Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeBig-Math: A Large-Scale, High-Quality Math Dataset for Reinforcement Learning in Language Models
Increasing interest in reasoning models has led math to become a prominent testing ground for algorithmic and methodological improvements. However, existing open math datasets either contain a small collection of high-quality, human-written problems or a large corpus of machine-generated problems of uncertain quality, forcing researchers to choose between quality and quantity. In this work, we present Big-Math, a dataset of over 250,000 high-quality math questions with verifiable answers, purposefully made for reinforcement learning (RL). To create Big-Math, we rigorously filter, clean, and curate openly available datasets, extracting questions that satisfy our three desiderata: (1) problems with uniquely verifiable solutions, (2) problems that are open-ended, (3) and problems with a closed-form solution. To ensure the quality of Big-Math, we manually verify each step in our filtering process. Based on the findings from our filtering process, we introduce 47,000 new questions with verified answers, Big-Math-Reformulated: closed-ended questions (i.e. multiple choice questions) that have been reformulated as open-ended questions through a systematic reformulation algorithm. Compared to the most commonly used existing open-source datasets for math reasoning, GSM8k and MATH, Big-Math is an order of magnitude larger, while our rigorous filtering ensures that we maintain the questions most suitable for RL. We also provide a rigorous analysis of the dataset, finding that Big-Math contains a high degree of diversity across problem domains, and incorporates a wide range of problem difficulties, enabling a wide range of downstream uses for models of varying capabilities and training requirements. By bridging the gap between data quality and quantity, Big-Math establish a robust foundation for advancing reasoning in LLMs.
MT-R1-Zero: Advancing LLM-based Machine Translation via R1-Zero-like Reinforcement Learning
Large-scale reinforcement learning (RL) methods have proven highly effective in enhancing the reasoning abilities of large language models (LLMs), particularly for tasks with verifiable solutions such as mathematics and coding. However, applying this idea to machine translation (MT), where outputs are flexibly formatted and difficult to automatically evaluate with explicit rules, remains underexplored. In this work, we introduce MT-R1-Zero, the first open-source adaptation of the R1-Zero RL framework for MT without supervised fine-tuning or cold-start. We propose a rule-metric mixed reward mechanism to guide LLMs towards improved translation quality via emergent reasoning. On the WMT 24 English-Chinese benchmark, our MT-R1-Zero-3B-Mix achieves competitive performance, surpassing TowerInstruct-7B-v0.2 by an average of 1.26 points. Meanwhile, our MT-R1-Zero-7B-Mix attains a high average score of 62.25 across all metrics, placing it on par with advanced proprietary models such as GPT-4o and Claude-3.5-Sonnet, while the MT-R1-Zero-7B-Sem variant achieves state-of-the-art scores on semantic metrics. Moreover, our work exhibits strong generalization capabilities on out-of-distribution MT tasks, robustly supporting multilingual and low-resource settings. Extensive analysis of model behavior across different initializations and reward metrics offers pioneering insight into the critical role of reward design, LLM adaptability, training dynamics, and emergent reasoning patterns within the R1-Zero paradigm for MT. Our code is available at https://github.com/fzp0424/MT-R1-Zero.
GeoX: Geometric Problem Solving Through Unified Formalized Vision-Language Pre-training
Despite their proficiency in general tasks, Multi-modal Large Language Models (MLLMs) struggle with automatic Geometry Problem Solving (GPS), which demands understanding diagrams, interpreting symbols, and performing complex reasoning. This limitation arises from their pre-training on natural images and texts, along with the lack of automated verification in the problem-solving process. Besides, current geometric specialists are limited by their task-specific designs, making them less effective for broader geometric problems. To this end, we present GeoX, a multi-modal large model focusing on geometric understanding and reasoning tasks. Given the significant differences between geometric diagram-symbol and natural image-text, we introduce unimodal pre-training to develop a diagram encoder and symbol decoder, enhancing the understanding of geometric images and corpora. Furthermore, we introduce geometry-language alignment, an effective pre-training paradigm that bridges the modality gap between unimodal geometric experts. We propose a Generator-And-Sampler Transformer (GS-Former) to generate discriminative queries and eliminate uninformative representations from unevenly distributed geometric signals. Finally, GeoX benefits from visual instruction tuning, empowering it to take geometric images and questions as input and generate verifiable solutions. Experiments show that GeoX outperforms both generalists and geometric specialists on publicly recognized benchmarks, such as GeoQA, UniGeo, Geometry3K, and PGPS9k.
