Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ from transformers import CLIPVisionModelWithProjection
|
|
| 6 |
import numpy as np
|
| 7 |
import spaces
|
| 8 |
|
| 9 |
-
|
| 10 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
| 11 |
"h94/IP-Adapter",
|
| 12 |
subfolder="models/image_encoder",
|
|
@@ -19,30 +19,26 @@ pipeline = AutoPipelineForText2Image.from_pretrained(
|
|
| 19 |
image_encoder=image_encoder,
|
| 20 |
)
|
| 21 |
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
|
| 22 |
-
|
| 23 |
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name=["ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus-face_sdxl_vit-h.safetensors"])
|
| 24 |
-
pipeline.set_ip_adapter_scale([soy_strength, anon_strength])
|
| 25 |
-
|
| 26 |
pipeline.enable_model_cpu_offload()
|
| 27 |
|
| 28 |
@spaces.GPU
|
| 29 |
-
def transform_image(face_image):
|
| 30 |
generator = torch.Generator(device="cpu").manual_seed(0)
|
| 31 |
|
| 32 |
-
# Check if the input is already a PIL Image
|
| 33 |
if isinstance(face_image, Image.Image):
|
| 34 |
processed_face_image = face_image
|
| 35 |
-
# If the input is a NumPy array, convert it to a PIL Image
|
| 36 |
elif isinstance(face_image, np.ndarray):
|
| 37 |
processed_face_image = Image.fromarray(face_image)
|
| 38 |
else:
|
| 39 |
raise ValueError("Unsupported image format")
|
| 40 |
|
| 41 |
-
# Load the style image from the local path
|
| 42 |
style_image_path = "examples/soyjak2.jpg"
|
| 43 |
style_image = Image.open(style_image_path)
|
| 44 |
|
| 45 |
-
#
|
|
|
|
|
|
|
| 46 |
image = pipeline(
|
| 47 |
prompt="soyjak",
|
| 48 |
ip_adapter_image=[style_image, processed_face_image],
|
|
@@ -53,18 +49,18 @@ def transform_image(face_image):
|
|
| 53 |
|
| 54 |
return image
|
| 55 |
|
| 56 |
-
# Gradio interface setup
|
| 57 |
demo = gr.Interface(
|
| 58 |
fn=transform_image,
|
| 59 |
inputs=[
|
| 60 |
gr.Image(label="Upload your face image"),
|
| 61 |
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.7, label="Soy Strength"),
|
| 62 |
-
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.5, label="Face Strength")
|
| 63 |
],
|
| 64 |
outputs=gr.Image(label="Your Soyjak"),
|
| 65 |
title="InstaSoyjak - turn anyone into a Soyjak",
|
| 66 |
-
description="All you need to do is upload an image. **Please use responsibly.**
|
| 67 |
)
|
| 68 |
|
| 69 |
-
demo.queue(max_size=20)
|
| 70 |
-
demo.launch()
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
import spaces
|
| 8 |
|
| 9 |
+
# Initialize the image encoder and pipeline outside the function
|
| 10 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
| 11 |
"h94/IP-Adapter",
|
| 12 |
subfolder="models/image_encoder",
|
|
|
|
| 19 |
image_encoder=image_encoder,
|
| 20 |
)
|
| 21 |
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
|
|
|
|
| 22 |
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name=["ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus-face_sdxl_vit-h.safetensors"])
|
|
|
|
|
|
|
| 23 |
pipeline.enable_model_cpu_offload()
|
| 24 |
|
| 25 |
@spaces.GPU
|
| 26 |
+
def transform_image(face_image, soy_strength, face_strength):
|
| 27 |
generator = torch.Generator(device="cpu").manual_seed(0)
|
| 28 |
|
|
|
|
| 29 |
if isinstance(face_image, Image.Image):
|
| 30 |
processed_face_image = face_image
|
|
|
|
| 31 |
elif isinstance(face_image, np.ndarray):
|
| 32 |
processed_face_image = Image.fromarray(face_image)
|
| 33 |
else:
|
| 34 |
raise ValueError("Unsupported image format")
|
| 35 |
|
|
|
|
| 36 |
style_image_path = "examples/soyjak2.jpg"
|
| 37 |
style_image = Image.open(style_image_path)
|
| 38 |
|
| 39 |
+
# Set the IP adapter scale dynamically based on the sliders
|
| 40 |
+
pipeline.set_ip_adapter_scale([soy_strength, face_strength])
|
| 41 |
+
|
| 42 |
image = pipeline(
|
| 43 |
prompt="soyjak",
|
| 44 |
ip_adapter_image=[style_image, processed_face_image],
|
|
|
|
| 49 |
|
| 50 |
return image
|
| 51 |
|
| 52 |
+
# Gradio interface setup with dynamic sliders
|
| 53 |
demo = gr.Interface(
|
| 54 |
fn=transform_image,
|
| 55 |
inputs=[
|
| 56 |
gr.Image(label="Upload your face image"),
|
| 57 |
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.7, label="Soy Strength"),
|
| 58 |
+
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.5, label="Face Strength") # Renamed to Face Strength
|
| 59 |
],
|
| 60 |
outputs=gr.Image(label="Your Soyjak"),
|
| 61 |
title="InstaSoyjak - turn anyone into a Soyjak",
|
| 62 |
+
description="All you need to do is upload an image and adjust the strengths. **Please use responsibly.**",
|
| 63 |
)
|
| 64 |
|
| 65 |
+
demo.queue(max_size=20)
|
| 66 |
+
demo.launch()
|