Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,699 +1,237 @@
|
|
| 1 |
-
from fastapi import FastAPI, HTTPException
|
| 2 |
-
import streamlit as st
|
| 3 |
-
import pandas as pd
|
| 4 |
-
from pydantic import BaseModel, Field, validator
|
| 5 |
-
import numpy as np
|
| 6 |
-
import plotly.graph_objects as go
|
| 7 |
-
|
| 8 |
-
from azure_openai import converse_with_patient, create_diagnosis
|
| 9 |
-
from memory import get_conversation, store_conversation, update_conversation
|
| 10 |
-
import uuid
|
| 11 |
-
|
| 12 |
-
class ask_question (BaseModel):
|
| 13 |
-
user_input: str
|
| 14 |
-
id: str
|
| 15 |
-
|
| 16 |
-
app = FastAPI()
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
def generate_expert_confidence_chart(diagnosis):
|
| 20 |
-
"""
|
| 21 |
-
Extracts expert confidence data from JSON and generates a multi-colored bar chart.
|
| 22 |
-
"""
|
| 23 |
-
|
| 24 |
-
# Extract expert distribution data
|
| 25 |
-
expert_distribution = diagnosis["expert_distribution"]
|
| 26 |
-
|
| 27 |
-
# Process the data into a structured format
|
| 28 |
-
rows = []
|
| 29 |
-
for key, value in expert_distribution.items():
|
| 30 |
-
expert, attribute = key.rsplit(", ", 1) # Ensure splitting at the last comma
|
| 31 |
-
rows.append({"Expert": expert, "Attribute": attribute, "Value": value})
|
| 32 |
-
|
| 33 |
-
# Create a DataFrame
|
| 34 |
-
df = pd.DataFrame(rows)
|
| 35 |
-
|
| 36 |
-
# Filter the DataFrame for confidence values only
|
| 37 |
-
df_confidence = df[df["Attribute"] == "confidence"].copy()
|
| 38 |
-
|
| 39 |
-
# Merge confidence values with corresponding thinking explanations
|
| 40 |
-
df_thinking = df[df["Attribute"] == "thinking"].copy()
|
| 41 |
-
df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))
|
| 42 |
-
|
| 43 |
-
# Convert confidence values to numeric
|
| 44 |
-
df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])
|
| 45 |
-
|
| 46 |
-
# Define a function to map confidence scores to colors
|
| 47 |
-
def confidence_to_color(confidence):
|
| 48 |
-
"""
|
| 49 |
-
Maps confidence score (0-100) to a blended color between red (0 confidence) and green (100 confidence).
|
| 50 |
-
"""
|
| 51 |
-
red = np.array([255, 0, 0])
|
| 52 |
-
green = np.array([0, 255, 0])
|
| 53 |
-
blend_ratio = confidence / 100 # Normalize between 0 and 1
|
| 54 |
-
blended_color = (1 - blend_ratio) * red + blend_ratio * green
|
| 55 |
-
return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"
|
| 56 |
-
|
| 57 |
-
# Apply color mapping
|
| 58 |
-
df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)
|
| 59 |
-
|
| 60 |
-
# Create the bar chart
|
| 61 |
-
fig = go.Figure()
|
| 62 |
-
|
| 63 |
-
# Add bars with customized colors and reduced spacing
|
| 64 |
-
fig.add_trace(go.Bar(
|
| 65 |
-
y=df_confidence["Expert"],
|
| 66 |
-
x=df_confidence["Value_confidence"],
|
| 67 |
-
text=df_confidence["Value_confidence"],
|
| 68 |
-
hovertext=df_confidence["Value_thinking"],
|
| 69 |
-
orientation="h",
|
| 70 |
-
marker=dict(color=df_confidence["Color"]),
|
| 71 |
-
width=0.3, # Reduce bar width for closer spacing
|
| 72 |
-
textposition="inside"
|
| 73 |
-
))
|
| 74 |
-
|
| 75 |
-
# Update layout for better visibility
|
| 76 |
-
fig.update_layout(
|
| 77 |
-
title="Expert Confidence in Diagnosis",
|
| 78 |
-
xaxis_title="Confidence Score",
|
| 79 |
-
yaxis_title="Medical Expert",
|
| 80 |
-
yaxis=dict(tickmode="linear", dtick=1, automargin=True),
|
| 81 |
-
height=max(400, 40 * len(df_confidence)), # Adjust height dynamically
|
| 82 |
-
bargap=0.1 # Reduce spacing between bars
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
# Update hover template
|
| 86 |
-
fig.update_traces(
|
| 87 |
-
hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
# Show the plot
|
| 91 |
-
return fig
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
# FastAPI interface routes
|
| 95 |
-
# @app.get("/")
|
| 96 |
-
# async def root():
|
| 97 |
-
# return {"message": "Welcome to the GenAI Symptom Checker"}
|
| 98 |
-
|
| 99 |
-
# @app.post("/ask")
|
| 100 |
-
# async def ask_question(question: ask_question):
|
| 101 |
-
# try:
|
| 102 |
-
# user_input = question.user_input
|
| 103 |
-
# conversation_id = question.id
|
| 104 |
-
|
| 105 |
-
# exists, count, conversation_obj = get_conversation(conversation_id)
|
| 106 |
-
# if count == 6:
|
| 107 |
-
# response = converse_with_patient(conversation_obj, user_input)
|
| 108 |
-
# store_conversation(conversation_id, conversation_id, user_input, response)
|
| 109 |
-
# exists, count, conversation_obj = get_conversation(conversation_id)
|
| 110 |
-
# diagnosis = create_diagnosis(conversation_obj)
|
| 111 |
-
# return {"response": response, "count": count, "diagnosis": diagnosis}
|
| 112 |
-
# if count > 6:
|
| 113 |
-
# exists, count, conversation_obj = get_conversation(conversation_id)
|
| 114 |
-
# diagnosis_content = next((item['content'] for item in conversation_obj if item['role'] == 'diagnosis'), None)
|
| 115 |
-
# return {"response": "You have reached the maximum number of questions", "count": count, "diagnosis": diagnosis_content}
|
| 116 |
-
# if exists == "PASS":
|
| 117 |
-
# response = converse_with_patient(conversation_obj, user_input)
|
| 118 |
-
# update_conversation(conversation_id, conversation_id, user_input, response)
|
| 119 |
-
# return {"response": response, "count": count, "diagnosis": "none"}
|
| 120 |
-
|
| 121 |
-
# else:
|
| 122 |
-
# response = converse_with_patient("",user_input)
|
| 123 |
-
# store_conversation(conversation_id, conversation_id, user_input, response)
|
| 124 |
-
# return {"response": response, "count": count, "diagnosis": "none"}
|
| 125 |
-
|
| 126 |
-
# except Exception as e:
|
| 127 |
-
# raise HTTPException(status_code=500, detail=str(e))
|
| 128 |
-
|
| 129 |
-
# app config
|
| 130 |
-
|
| 131 |
-
st.set_page_config(page_title="virtual clinician", page_icon=":medical_symbol:")
|
| 132 |
-
st.title("Virtual Clinician :medical_symbol:")
|
| 133 |
-
|
| 134 |
-
user_id = st.text_input("Name:", key="user_id")
|
| 135 |
-
|
| 136 |
-
conversation_id = user_id
|
| 137 |
-
# Ensure user_id is defined or fallback to a default value
|
| 138 |
-
if not user_id:
|
| 139 |
-
st.warning("Hi, Who am I speaking with?")
