--- license: mit tags: - image-segmentation ---

High-Precision Dichotomous Image Segmentation via Probing Diffusion Capacity

This repository contains the official implementation for the paper "[High-Precision Dichotomous Image Segmentation via Probing Diffusion Capacity](https://arxiv.org/pdf/2410.10105)" (ICLR 2025).

DiffDIS teaser image

## How to use > For the complete training and inference process, please refer to our [GitHub Repository](https://github.com/qianyu-dlut/DiffDIS). This section specifically guides you on loading weights from Hugging Face. ### Install Packages: ```shell pip install torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 --index-url https://download.pytorch.org/whl/cu118 pip install -r requirements.txt pip install -e diffusers-0.30.2/ ``` ### Load DiffDIS weights from Hugging Face: ```python import torch from diffusers import ( DiffusionPipeline, DDPMScheduler, UNet2DConditionModel, AutoencoderKL, ) from transformers import CLIPTextModel, CLIPTokenizer hf_model_path = 'qianyu1217/diffdis' vae = AutoencoderKL.from_pretrained(hf_model_path,subfolder='vae',trust_remote_code=True) scheduler = DDPMScheduler.from_pretrained(hf_model_path,subfolder='scheduler') text_encoder = CLIPTextModel.from_pretrained(hf_model_path,subfolder='text_encoder') tokenizer = CLIPTokenizer.from_pretrained(hf_model_path,subfolder='tokenizer') unet = UNet2DConditionModel_diffdis.from_pretrained(hf_model_path,subfolder="unet", in_channels=8, sample_size=96, low_cpu_mem_usage=False, ignore_mismatched_sizes=False, class_embed_type='projection', projection_class_embeddings_input_dim=4, mid_extra_cross=True, mode = 'DBIA', use_swci = True) pipe = DiffDISPipeline(unet=unet, vae=vae, scheduler=scheduler, text_encoder=text_encoder, tokenizer=tokenizer) ``` ## Citation ``` @article{DiffDIS, title={High-Precision Dichotomous Image Segmentation via Probing Diffusion Capacity}, author={Yu, Qian and Jiang, Peng-Tao and Zhang, Hao and Chen, Jinwei and Li, Bo and Zhang, Lihe and Lu, Huchuan}, journal={arXiv preprint arXiv:2410.10105}, year={2024} } ```