Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,126 +1,92 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import gc
|
| 3 |
-
import json
|
| 4 |
-
import time
|
| 5 |
-
from threading import Thread
|
| 6 |
-
|
| 7 |
import gradio as gr
|
|
|
|
| 8 |
from unsloth import FastLanguageModel
|
| 9 |
from transformers import TextIteratorStreamer
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
#
|
| 16 |
-
torch.cuda.
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
model_name = MODEL_ID,
|
| 30 |
-
max_seq_length = CONTEXT_LEN,
|
| 31 |
-
dtype = None, # Let Unsloth pick appropriate dtype
|
| 32 |
-
load_in_4bit = True,
|
| 33 |
-
trust_remote_code = True,
|
| 34 |
)
|
| 35 |
-
FastLanguageModel.for_inference(model)
|
| 36 |
-
print("✅ Model loaded (4-bit dynamic if available)")
|
| 37 |
|
| 38 |
-
#
|
| 39 |
-
#
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
messages = [
|
| 44 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
]
|
| 46 |
-
if history:
|
| 47 |
-
for human, bot in history:
|
| 48 |
-
messages.append({"role": "user", "content": human})
|
| 49 |
-
messages.append({"role": "assistant", "content": bot})
|
| 50 |
-
messages.append({"role": "user", "content": message})
|
| 51 |
|
| 52 |
-
# Using apply_chat_template (supported by Unsloth) to handle the formatting
|
| 53 |
inputs = tokenizer.apply_chat_template(
|
| 54 |
messages,
|
| 55 |
-
add_generation_prompt
|
| 56 |
-
return_tensors
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
| 68 |
)
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
thread.start()
|
| 73 |
-
|
| 74 |
-
output = ""
|
| 75 |
-
for partial in streamer:
|
| 76 |
-
output += partial
|
| 77 |
-
yield output
|
| 78 |
-
|
| 79 |
-
# ---------------------
|
| 80 |
-
# Save chat to file (JSON format)
|
| 81 |
-
# ---------------------
|
| 82 |
-
def save_chat(history):
|
| 83 |
-
export = []
|
| 84 |
-
for human, bot in history:
|
| 85 |
-
export.append({"role": "user", "content": human})
|
| 86 |
-
export.append({"role": "assistant", "content": bot})
|
| 87 |
-
|
| 88 |
-
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
| 89 |
-
fname = f"conversation_{timestamp}.json"
|
| 90 |
-
with open(fname, "w", encoding="utf-8") as f:
|
| 91 |
-
json.dump(export, f, ensure_ascii=False, indent=2)
|
| 92 |
-
return fname
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
# ---------------------
|
| 97 |
-
with gr.Blocks(title="🇳🇬 PIDGIN Gemma-3 Chatbot") as demo:
|
| 98 |
-
gr.HTML("<h1><center>🇳🇬 PIDGIN Gemma-3 Chatbot</center></h1>")
|
| 99 |
-
chatbot = gr.Chatbot(height=450, show_label=False)
|
| 100 |
-
|
| 101 |
-
with gr.Row():
|
| 102 |
-
msg = gr.Textbox(placeholder="Type your message here...", lines=2, scale=4)
|
| 103 |
-
send = gr.Button("Send", variant="primary", scale=1, size="lg")
|
| 104 |
-
|
| 105 |
-
with gr.Row():
|
| 106 |
-
clear = gr.Button("Clear Chat", variant="secondary", scale=1)
|
| 107 |
-
save_btn = gr.Button("💾 Save Conversation", variant="secondary", scale=1)
|
| 108 |
-
download_file = gr.File()
|
| 109 |
-
|
| 110 |
-
def respond(message, history):
|
| 111 |
-
if history is None:
|
| 112 |
-
history = []
|
| 113 |
-
stream = stream_chat(message, history)
|
| 114 |
-
response = ""
|
| 115 |
-
for partial in stream:
|
| 116 |
-
response = partial
|
| 117 |
-
yield history + [(message, response)], ""
|
| 118 |
-
yield history + [(message, response)], ""
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
