# # 1️⃣ Set device
|
| 12 |
+
# # -----------------------------
|
| 13 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
# print("Using device:", device)
|
| 15 |
+
|
| 16 |
+
# # -----------------------------
|
| 17 |
+
# # 2️⃣ Load base model (skip compilation)
|
| 18 |
+
# # -----------------------------
|
| 19 |
+
# base_model_name = "unsloth/gemma-3-4b-it-unsloth-bnb-4bit"
|
| 20 |
+
# base_model, tokenizer = FastLanguageModel.from_pretrained(
|
| 21 |
+
# model_name=base_model_name,
|
| 22 |
+
# max_seq_length=2048,
|
| 23 |
+
# dtype=torch.float16,
|
| 24 |
+
# load_in_4bit=False,
|
| 25 |
+
# # <- avoids unsloth compilation errors
|
| 26 |
+
# )
|
| 27 |
+
|
| 28 |
+
# # -----------------------------
|
| 29 |
+
# # 3️⃣ Load LoRA
|
| 30 |
+
# # -----------------------------
|
| 31 |
+
# lora_repo = "Ephraimmm/PIDGIN_gemma-3"
|
| 32 |
+
# lora_model = PeftModel.from_pretrained(base_model, lora_repo, adapter_name="adapter_model")
|
| 33 |
+
# FastLanguageModel.for_inference(lora_model)
|
| 34 |
+
|
| 35 |
+
# # -----------------------------
|
| 36 |
+
# # 4️⃣ Streaming generation function with Nigerian Pidgin system prompt
|
| 37 |
+
# # -----------------------------
|
| 38 |
+
# def generate_response(user_message):
|
| 39 |
+
# messages = [
|
| 40 |
+
# {
|
| 41 |
+
# "role": "system",
|
| 42 |
+
# "content": [{"type": "text", "text": "You be Nigerian assistant wey sabi Pidgin English only. No speak any other language. Reply friendly and in short sentences"}]