|
| 140 |
-
else:
|
| 141 |
-
# session state
|
| 142 |
-
if "chat_history" not in st.session_state:
|
| 143 |
-
st.session_state.chat_history = [
|
| 144 |
-
{"role": "AI", "content": f"Hello, {user_id} I am the virtual clinician. How can I help you today?"},
|
| 145 |
-
]
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
# conversation
|
| 149 |
-
for message in st.session_state.chat_history:
|
| 150 |
-
if message["role"] == "AI":
|
| 151 |
-
with st.chat_message("AI"):
|
| 152 |
-
st.write(message["content"])
|
| 153 |
-
elif message["role"] == "Human":
|
| 154 |
-
with st.chat_message("Human"):
|
| 155 |
-
st.write(message["content"])
|
| 156 |
-
|
| 157 |
-
# user input
|
| 158 |
-
user_input = st.chat_input("Type your message here...")
|
| 159 |
-
if user_input is not None and user_input != "":
|
| 160 |
-
st.session_state.chat_history.append({"role": "Human", "content": user_input})
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
with st.chat_message("Human"):
|
| 164 |
-
st.markdown(user_input)
|
| 165 |
-
|
| 166 |
-
# this functions checks to see if the conversation exists
|
| 167 |
-
exists, count, conversation_obj = get_conversation(conversation_id)
|
| 168 |
-
# if the conversation does not exist, it creates a new conversation
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
if count > 5:
|
| 172 |
-
response = converse_with_patient(conversation_obj, user_input)
|
| 173 |
-
conversation_obj = update_conversation(conversation_id, user_input, response)
|
| 174 |
-
print(conversation_obj)
|
| 175 |
-
with st.spinner("Creating a diagnosis..."):
|
| 176 |
-
outcome, diagnosis = create_diagnosis(conversation_obj)
|
| 177 |
-
if outcome == "SUCCESS":
|
| 178 |
-
st.subheader("Diagnosis Summary")
|
| 179 |
-
st.write(f"**
|
| 180 |
-
st.write(f"**Consensus
|
| 181 |
-
st.write(f"**
|
| 182 |
-
st.write(f"**Evaluation
|
| 183 |
-
st.write(f"**
|
| 184 |
-
st.write(f"**Next Best Action
|
| 185 |
-
st.write(f"**Next Best Action
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
if
|
| 194 |
-
|
| 195 |
-
st.
|
| 196 |
-
st.
|
| 197 |
-
st.write(f"**
|
| 198 |
-
st.write(f"**
|
| 199 |
-
st.write(f"**
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
st.
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
st.write(
|
| 210 |
-
st.
|
| 211 |
-
st.write(f"**
|
| 212 |
-
st.write(f"**
|
| 213 |
-
st.write(f"**
|
| 214 |
-
st.write(f"**
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
st.