|
| 126 |
-
demo.launch(share=True, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
from unsloth import FastLanguageModel
|
| 4 |
from transformers import TextIteratorStreamer
|
| 5 |
+
import threading
|
| 6 |
+
from peft import PeftModel
|
| 7 |
+
|
| 8 |
+
# -----------------------------
|
| 9 |
+
# 1️⃣ Set device
|
| 10 |
+
# -----------------------------
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
print("Using device:", device)
|
| 13 |
+
|
| 14 |
+
# -----------------------------
|
| 15 |
+
# 2️⃣ Load base model (skip compilation)
|
| 16 |
+
# -----------------------------
|
| 17 |
+
base_model_name = "Ephraimmm/PIDGIN_gemma-3"
|
| 18 |
+
base_model, tokenizer = FastLanguageModel.from_pretrained(
|
| 19 |
+
model_name=base_model_name,
|
| 20 |
+
max_seq_length=2048,
|
| 21 |
+
dtype=torch.float16,
|
| 22 |
+
load_in_4bit=False,
|
| 23 |
+
disable_compile=True # <- avoids unsloth compilation errors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
)
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
# -----------------------------
|
| 27 |
+
# 3️⃣ Load LoRA
|
| 28 |
+
# -----------------------------
|
| 29 |
+
lora_repo = "Ephraimmm/PIDGIN_gemma-3"
|
| 30 |
+
lora_model = PeftModel.from_pretrained(base_model, lora_repo, adapter_name="adapter_model")
|
| 31 |
+
FastLanguageModel.for_inference(lora_model)
|
| 32 |
+
|
| 33 |
+
# -----------------------------
|
| 34 |
+
# 4️⃣ Streaming generation function with Nigerian Pidgin system prompt
|
| 35 |
+
# -----------------------------
|
| 36 |
+
def generate_response(user_message):
|
| 37 |
messages = [
|
| 38 |
+
{
|
| 39 |
+
"role": "system",
|
| 40 |
+
"content": [{"type": "text", "text": "You be Nigerian assistant wey sabi Pidgin English only. No speak any other language."}]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"role": "user",
|
| 44 |
+
"content": [{"type": "text", "text": user_message}]
|
| 45 |
+
}
|
| 46 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
|
|
|
| 48 |
inputs = tokenizer.apply_chat_template(
|
| 49 |
messages,
|
| 50 |
+
add_generation_prompt=True,
|
| 51 |
+
return_tensors="pt",
|
| 52 |
+
tokenize=True,
|
| 53 |
+
return_dict=True
|
| 54 |
+
).to(device)
|
| 55 |
+
|
| 56 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 57 |
+
|
| 58 |
+
generation_kwargs = dict(
|
| 59 |
+
**inputs,
|
| 60 |
+
streamer=streamer,
|
| 61 |
+
max_new_tokens=256,
|
| 62 |
+
temperature=0.7,
|
| 63 |
+
top_p=0.9,
|
| 64 |
+
top_k=40,
|
| 65 |
+
use_cache=False
|
| 66 |
)
|
| 67 |
|
| 68 |
+
def generate():
|
| 69 |
+
lora_model.generate(**generation_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
thread = threading.Thread(target=generate)
|
| 72 |
+
thread.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
full_response = ""
|
| 75 |
+
for new_token in streamer:
|
| 76 |
+
if new_token:
|
| 77 |
+
full_response += new_token
|
| 78 |
+
thread.join()
|
| 79 |
+
return full_response
|
| 80 |
+
|
| 81 |
+
# -----------------------------
|
| 82 |
+
# 5️⃣ Gradio interface
|
| 83 |
+
# -----------------------------
|
| 84 |
+
iface = gr.Interface(
|
| 85 |
+
fn=generate_response,
|
| 86 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your message..."),
|
| 87 |
+
outputs=gr.Textbox(label="PIDGIN Assistant"),
|
| 88 |
+
title="Nigerian PIDGIN Assistant",
|
| 89 |
+
description="Chat with a Nigerian assistant that only speaks Pidgin English."
|
| 90 |
+
)
|
| 91 |
|
| 92 |
+
iface.launch()
|
|
|