Geoint-R1: Formalizing Multimodal Geometric Reasoning with Dynamic Auxiliary Constructions
Mathematical geometric reasoning is essential for scientific discovery and educational development, requiring precise logic and rigorous formal verification. While recent advances in Multimodal Large Language Models (MLLMs) have improved reasoning tasks, existing models typically struggle with formal geometric reasoning, particularly when dynamically constructing and verifying auxiliary geometric elements. To address these challenges, we introduce Geoint-R1, a multimodal reasoning framework designed to generate formally verifiable geometric solutions from textual descriptions and visual diagrams. Geoint-R1 uniquely integrates auxiliary elements construction, formal reasoning represented via Lean4, and interactive visualization. To systematically evaluate and advance formal geometric reasoning, we propose the Geoint benchmark, comprising 1,885 rigorously annotated geometry problems across diverse topics such as plane, spatial, and solid geometry. Each problem includes structured textual annotations, precise Lean4 code for auxiliary constructions, and detailed solution steps verified by experts. Extensive experiments demonstrate that Geoint-R1 significantly surpasses existing multimodal and math-specific reasoning models, particularly on challenging problems requiring explicit auxiliary element constructions.
WebGames: Challenging General-Purpose Web-Browsing AI Agents
We introduce WebGames, a comprehensive benchmark suite designed to evaluate general-purpose web-browsing AI agents through a collection of 50+ interactive challenges. These challenges are specifically crafted to be straightforward for humans while systematically testing the limitations of current AI systems across fundamental browser interactions, advanced input processing, cognitive tasks, workflow automation, and interactive entertainment. Our framework eliminates external dependencies through a hermetic testing environment, ensuring reproducible evaluation with verifiable ground-truth solutions. We evaluate leading vision-language models including GPT-4o, Claude Computer-Use, Gemini-1.5-Pro, and Qwen2-VL against human performance. Results reveal a substantial capability gap, with the best AI system achieving only 43.1% success rate compared to human performance of 95.7%, highlighting fundamental limitations in current AI systems' ability to handle common web interaction patterns that humans find intuitive. The benchmark is publicly available at webgames.convergence.ai, offering a lightweight, client-side implementation that facilitates rapid evaluation cycles. Through its modular architecture and standardized challenge specifications, WebGames provides a robust foundation for measuring progress in development of more capable web-browsing agents.
SPHINX: A Synthetic Environment for Visual Perception and Reasoning
We present Sphinx, a synthetic environment for visual perception and reasoning that targets core cognitive primitives. Sphinx procedurally generates puzzles using motifs, tiles, charts, icons, and geometric primitives, each paired with verifiable ground-truth solutions, enabling both precise evaluation and large-scale dataset construction. The benchmark covers 25 task types spanning symmetry detection, geometric transformations, spatial reasoning, chart interpretation, and sequence prediction. Evaluating recent large vision-language models (LVLMs) shows that even state-of-the-art GPT-5 attains only 51.1% accuracy, well below human performance. Finally, we demonstrate that reinforcement learning with verifiable rewards (RLVR) substantially improves model accuracy on these tasks and yields gains on external visual reasoning benchmarks, highlighting its promise for advancing multimodal reasoning.
TroVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks
Language models (LMs) can solve tasks such as answering questions about tables or images by writing programs. However, using primitive functions often leads to verbose and error-prone programs, and higher-level functions require expert design. To enable better solutions without human labor, we ask code LMs to curate reusable high-level functions, and use them to write solutions. We present TROVE, a training-free method of inducing a verifiable and efficient toolbox of functions, by generating via using, growing, and periodically trimming the toolbox. On 11 datasets from math, table question answering, and image reasoning tasks, TROVE consistently yields simpler solutions with higher accuracy than baselines using CODELLAMA and previous methods using GPT, while using 79-98% smaller toolboxes. TROVE further enables 31% faster and 13% more accurate human verification than baselines. With the same pipeline, it creates diverse functions for varied tasks and datasets, providing insights into their individual characteristics.