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
# if exists == "FAIL":
|
| 245 |
-
# response = converse_with_patient("",user_query)
|
| 246 |
-
# store_conversation(conversation_id, user_query, response)
|
| 247 |
-
# st.session_state.chat_history.append({"role": "AI", "content": response})
|
| 248 |
-
|
| 249 |
-
# # if the conversation exists use it to inform the AI's context
|
| 250 |
-
# response = converse_with_patient(st.session_state.chat_history, user_query)
|
| 251 |
-
# # update the conversation with the new response
|
| 252 |
-
# update_conversation(conversation_id, user_query, response)
|
| 253 |
-
# once 6 interactions have been made, the AI will generate a diagnosis
|
| 254 |
-
# if count > 6:
|
| 255 |
-
# # write last question to the chat log
|
| 256 |
-
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
|
| 257 |
-
# # get an AI response
|
| 258 |
-
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
|
| 259 |
-
# # write AI response to the chat
|
| 260 |
-
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
|
| 261 |
-
# # send conversation to the AI to generate a diagnosis
|
| 262 |
-
# outcome, diagnosis = create_diagnosis(conversation_obj)
|
| 263 |
-
# # if the diagnosis is successful, display the diagnosis data
|
| 264 |
-
# if outcome == "PASS":
|
| 265 |
-
# st.subheader("Diagnosis Summary")
|
| 266 |
-
# st.write(f"**Consensus Confidence:** {['concensus_confidence']}%")
|
| 267 |
-
# st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
|
| 268 |
-
# st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
|
| 269 |
-
# st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
|
| 270 |
-
# st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
|
| 271 |
-
# st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
|
| 272 |
-
# st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
|
| 273 |
-
|
| 274 |
-
# # Generate and display the plotly chart
|
| 275 |
-
# st.subheader("Expert Confidence Levels")
|
| 276 |
-
# fig = generate_expert_confidence_chart(diagnosis)
|
| 277 |
-
# st.plotly_chart(fig)
|
| 278 |
-
|
| 279 |
-
# # if the diagnosis is not successful, display a message
|
| 280 |
-
# else:
|
| 281 |
-
# st.write("Diagnosis not available")
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
# from fastapi import FastAPI, HTTPException
|
| 290 |
-
# import streamlit as st
|
| 291 |
-
# import pandas as pd
|
| 292 |
-
# from pydantic import BaseModel
|
| 293 |
-
# import numpy as np
|
| 294 |
-
# import plotly.graph_objects as go
|
| 295 |
-
|
| 296 |
-
# from azure_openai import converse_with_patient, create_diagnosis
|
| 297 |
-
# from memory import get_conversation, store_conversation, update_conversation, retrieve_conversation
|
| 298 |
-
|
| 299 |
-
# class AskQuestion(BaseModel):
|
| 300 |
-
# user_input: str
|
| 301 |
-
# id: str
|
| 302 |
-
|
| 303 |
-
# app = FastAPI()
|
| 304 |
-
|
| 305 |
-
# def generate_expert_confidence_chart(diagnosis):
|
| 306 |
-
# """
|
| 307 |
-
# Extracts expert confidence data from JSON and generates a multi-colored bar chart.
|
| 308 |
-
# """
|
| 309 |
-
# expert_distribution = diagnosis.get("expert_distribution", {})
|
| 310 |
-
# rows = []
|
| 311 |
-
# for key, value in expert_distribution.items():
|
| 312 |
-
# expert, attribute = key.rsplit(", ", 1)
|
| 313 |
-
# rows.append({"Expert": expert, "Attribute": attribute, "Value": value})
|
| 314 |
-
# df = pd.DataFrame(rows)
|
| 315 |
-
# df_confidence = df[df["Attribute"] == "confidence"].copy()
|
| 316 |
-
# df_thinking = df[df["Attribute"] == "thinking"].copy()
|
| 317 |
-
# df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))
|
| 318 |
-
# df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])
|
| 319 |
-
|
| 320 |
-
# def confidence_to_color(confidence):
|
| 321 |
-
# red = np.array([255, 0, 0])
|
| 322 |
-
# green = np.array([0, 255, 0])
|
| 323 |
-
# blend_ratio = confidence / 100
|
| 324 |
-
# blended_color = (1 - blend_ratio) * red + blend_ratio * green
|
| 325 |
-
# return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"
|
| 326 |
-
|
| 327 |
-
# df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)
|
| 328 |
-
# fig = go.Figure()
|
| 329 |
-
# fig.add_trace(go.Bar(
|
| 330 |
-
# y=df_confidence["Expert"],
|
| 331 |
-
# x=df_confidence["Value_confidence"],
|
| 332 |
-
# text=df_confidence["Value_confidence"],
|
| 333 |
-
# hovertext=df_confidence["Value_thinking"],
|
| 334 |
-
# orientation="h",
|
| 335 |
-
# marker=dict(color=df_confidence["Color"]),
|
| 336 |
-
# width=0.3,
|
| 337 |
-
# textposition="inside"
|
| 338 |
-
# ))
|
| 339 |
-
# fig.update_layout(
|
| 340 |
-
# title="Expert Confidence in Diagnosis",
|
| 341 |
-
# xaxis_title="Confidence Score",
|
| 342 |
-
# yaxis_title="Medical Expert",
|
| 343 |
-
# yaxis=dict(tickmode="linear", dtick=1, automargin=True),
|
| 344 |
-
# height=max(400, 40 * len(df_confidence)),
|
| 345 |
-
# bargap=0.1
|
| 346 |
-
# )
|
| 347 |
-
# fig.update_traces(
|
| 348 |
-
# hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
|
| 349 |
-
# )
|
| 350 |
-
# return fig
|
| 351 |
-
|
| 352 |
-
# conversation_id = "111a1"
|
| 353 |
-
# st.set_page_config(page_title="Virtual Clinician", page_icon="🤖")
|
| 354 |
-
# st.title("Virtual Clinician :toolbox:")
|
| 355 |
-
|
| 356 |
-
# if "chat_history" not in st.session_state:
|
| 357 |
-
# st.session_state.chat_history = [
|
| 358 |
-
# {"role": "AI", "content": "Hello, I am the virtual clinician. How can I help you today?"},
|
| 359 |
-
# ]
|
| 360 |
-
|
| 361 |
-
# for message in st.session_state.chat_history:
|
| 362 |
-
# with st.chat_message(message["role"]):
|
| 363 |
-
# st.write(message["content"])
|
| 364 |
-
|
| 365 |
-