|
| 43 |
+
# },
|
| 44 |
+
# {
|
| 45 |
+
# "role": "user",
|
| 46 |
+
# "content": [{"type": "text", "text": user_message}]
|
| 47 |
+
# }
|
| 48 |
+
# ]
|
| 49 |
+
|
| 50 |
+
# inputs = tokenizer.apply_chat_template(
|
| 51 |
+
# messages,
|
| 52 |
+
# add_generation_prompt=True,
|
| 53 |
+
# return_tensors="pt",
|
| 54 |
+
# tokenize=True,
|
| 55 |
+
# return_dict=True
|
| 56 |
+
# ).to(device)
|
| 57 |
+
|
| 58 |
+
# streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 59 |
+
|
| 60 |
+
# generation_kwargs = dict(
|
| 61 |
+
# **inputs,
|
| 62 |
+
# streamer=streamer,
|
| 63 |
+
# max_new_tokens=100,
|
| 64 |
+
# temperature=0.7,
|
| 65 |
+
# top_p=0.7,
|
| 66 |
+
# top_k=40,
|
| 67 |
+
# use_cache=False
|
| 68 |
+
# )
|
| 69 |
+
|
| 70 |
+
# def generate():
|
| 71 |
+
# lora_model.generate(**generation_kwargs)
|
| 72 |
+
|
| 73 |
+
# thread = threading.Thread(target=generate)
|
| 74 |
+
# thread.start()
|
| 75 |
+
|
| 76 |
+
# full_response = ""
|
| 77 |
+
# for new_token in streamer:
|
| 78 |
+
# if new_token:
|
| 79 |
+
# full_response += new_token
|
| 80 |
+
# thread.join()
|
| 81 |
+
# return full_response
|
| 82 |
+
|
| 83 |
+
# # -----------------------------
|
| 84 |
+
# # 5️⃣ Chat + Save
|
| 85 |
+
# # -----------------------------
|
| 86 |
+
# chat_history = []
|
| 87 |
+
|
| 88 |
+
# def chat(user_message):
|
| 89 |
+
# bot_response = generate_response(user_message)
|
| 90 |
+
# chat_history.append((user_message, bot_response))
|
| 91 |
+
# return chat_history, "" # also clears input box
|
| 92 |
+
|
| 93 |
+
# def save_conversation():
|
| 94 |
+
# if not chat_history:
|
| 95 |
+
# return None
|
| 96 |
+
|
| 97 |
+
# conversation = []
|
| 98 |
+
# for user_msg, bot_msg in chat_history:
|
| 99 |
+
# conversation.append({"role": "user", "content": str(user_msg)})
|
| 100 |
+
# conversation.append({"role": "assistant", "content": str(bot_msg)})
|
| 101 |
+
|
| 102 |
+
# timestamp = time.strftime("%Y%m%d-%H%M%S")
|
| 103 |
+
# file_path = f"conversation_{timestamp}.txt" # save as TXT not JSON
|
| 104 |
+
|
| 105 |
+
# with open(file_path, "w", encoding="utf-8") as f:
|
| 106 |
+
# json.dump(conversation, f, indent=4, ensure_ascii=False)
|
| 107 |
+
|
| 108 |
+
# return file_path
|
| 109 |
+
|
| 110 |
+
# # -----------------------------
|
| 111 |
+
# # 6️⃣ Gradio interface
|
| 112 |
+
# # -----------------------------
|
| 113 |
+
# with gr.Blocks() as demo:
|
| 114 |
+
# gr.Markdown("# Nigerian PIDGIN Assistant")
|
| 115 |
+
# gr.Markdown("Chat with a Nigerian assistant that only speaks Pidgin English.")
|
| 116 |
+
|
| 117 |
+
# chatbot = gr.Chatbot(label="Conversation")
|
| 118 |
+
# user_input = gr.Textbox(label="Your message", placeholder="Type your message here...")
|
| 119 |
+
|
| 120 |
+
# with gr.Row():
|
| 121 |
+
# send_button = gr.Button("Send")
|
| 122 |
+
# save_button = gr.Button("Save Conversation")
|
| 123 |
+
# download_file = gr.File(label="Download Conversation")
|
| 124 |
+
|
| 125 |
+
# send_button.click(chat, inputs=user_input, outputs=[chatbot, user_input])
|
| 126 |
+
# save_button.click(save_conversation, outputs=download_file)
|
| 127 |
+
|
| 128 |
+
# demo.launch()
|
| 129 |
+
# # iface = gr.Interface(
|
| 130 |
+
# # fn=generate_response,
|
| 131 |
+
# # inputs=gr.Textbox(lines=2, placeholder="Enter your message..."),
|
| 132 |
+
# # outputs=gr.Textbox(label="PIDGIN Assistant"),
|
| 133 |
+
# # title="Nigerian PIDGIN Assistant",
|
| 134 |
+
# # description="Chat with a Nigerian assistant that only speaks Pidgin English."
|
| 135 |
+
# # )
|
| 136 |
+
|
| 137 |
+
# # iface.launch()
|
| 138 |
+
|
| 139 |
import gradio as gr
|
| 140 |
import torch
|
| 141 |
from unsloth import FastLanguageModel
|
|
|
|
| 144 |
from peft import PeftModel
|
| 145 |
import json
|
| 146 |
import time
|
| 147 |
+
import os
|
| 148 |
|
| 149 |
# -----------------------------
|
| 150 |
# 1️⃣ Set device
|
|
|
|
| 161 |
max_seq_length=2048,
|
| 162 |
dtype=torch.float16,
|
| 163 |
load_in_4bit=False,
|
|
|
|
| 164 |
)
|
| 165 |
|
| 166 |
# -----------------------------
|
|
|
|
| 171 |
FastLanguageModel.for_inference(lora_model)
|
| 172 |
|
| 173 |
# -----------------------------
|
| 174 |
+
# 4️⃣ Streaming generation function
|
| 175 |
# -----------------------------
|
| 176 |
def generate_response(user_message):
|
| 177 |
messages = [
|
|
|
|
| 230 |
|
| 231 |
def save_conversation():
|
| 232 |
if not chat_history:
|
| 233 |
+
# Return a small empty txt file instead of None (to avoid Gradio error)
|
| 234 |
+
file_path = "conversation_empty.txt"
|
| 235 |
+
with open(file_path, "w", encoding="utf-8") as f:
|
| 236 |
+
f.write("[]")
|
| 237 |
+
return file_path
|
| 238 |
|
| 239 |
conversation = []
|
| 240 |
for user_msg, bot_msg in chat_history:
|
|
|
|
| 268 |
save_button.click(save_conversation, outputs=download_file)
|
| 269 |
|
| 270 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
|
|