File size: 11,432 Bytes
14edff4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from __future__ import annotations

import os
import queue
import random
import threading
import time
from functools import cached_property
from typing import Any

import httpx

from ..logger import logger
from .processor_interface import TracingExporter, TracingProcessor
from .spans import Span
from .traces import Trace


class ConsoleSpanExporter(TracingExporter):
    """Prints the traces and spans to the console."""

    def export(self, items: list[Trace | Span[Any]]) -> None:
        for item in items:
            if isinstance(item, Trace):
                print(f"[Exporter] Export trace_id={item.trace_id}, name={item.name}")
            else:
                print(f"[Exporter] Export span: {item.export()}")


class BackendSpanExporter(TracingExporter):
    def __init__(
        self,
        api_key: str | None = None,
        organization: str | None = None,
        project: str | None = None,
        endpoint: str = "https://api.openai.com/v1/traces/ingest",
        max_retries: int = 3,
        base_delay: float = 1.0,
        max_delay: float = 30.0,
    ):
        """
        Args:
            api_key: The API key for the "Authorization" header. Defaults to
                `os.environ["OPENAI_API_KEY"]` if not provided.
            organization: The OpenAI organization to use. Defaults to
                `os.environ["OPENAI_ORG_ID"]` if not provided.
            project: The OpenAI project to use. Defaults to
                `os.environ["OPENAI_PROJECT_ID"]` if not provided.
            endpoint: The HTTP endpoint to which traces/spans are posted.
            max_retries: Maximum number of retries upon failures.
            base_delay: Base delay (in seconds) for the first backoff.
            max_delay: Maximum delay (in seconds) for backoff growth.
        """
        self._api_key = api_key
        self._organization = organization
        self._project = project
        self.endpoint = endpoint
        self.max_retries = max_retries
        self.base_delay = base_delay
        self.max_delay = max_delay

        # Keep a client open for connection pooling across multiple export calls
        self._client = httpx.Client(timeout=httpx.Timeout(timeout=60, connect=5.0))

    def set_api_key(self, api_key: str):
        """Set the OpenAI API key for the exporter.

        Args:
            api_key: The OpenAI API key to use. This is the same key used by the OpenAI Python
                client.
        """
        # Clear the cached property if it exists
        if "api_key" in self.__dict__:
            del self.__dict__["api_key"]

        # Update the private attribute
        self._api_key = api_key

    @cached_property
    def api_key(self):
        return self._api_key or os.environ.get("OPENAI_API_KEY")

    @cached_property
    def organization(self):
        return self._organization or os.environ.get("OPENAI_ORG_ID")

    @cached_property
    def project(self):
        return self._project or os.environ.get("OPENAI_PROJECT_ID")

    def export(self, items: list[Trace | Span[Any]]) -> None:
        if not items:
            return

        if not self.api_key:
            logger.warning("OPENAI_API_KEY is not set, skipping trace export")
            return

        data = [item.export() for item in items if item.export()]
        payload = {"data": data}

        headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json",
            "OpenAI-Beta": "traces=v1",
        }

        if self.organization:
            headers["OpenAI-Organization"] = self.organization

        if self.project:
            headers["OpenAI-Project"] = self.project

        # Exponential backoff loop
        attempt = 0
        delay = self.base_delay
        while True:
            attempt += 1
            try:
                response = self._client.post(url=self.endpoint, headers=headers, json=payload)

                # If the response is successful, break out of the loop
                if response.status_code < 300:
                    logger.debug(f"Exported {len(items)} items")
                    return

                # If the response is a client error (4xx), we won't retry
                if 400 <= response.status_code < 500:
                    logger.error(
                        f"[non-fatal] Tracing client error {response.status_code}: {response.text}"
                    )
                    return

                # For 5xx or other unexpected codes, treat it as transient and retry
                logger.warning(
                    f"[non-fatal] Tracing: server error {response.status_code}, retrying."
                )
            except httpx.RequestError as exc:
                # Network or other I/O error, we'll retry
                logger.warning(f"[non-fatal] Tracing: request failed: {exc}")

            # If we reach here, we need to retry or give up
            if attempt >= self.max_retries:
                logger.error("[non-fatal] Tracing: max retries reached, giving up on this batch.")
                return