# user_query = st.chat_input("Type your message here...")
|
| 366 |
-
# if user_query:
|
| 367 |
-
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
|
| 368 |
-
# with st.chat_message("Human"):
|
| 369 |
-
# st.markdown(user_query)
|
| 370 |
-
|
| 371 |
-
# exists, count, conversation_obj = get_conversation(conversation_id)
|
| 372 |
-
|
| 373 |
-
# if exists == "FAIL":
|
| 374 |
-
# response_data = converse_with_patient("", user_query)
|
| 375 |
-
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
|
| 376 |
-
# store_conversation(conversation_id, user_query, response_data)
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
# else:
|
| 380 |
-
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
|
| 381 |
-
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
|
| 382 |
-
# update_conversation(conversation_id, conversation_id, user_query, response_data)
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
# if count >= 6:
|
| 386 |
-
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
|
| 387 |
-
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
|
| 388 |
-
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
|
| 389 |
-
# outcome, diagnosis = create_diagnosis(conversation_obj)
|
| 390 |
-
# if outcome == "PASS":
|
| 391 |
-
# st.subheader("Diagnosis Summary")
|
| 392 |
-
# st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
|
| 393 |
-
# st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
|
| 394 |
-
# st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
|
| 395 |
-
# st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
|
| 396 |
-
# st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
|
| 397 |
-
# st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
|
| 398 |
-
# st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
|
| 399 |
-
# st.subheader("Expert Confidence Levels")
|
| 400 |
-
# fig = generate_expert_confidence_chart(diagnosis)
|
| 401 |
-
# st.plotly_chart(fig)
|
| 402 |
-
# else:
|
| 403 |
-
# st.write("Diagnosis not available")
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
|
| 407 |
-
# with st.chat_message("AI"):
|
| 408 |
-
# st.write(response_data)
|
| 409 |
-
|
| 410 |
-
# from fastapi import FastAPI, HTTPException
|
| 411 |
-
# import streamlit as st
|
| 412 |
-
# import pandas as pd
|
| 413 |
-
# from pydantic import BaseModel
|
| 414 |
-
# import numpy as np
|
| 415 |
-
# import plotly.graph_objects as go
|
| 416 |
-
|
| 417 |
-
# from azure_openai import converse_with_patient, create_diagnosis
|
| 418 |
-
# from memory import get_conversation, store_conversation, update_conversation, retrieve_conversation
|
| 419 |
-
|
| 420 |
-
# class AskQuestion(BaseModel):
|
| 421 |
-
# user_input: str
|
| 422 |
-
# id: str
|
| 423 |
-
|
| 424 |
-
# app = FastAPI()
|
| 425 |
-
|
| 426 |
-
# def generate_expert_confidence_chart(diagnosis):
|
| 427 |
-
# """
|
| 428 |
-
# Extracts expert confidence data from JSON and generates a multi-colored bar chart.
|
| 429 |
-
# """
|
| 430 |
-
# expert_distribution = diagnosis.get("expert_distribution", {})
|
| 431 |
-
# rows = []
|
| 432 |
-
# for key, value in expert_distribution.items():
|
| 433 |
-
# expert, attribute = key.rsplit(", ", 1)
|
| 434 |
-
# rows.append({"Expert": expert, "Attribute": attribute, "Value": value})
|
| 435 |
-
# df = pd.DataFrame(rows)
|
| 436 |
-
# df_confidence = df[df["Attribute"] == "confidence"].copy()
|
| 437 |
-
# df_thinking = df[df["Attribute"] == "thinking"].copy()
|
| 438 |
-
# df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))
|
| 439 |
-
# df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])
|
| 440 |
-
|
| 441 |
-
# def confidence_to_color(confidence):
|
| 442 |
-
# red = np.array([255, 0, 0])
|
| 443 |
-
# green = np.array([0, 255, 0])
|
| 444 |
-
# blend_ratio = confidence / 100
|
| 445 |
-
# blended_color = (1 - blend_ratio) * red + blend_ratio * green
|
| 446 |
-
# return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"
|
| 447 |
-
|
| 448 |
-
# df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)
|
| 449 |
-
# fig = go.Figure()
|
| 450 |
-
# fig.add_trace(go.Bar(
|
| 451 |
-
# y=df_confidence["Expert"],
|
| 452 |
-
# x=df_confidence["Value_confidence"],
|
| 453 |
-
# text=df_confidence["Value_confidence"],
|
| 454 |
-
# hovertext=df_confidence["Value_thinking"],
|
| 455 |
-
# orientation="h",
|
| 456 |
-
# marker=dict(color=df_confidence["Color"]),
|
| 457 |
-
# width=0.3,
|
| 458 |
-
# textposition="inside"
|
| 459 |
-
# ))
|
| 460 |
-
# fig.update_layout(
|
| 461 |
-
# title="Expert Confidence in Diagnosis",
|
| 462 |
-
# xaxis_title="Confidence Score",
|
| 463 |
-
# yaxis_title="Medical Expert",
|
| 464 |
-
# yaxis=dict(tickmode="linear", dtick=1, automargin=True),
|
| 465 |
-
# height=max(400, 40 * len(df_confidence)),
|
| 466 |
-
# bargap=0.1
|
| 467 |
-
# )
|
| 468 |
-
# fig.update_traces(
|
| 469 |
-
# hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
|
| 470 |
-
# )
|
| 471 |
-
# return fig
|
| 472 |
-
|
| 473 |
-
# conversation_id = "111a1"
|
| 474 |
-
# st.set_page_config(page_title="Virtual Clinician", page_icon="🤖")
|
| 475 |
-
# st.title("Virtual Clinician :toolbox:")
|
| 476 |
-
|
| 477 |
-
# if "chat_history" not in st.session_state:
|
| 478 |
-
# st.session_state.chat_history = get_conversation(conversation_id)[2] or [
|
| 479 |
-
# {"role": "AI", "content": "Hello, I am the virtual clinician. How can I help you today?"},
|
| 480 |
-
# ]
|
| 481 |
-
|
| 482 |
-
# for message in st.session_state.chat_history:
|
| 483 |
-
# with st.chat_message(message["role"]):
|
| 484 |
-
# st.write(message["content"])
|
| 485 |
-
|
| 486 |
-
# user_query = st.chat_input("Type your message here...")
|
| 487 |
-
# if user_query:
|
| 488 |
-
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
|
| 489 |
-
# with st.chat_message("Human"):
|
| 490 |
-
# st.markdown(user_query)
|
| 491 |
-
|
| 492 |
-
# exists, count, conversation_obj = get_conversation(conversation_id)
|
| 493 |
-
# if not exists:
|
| 494 |
-
# response_data = converse_with_patient("", user_query)
|
| 495 |
-
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
|
| 496 |
-
# store_conversation(conversation_id, conversation_id, user_query, response_data)
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
|
| 500 |
-
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
|
| 501 |
-
# update_conversation(conversation_id, conversation_id, user_query, response_data)
|
| 502 |
-
|
| 503 |
-
# if count >= 6:
|
| 504 |
-
# outcome, diagnosis = create_diagnosis(conversation_obj)
|
| 505 |
-
# if outcome == "PASS":
|
| 506 |
-
# st.subheader("Diagnosis Summary")
|
| 507 |
-
# st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
|
| 508 |
-
# st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
|
| 509 |
-
# st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
|
| 510 |
-
# st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
|
| 511 |
-
# st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
|
| 512 |
-
# st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
|
| 513 |
-
# st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
|
| 514 |
-
# st.subheader("Expert Confidence Levels")
|
| 515 |
-
# fig = generate_expert_confidence_chart(diagnosis)
|
| 516 |
-
# st.plotly_chart(fig)
|
| 517 |
-
# else:
|
| 518 |
-
# st.write("Diagnosis not available")
|
| 519 |
-
|
| 520 |
-
# with st.chat_message("AI"):
|
| 521 |
-
# st.write(response_data)
|
| 522 |
-
|
| 523 |
-
# store_conversation(conversation_id, conversation_id, "", st.session_state.chat_history)
|
| 524 |
-
|
| 525 |
-
# from fastapi import FastAPI, HTTPException
|
| 526 |
-
# import streamlit as st
|
| 527 |
-
# import pandas as pd
|
| 528 |
-
# from pydantic import BaseModel
|
| 529 |
-
# import numpy as np
|
| 530 |
-
# import plotly.graph_objects as go
|
| 531 |
-
|
| 532 |
-
# from azure_openai import converse_with_patient, create_diagnosis
|
| 533 |
-
# from memory import get_conversation, store_conversation, update_conversation, retrieve_conversation
|
| 534 |
-
|
| 535 |
-
# class AskQuestion(BaseModel):
|
| 536 |
-
# user_input: str
|
| 537 |
-
# id: str
|
| 538 |
-
|
| 539 |
-
# app = FastAPI()
|
| 540 |
-
|
| 541 |
-
# def generate_expert_confidence_chart(diagnosis):
|
| 542 |
-
# """
|
| 543 |
-
# Extracts expert confidence data from JSON and generates a multi-colored bar chart.
|
| 544 |
-
# """
|
| 545 |
-
# expert_distribution = diagnosis.get("expert_distribution", {})
|
| 546 |
-
# rows = []
|
| 547 |
-
# for key, value in expert_distribution.items():
|
| 548 |
-
# expert, attribute = key.rsplit(", ", 1)
|
| 549 |
-
# rows.append({"Expert": expert, "Attribute": attribute, "Value": value})
|
| 550 |
-
# df = pd.DataFrame(rows)
|
| 551 |
-
# df_confidence = df[df["Attribute"] == "confidence"].copy()
|
| 552 |
-
# df_thinking = df[df["Attribute"] == "thinking"].copy()
|
| 553 |
-
# df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))
|
| 554 |
-
# df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])
|
| 555 |
-
|
| 556 |
-
# def confidence_to_color(confidence):
|
| 557 |
-
# red = np.array([255, 0, 0])
|
| 558 |
-
# green = np.array([0, 255, 0])
|
| 559 |
-
# blend_ratio = confidence / 100
|
| 560 |
-
# blended_color = (1 - blend_ratio) * red + blend_ratio * green
|
| 561 |
-
# return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"
|
| 562 |
-
|
| 563 |
-
# df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)
|
| 564 |
-
# fig = go.Figure()
|
| 565 |
-
# fig.add_trace(go.Bar(
|
| 566 |
-
# y=df_confidence["Expert"],
|
| 567 |
-
# x=df_confidence["Value_confidence"],
|
| 568 |
-
# text=df_confidence["Value_confidence"],
|
| 569 |
-
# hovertext=df_confidence["Value_thinking"],
|
| 570 |
-
# orientation="h",
|
| 571 |
-
# marker=dict(color=df_confidence["Color"]),
|
| 572 |
-
# width=0.3,
|
| 573 |
-
# textposition="inside"
|
| 574 |
-
# ))
|
| 575 |
-
# fig.update_layout(
|
| 576 |
-
# title="Expert Confidence in Diagnosis",
|
| 577 |
-
# xaxis_title="Confidence Score",
|
| 578 |
-
# yaxis_title="Medical Expert",
|
| 579 |
-
# yaxis=dict(tickmode="linear", dtick=1, automargin=True),
|
| 580 |
-
# height=max(400, 40 * len(df_confidence)),
|
| 581 |
-
# bargap=0.1
|
| 582 |
-
# )
|
| 583 |
-
# fig.update_traces(
|
| 584 |
-
# hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
|
| 585 |
-
# )
|
| 586 |
-
# return fig
|
| 587 |
-
|
| 588 |
-
# conversation_id = "111a1"
|
| 589 |
-
# st.set_page_config(page_title="Virtual Clinician", page_icon="🤖")
|
| 590 |
-
# st.title("Virtual Clinician :toolbox:")
|
| 591 |
-
|
| 592 |
-
# if "chat_history" not in st.session_state:
|
| 593 |
-
# st.session_state.chat_history = get_conversation(conversation_id)[2] or [
|
| 594 |
-
# {"role": "AI", "content": "Hello, I am the virtual clinician. How can I help you today?"},
|
| 595 |
-
# ]
|
| 596 |
-
|
| 597 |
-
# for message in st.session_state.chat_history:
|
| 598 |
-
# with st.chat_message(message["role"]):
|
| 599 |
-
# st.write(message["content"])
|
| 600 |
-
|
| 601 |
-
# user_query = st.chat_input("Type your message here...")
|
| 602 |
-
# if user_query:
|
| 603 |
-
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
|
| 604 |
-
# with st.chat_message("Human"):
|
| 605 |
-
# st.markdown(user_query)
|
| 606 |
-
|
| 607 |
-
# exists, count, conversation_obj = get_conversation(conversation_id)
|
| 608 |
-
# if not exists:
|
| 609 |
-
# response = converse_with_patient("", user_query)
|