            # Exponential backoff + jitter
            sleep_time = delay + random.uniform(0, 0.1 * delay)  # 10% jitter
            time.sleep(sleep_time)
            delay = min(delay * 2, self.max_delay)

    def close(self):
        """Close the underlying HTTP client."""
        self._client.close()


class BatchTraceProcessor(TracingProcessor):
    """Some implementation notes:
    1. Using Queue, which is thread-safe.
    2. Using a background thread to export spans, to minimize any performance issues.
    3. Spans are stored in memory until they are exported.
    """

    def __init__(
        self,
        exporter: TracingExporter,
        max_queue_size: int = 8192,
        max_batch_size: int = 128,
        schedule_delay: float = 5.0,
        export_trigger_ratio: float = 0.7,
    ):
        """
        Args:
            exporter: The exporter to use.
            max_queue_size: The maximum number of spans to store in the queue. After this, we will
                start dropping spans.
            max_batch_size: The maximum number of spans to export in a single batch.
            schedule_delay: The delay between checks for new spans to export.
            export_trigger_ratio: The ratio of the queue size at which we will trigger an export.
        """
        self._exporter = exporter
        self._queue: queue.Queue[Trace | Span[Any]] = queue.Queue(maxsize=max_queue_size)
        self._max_queue_size = max_queue_size
        self._max_batch_size = max_batch_size
        self._schedule_delay = schedule_delay
        self._shutdown_event = threading.Event()

        # The queue size threshold at which we export immediately.
        self._export_trigger_size = max(1, int(max_queue_size * export_trigger_ratio))

        # Track when we next *must* perform a scheduled export
        self._next_export_time = time.time() + self._schedule_delay

        # We lazily start the background worker thread the first time a span/trace is queued.
        self._worker_thread: threading.Thread | None = None
        self._thread_start_lock = threading.Lock()

    def _ensure_thread_started(self) -> None:
        # Fast path without holding the lock
        if self._worker_thread and self._worker_thread.is_alive():
            return

        # Double-checked locking to avoid starting multiple threads
        with self._thread_start_lock:
            if self._worker_thread and self._worker_thread.is_alive():
                return

            self._worker_thread = threading.Thread(target=self._run, daemon=True)
            self._worker_thread.start()

    def on_trace_start(self, trace: Trace) -> None:
        # Ensure the background worker is running before we enqueue anything.
        self._ensure_thread_started()

        try:
            self._queue.put_nowait(trace)
        except queue.Full:
            logger.warning("Queue is full, dropping trace.")

    def on_trace_end(self, trace: Trace) -> None:
        # We send traces via on_trace_start, so we don't need to do anything here.
        pass

    def on_span_start(self, span: Span[Any]) -> None:
        # We send spans via on_span_end, so we don't need to do anything here.
        pass

    def on_span_end(self, span: Span[Any]) -> None:
        # Ensure the background worker is running before we enqueue anything.
        self._ensure_thread_started()

        try:
            self._queue.put_nowait(span)
        except queue.Full:
            logger.warning("Queue is full, dropping span.")

    def shutdown(self, timeout: float | None = None):
        """
        Called when the application stops. We signal our thread to stop, then join it.
        """
        self._shutdown_event.set()

        # Only join if we ever started the background thread; otherwise flush synchronously.
        if self._worker_thread and self._worker_thread.is_alive():
            self._worker_thread.join(timeout=timeout)
        else:
            # No background thread: process any remaining items synchronously.
            self._export_batches(force=True)

    def force_flush(self):
        """
        Forces an immediate flush of all queued spans.
        """
        self._export_batches(force=True)

    def _run(self):
        while not self._shutdown_event.is_set():
            current_time = time.time()
            queue_size = self._queue.qsize()

            # If it's time for a scheduled flush or queue is above the trigger threshold
            if current_time >= self._next_export_time or queue_size >= self._export_trigger_size:
                self._export_batches(force=False)
                # Reset the next scheduled flush time
                self._next_export_time = time.time() + self._schedule_delay
            else:
                # Sleep a short interval so we don't busy-wait.
                time.sleep(0.2)

        # Final drain after shutdown
        self._export_batches(force=True)

    def _export_batches(self, force: bool = False):
        """Drains the queue and exports in batches. If force=True, export everything.
        Otherwise, export up to `max_batch_size` repeatedly until the queue is completely empty.
        """
        while True:
            items_to_export: list[Span[Any] | Trace] = []

            # Gather a batch of spans up to max_batch_size
            while not self._queue.empty() and (
                force or len(items_to_export) < self._max_batch_size
            ):
                try:
                    items_to_export.append(self._queue.get_nowait())
                except queue.Empty:
                    # Another thread might have emptied the queue between checks
                    break

            # If we collected nothing, we're done
            if not items_to_export:
                break

            # Export the batch
            self._exporter.export(items_to_export)


# Create a shared global instance:
_global_exporter = BackendSpanExporter()
_global_processor = BatchTraceProcessor(_global_exporter)


def default_exporter() -> BackendSpanExporter:
    """The default exporter, which exports traces and spans to the backend in batches."""
    return _global_exporter


def default_processor() -> BatchTraceProcessor:
    """The default processor, which exports traces and spans to the backend in batches."""
    return _global_processor