| 610 |
-
# store_conversation(conversation_id, conversation_id, user_query, response)
|
| 611 |
-
# exists, count, conversation_obj = get_conversation(conversation_id)
|
| 612 |
-
|
| 613 |
-
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
|
| 614 |
-
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
|
| 615 |
-
# update_conversation(conversation_id, conversation_id, user_query, response_data)
|
| 616 |
-
|
| 617 |
-
# if count >= 6:
|
| 618 |
-
# outcome, diagnosis = create_diagnosis(conversation_obj)
|
| 619 |
-
# if outcome == "PASS":
|
| 620 |
-
# st.subheader("Diagnosis Summary")
|
| 621 |
-
# st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
|
| 622 |
-
# st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
|
| 623 |
-
# st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
|
| 624 |
-
# st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
|
| 625 |
-
# st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
|
| 626 |
-
# st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
|
| 627 |
-
# st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
|
| 628 |
-
# st.subheader("Expert Confidence Levels")
|
| 629 |
-
# fig = generate_expert_confidence_chart(diagnosis)
|
| 630 |
-
# st.plotly_chart(fig)
|
| 631 |
-
# else:
|
| 632 |
-
# st.write("Diagnosis not available")
|
| 633 |
-
|
| 634 |
-
# with st.chat_message("AI"):
|
| 635 |
-
# st.write(response_data)
|
| 636 |
-
|
| 637 |
-
# store_conversation(conversation_id, conversation_id, "", st.session_state.chat_history)
|
| 638 |
-
|
| 639 |
-
# conversation_id = "111a1"
|
| 640 |
-
# st.set_page_config(page_title="Virtual Clinician", page_icon="🤖")
|
| 641 |
-
# st.title("Virtual Clinician :toolbox:")
|
| 642 |
-
|
| 643 |
-
# # Fetch conversation history and ensure it's a list of dictionaries
|
| 644 |
-
# exists, count, conversation_obj = get_conversation(conversation_id)
|
| 645 |
-
|
| 646 |
-
# if "chat_history" not in st.session_state:
|
| 647 |
-
# if isinstance(conversation_obj, list) and all(isinstance(item, dict) for item in conversation_obj):
|
| 648 |
-
# st.session_state.chat_history = conversation_obj
|
| 649 |
-
# else:
|
| 650 |
-
# st.session_state.chat_history = [
|
| 651 |
-
# {"role": "AI", "content": "Hello, I am the virtual clinician. How can I help you today?"},
|
| 652 |
-
# ]
|
| 653 |
-
|
| 654 |
-
# # Ensure each message is a dictionary before accessing its keys
|
| 655 |
-
# for message in st.session_state.chat_history:
|
| 656 |
-
# if isinstance(message, dict) and "role" in message and "content" in message:
|
| 657 |
-
# with st.chat_message(message["role"]):
|
| 658 |
-
# st.write(message["content"])
|
| 659 |
-
# else:
|
| 660 |
-
# st.error("Invalid message format in chat history.")
|
| 661 |
-
|
| 662 |
-
# user_query = st.chat_input("Type your message here...")
|
| 663 |
-
# if user_query:
|
| 664 |
-
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
|
| 665 |
-
# with st.chat_message("Human"):
|
| 666 |
-
# st.markdown(user_query)
|
| 667 |
-
|
| 668 |
-
# exists, count, conversation_obj = get_conversation(conversation_id)
|
| 669 |
-
|
| 670 |
-
# if not exists:
|
| 671 |
-
# response = converse_with_patient("", user_query)
|
| 672 |
-
# store_conversation(conversation_id, conversation_id, user_query, response)
|
| 673 |
-
# exists, count, conversation_obj = get_conversation(conversation_id)
|
| 674 |
-
|
| 675 |
-
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
|
| 676 |
-
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
|
| 677 |
-
# update_conversation(conversation_id, conversation_id, user_query, response_data)
|
| 678 |
-
|
| 679 |
-
# if count >= 6:
|
| 680 |
-
# outcome, diagnosis = create_diagnosis(conversation_obj)
|
| 681 |
-
# if outcome == "PASS":
|
| 682 |
-
# st.subheader("Diagnosis Summary")
|
| 683 |
-
# st.write(f"**Consensus Confidence:** {diagnosis.get('concensus_confidence', 'N/A')}%")
|
| 684 |
-
# st.write(f"**Consensus Thinking:** {diagnosis.get('concensus_thinking', 'N/A')}")
|
| 685 |
-
# st.write(f"**Evaluation Confidence:** {diagnosis.get('evaluate_confidence', 'N/A')}%")
|
| 686 |
-
# st.write(f"**Evaluation Explanation:** {diagnosis.get('evaluate_explanation', 'N/A')}")
|
| 687 |
-
# st.write(f"**Next Best Action:** {diagnosis.get('next_best_action_', 'N/A')}")
|
| 688 |
-
# st.write(f"**Next Best Action Explanation:** {diagnosis.get('next_best_action_explanation', 'N/A')}")
|
| 689 |
-
# st.write(f"**Next Best Action Confidence:** {diagnosis.get('next_best_action_confidence', 'N/A')}%")
|
| 690 |
-
# st.subheader("Expert Confidence Levels")
|
| 691 |
-
# fig = generate_expert_confidence_chart(diagnosis)
|
| 692 |
-
# st.plotly_chart(fig)
|
| 693 |
-
# else:
|
| 694 |
-
# st.write("Diagnosis not available")
|
| 695 |
-
|
| 696 |
-
# with st.chat_message("AI"):
|
| 697 |
-
# st.write(response_data)
|
| 698 |
-
|
| 699 |
-
# store_conversation(conversation_id, conversation_id, "", st.session_state.chat_history)
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from pydantic import BaseModel, Field, validator
|
| 5 |
+
import numpy as np
|
| 6 |
+
import plotly.graph_objects as go
|
| 7 |
+
|
| 8 |
+
from azure_openai import converse_with_patient, create_diagnosis
|
| 9 |
+
from memory import get_conversation, store_conversation, update_conversation
|
| 10 |
+
import uuid
|
| 11 |
+
|
| 12 |
+
class ask_question (BaseModel):
|
| 13 |
+
user_input: str
|
| 14 |
+
id: str
|
| 15 |
+
|
| 16 |
+
app = FastAPI()
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def generate_expert_confidence_chart(diagnosis):
|
| 20 |
+
"""
|
| 21 |
+
Extracts expert confidence data from JSON and generates a multi-colored bar chart.
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
# Extract expert distribution data
|
| 25 |
+
expert_distribution = diagnosis["expert_distribution"]
|
| 26 |
+
|
| 27 |
+
# Process the data into a structured format
|
| 28 |
+
rows = []
|
| 29 |
+
for key, value in expert_distribution.items():
|
| 30 |
+
expert, attribute = key.rsplit(", ", 1) # Ensure splitting at the last comma
|
| 31 |
+
rows.append({"Expert": expert, "Attribute": attribute, "Value": value})
|
| 32 |
+
|
| 33 |
+
# Create a DataFrame
|
| 34 |
+
df = pd.DataFrame(rows)
|
| 35 |
+
|
| 36 |
+
# Filter the DataFrame for confidence values only
|
| 37 |
+
df_confidence = df[df["Attribute"] == "confidence"].copy()
|
| 38 |
+
|
| 39 |
+
# Merge confidence values with corresponding thinking explanations
|
| 40 |
+
df_thinking = df[df["Attribute"] == "thinking"].copy()
|
| 41 |
+
df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))
|
| 42 |
+
|
| 43 |
+
# Convert confidence values to numeric
|
| 44 |
+
df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])
|
| 45 |
+
|
| 46 |
+
# Define a function to map confidence scores to colors
|
| 47 |
+
def confidence_to_color(confidence):
|
| 48 |
+
"""
|
| 49 |
+
Maps confidence score (0-100) to a blended color between red (0 confidence) and green (100 confidence).
|
| 50 |
+
"""
|
| 51 |
+
red = np.array([255, 0, 0])
|
| 52 |
+
green = np.array([0, 255, 0])
|
| 53 |
+
blend_ratio = confidence / 100 # Normalize between 0 and 1
|
| 54 |
+
blended_color = (1 - blend_ratio) * red + blend_ratio * green
|
| 55 |
+
return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"
|
| 56 |
+
|
| 57 |
+
# Apply color mapping
|
| 58 |
+
df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)
|
| 59 |
+
|
| 60 |
+
# Create the bar chart
|
| 61 |
+
fig = go.Figure()
|
| 62 |
+
|
| 63 |
+
# Add bars with customized colors and reduced spacing
|
| 64 |
+
fig.add_trace(go.Bar(
|
| 65 |
+
y=df_confidence["Expert"],
|
| 66 |
+
x=df_confidence["Value_confidence"],
|
| 67 |
+
text=df_confidence["Value_confidence"],
|
| 68 |
+
hovertext=df_confidence["Value_thinking"],
|
| 69 |
+
orientation="h",
|
| 70 |
+
marker=dict(color=df_confidence["Color"]),
|
| 71 |
+
width=0.3, # Reduce bar width for closer spacing
|
| 72 |
+
textposition="inside"
|
| 73 |
+
))
|
| 74 |
+
|
| 75 |
+
# Update layout for better visibility
|
| 76 |
+
fig.update_layout(
|
| 77 |
+
title="Expert Confidence in Diagnosis",
|
| 78 |
+
xaxis_title="Confidence Score",
|
| 79 |
+
yaxis_title="Medical Expert",
|
| 80 |
+
yaxis=dict(tickmode="linear", dtick=1, automargin=True),
|
| 81 |
+
height=max(400, 40 * len(df_confidence)), # Adjust height dynamically
|
| 82 |
+
bargap=0.1 # Reduce spacing between bars
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Update hover template
|
| 86 |
+
fig.update_traces(
|
| 87 |
+
hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
# Show the plot
|
| 91 |
+
return fig
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
# FastAPI interface routes
|
| 95 |
+
# @app.get("/")
|
| 96 |
+
# async def root():
|
| 97 |
+
# return {"message": "Welcome to the GenAI Symptom Checker"}
|
| 98 |
+
|
| 99 |
+
# @app.post("/ask")
|
| 100 |
+
# async def ask_question(question: ask_question):
|
| 101 |
+
# try:
|
| 102 |
+
# user_input = question.user_input
|
| 103 |
+
# conversation_id = question.id
|
| 104 |
+
|
| 105 |
+
# exists, count, conversation_obj = get_conversation(conversation_id)
|
| 106 |
+
# if count == 6:
|
| 107 |
+
# response = converse_with_patient(conversation_obj, user_input)
|
| 108 |
+
# store_conversation(conversation_id, conversation_id, user_input, response)
|
| 109 |
+
# exists, count, conversation_obj = get_conversation(conversation_id)
|
| 110 |
+
# diagnosis = create_diagnosis(conversation_obj)
|
| 111 |
+
# return {"response": response, "count": count, "diagnosis": diagnosis}
|
| 112 |
+
# if count > 6:
|
| 113 |
+
# exists, count, conversation_obj = get_conversation(conversation_id)
|
| 114 |
+
# diagnosis_content = next((item['content'] for item in conversation_obj if item['role'] == 'diagnosis'), None)
|
| 115 |
+
# return {"response": "You have reached the maximum number of questions", "count": count, "diagnosis": diagnosis_content}
|
| 116 |
+
# if exists == "PASS":
|
| 117 |
+
# response = converse_with_patient(conversation_obj, user_input)
|
| 118 |
+
# update_conversation(conversation_id, conversation_id, user_input, response)
|
| 119 |
+
# return {"response": response, "count": count, "diagnosis": "none"}
|
| 120 |
+
|
| 121 |
+
# else:
|
| 122 |
+
# response = converse_with_patient("",user_input)
|
| 123 |
+
# store_conversation(conversation_id, conversation_id, user_input, response)
|
| 124 |
+
# return {"response": response, "count": count, "diagnosis": "none"}
|
| 125 |
+
|
| 126 |
+
# except Exception as e:
|
| 127 |
+
# raise HTTPException(status_code=500, detail=str(e))
|
| 128 |
+
|
| 129 |
+
# app config
|
| 130 |
+
|
| 131 |
+
st.set_page_config(page_title="virtual clinician", page_icon=":medical_symbol:")
|
| 132 |
+
st.title("Virtual Clinician :medical_symbol:")
|
| 133 |
+
|
| 134 |
+
user_id = st.text_input("Name:", key="user_id")
|
| 135 |
+
|
| 136 |
+
conversation_id = user_id
|
| 137 |
+
# Ensure user_id is defined or fallback to a default value
|
| 138 |
+
if not user_id:
|
| 139 |
+
st.warning("Hi, Who am I speaking with?")
|
| 140 |
+
else:
|
| 141 |
+
# session state
|
| 142 |
+
if "chat_history" not in st.session_state:
|
| 143 |
+
st.session_state.chat_history = [
|
| 144 |
+
{"role": "AI", "content": f"Hello, {user_id} I am the virtual clinician. How can I help you today?"},
|
| 145 |
+
]
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
# conversation
|
| 149 |
+
for message in st.session_state.chat_history:
|
| 150 |
+
if message["role"] == "AI":
|
| 151 |
+
with st.chat_message("AI"):
|
| 152 |
+
st.write(message["content"])
|
| 153 |
+
elif message["role"] == "Human":
|
| 154 |
+
with st.chat_message("Human"):
|
| 155 |
+
st.write(message["content"])
|
| 156 |
+
|
| 157 |
+
# user input
|
| 158 |
+
user_input = st.chat_input("Type your message here...")
|
| 159 |
+
if user_input is not None and user_input != "":
|
| 160 |
+
st.session_state.chat_history.append({"role": "Human", "content": user_input})
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
with st.chat_message("Human"):
|
| 164 |
+
st.markdown(user_input)
|
| 165 |
+
|
| 166 |
+
# this functions checks to see if the conversation exists
|
| 167 |
+
exists, count, conversation_obj = get_conversation(conversation_id)
|
| 168 |
+
# if the conversation does not exist, it creates a new conversation
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
if count > 5:
|
| 172 |
+
response = converse_with_patient(conversation_obj, user_input)
|
| 173 |
+
conversation_obj = update_conversation(conversation_id, user_input, response)
|
| 174 |
+
print(conversation_obj)
|
| 175 |
+
with st.spinner("Creating a diagnosis..."):
|
| 176 |
+
outcome, diagnosis = create_diagnosis(conversation_obj)
|
| 177 |
+
if outcome == "SUCCESS":
|
| 178 |
+
st.subheader("Diagnosis Summary")
|
| 179 |
+
st.write(f"**Diagnosis:** {diagnosis['concensus_diagnosis']}")
|
| 180 |
+
st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
|
| 181 |
+
st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
|
| 182 |
+
st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
|
| 183 |
+
st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
|
| 184 |
+
st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
|
| 185 |
+
st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
|
| 186 |
+
st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
|
| 187 |
+
|
| 188 |
+
# Generate and display the plotly chart
|
| 189 |
+
st.subheader("Expert Confidence Levels")
|
| 190 |
+
fig = generate_expert_confidence_chart(diagnosis)
|
| 191 |
+
st.plotly_chart(fig)
|
| 192 |
+
|
| 193 |
+
# if the diagnosis is not successful, display a message
|
| 194 |
+
if outcome == "FAIL1":
|
| 195 |
+
st.write("Diagnosis not available Failed to find concensus")
|
| 196 |
+
st.subheader("Incomplete Diagnosis")
|
| 197 |
+
st.write(f"**Diagnosis:** {diagnosis['concensus_diagnosis']}")
|
| 198 |
+
st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
|
| 199 |
+
st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
|
| 200 |
+
st.write(f"**Next Best Action:** See GP")
|
| 201 |
+
st.write(f"**Next Best Action Explanation:** Please give more details to help the AI better understand your symptoms ")
|
| 202 |
+
|
| 203 |
+
# Generate and display the plotly chart
|
| 204 |
+
st.subheader("Expert Confidence Levels")
|
| 205 |
+
fig = generate_expert_confidence_chart(diagnosis)
|
| 206 |
+
st.plotly_chart(fig)
|
| 207 |
+
|
| 208 |
+
if outcome == "FAIL2":
|
| 209 |
+
st.write("Diagnosis not available Failed to match described symptoms with know symptoms for AI diagnosis")
|
| 210 |
+
st.subheader("Incomplete Diagnosis")
|
| 211 |
+
st.write(f"**Diagnosis:** {diagnosis['concensus_diagnosis']}")
|
| 212 |
+
st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
|
| 213 |
+
st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
|
| 214 |
+
st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
|
| 215 |
+
st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
|
| 216 |
+
st.write(f"**Next Best Action:** See GP")
|
| 217 |
+
st.write(f"**Next Best Action Explanation:** Please give more details to help the AI better understand your symptoms ")
|
| 218 |
+
|
| 219 |
+
# Generate and display the plotly chart
|
| 220 |
+
st.subheader("Expert Confidence Levels")
|
| 221 |
+
fig = generate_expert_confidence_chart(diagnosis)
|
| 222 |
+
st.plotly_chart(fig)
|
| 223 |
+
|
| 224 |
+
if exists == "PASS":
|
| 225 |
+
response = converse_with_patient(conversation_obj, user_input)
|
| 226 |
+
update_conversation(conversation_id, user_input, response)
|
| 227 |
+
st.session_state.chat_history.append({"role": "AI", "content": response})
|
| 228 |
+
with st.chat_message("AI"):
|
| 229 |
+
st.write(response)
|
| 230 |
+
|
| 231 |
+
else:
|
| 232 |
+
response = converse_with_patient("",user_input)
|
| 233 |
+
store_conversation(conversation_id, user_input, response)
|
| 234 |
+
st.session_state.chat_history.append({"role": "AI", "content": response})
|
| 235 |
+
with st.chat_message("AI"):
|
| 236 |
+
st.write(response)
|
| 237 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|