Verifiable Fully Homomorphic Encryption
Fully Homomorphic Encryption (FHE) is seeing increasing real-world deployment to protect data in use by allowing computation over encrypted data. However, the same malleability that enables homomorphic computations also raises integrity issues, which have so far been mostly overlooked. While FHEs lack of integrity has obvious implications for correctness, it also has severe implications for confidentiality: a malicious server can leverage the lack of integrity to carry out interactive key-recovery attacks. As a result, virtually all FHE schemes and applications assume an honest-but-curious server who does not deviate from the protocol. In practice, however, this assumption is insufficient for a wide range of deployment scenarios. While there has been work that aims to address this gap, these have remained isolated efforts considering only aspects of the overall problem and fail to fully address the needs and characteristics of modern FHE schemes and applications. In this paper, we analyze existing FHE integrity approaches, present attacks that exploit gaps in prior work, and propose a new notion for maliciously-secure verifiable FHE. We then instantiate this new notion with a range of techniques, analyzing them and evaluating their performance in a range of different settings. We highlight their potential but also show where future work on tailored integrity solutions for FHE is still required.
RV-Syn: Rational and Verifiable Mathematical Reasoning Data Synthesis based on Structured Function Library
The advancement of reasoning capabilities in Large Language Models (LLMs) requires substantial amounts of high-quality reasoning data, particularly in mathematics. Existing data synthesis methods, such as data augmentation from annotated training sets or direct question generation based on relevant knowledge points and documents, have expanded datasets but face challenges in mastering the inner logic of the problem during generation and ensuring the verifiability of the solutions. To address these issues, we propose RV-Syn, a novel Rational and Verifiable mathematical Synthesis approach. RV-Syn constructs a structured mathematical operation function library based on initial seed problems and generates computational graphs as solutions by combining Python-formatted functions from this library. These graphs are then back-translated into complex problems. Based on the constructed computation graph, we achieve solution-guided logic-aware problem generation. Furthermore, the executability of the computational graph ensures the verifiability of the solving process. Experimental results show that RV-Syn surpasses existing synthesis methods, including those involving human-generated problems, achieving greater efficient data scaling. This approach provides a scalable framework for generating high-quality reasoning datasets.
DeepSeekMath-V2: Towards Self-Verifiable Mathematical Reasoning
Large language models have made significant progress in mathematical reasoning, which serves as an important testbed for AI and could impact scientific research if further advanced. By scaling reasoning with reinforcement learning that rewards correct final answers, LLMs have improved from poor performance to saturating quantitative reasoning competitions like AIME and HMMT in one year. However, this approach faces fundamental limitations. Pursuing higher final answer accuracy doesn't address a key issue: correct answers don't guarantee correct reasoning. Moreover, many mathematical tasks like theorem proving require rigorous step-by-step derivation rather than numerical answers, making final answer rewards inapplicable. To push the limits of deep reasoning, we believe it is necessary to verify the comprehensiveness and rigor of mathematical reasoning. Self-verification is particularly important for scaling test-time compute, especially for open problems without known solutions. Towards self-verifiable mathematical reasoning, we investigate how to train an accurate and faithful LLM-based verifier for theorem proving. We then train a proof generator using the verifier as the reward model, and incentivize the generator to identify and resolve as many issues as possible in their own proofs before finalizing them. To maintain the generation-verification gap as the generator becomes stronger, we propose to scale verification compute to automatically label new hard-to-verify proofs, creating training data to further improve the verifier. Our resulting model, DeepSeekMath-V2, demonstrates strong theorem-proving capabilities, achieving gold-level scores on IMO 2025 and CMO 2024 and a near-perfect 118/120 on Putnam 2024 with scaled test-time compute.
DeepMath-103K: A Large-Scale, Challenging, Decontaminated, and Verifiable Mathematical Dataset for Advancing Reasoning
The capacity for complex mathematical reasoning is a key benchmark for artificial intelligence. While reinforcement learning (RL) applied to LLMs shows promise, progress is significantly hindered by the lack of large-scale training data that is sufficiently challenging, possesses verifiable answer formats suitable for RL, and is free from contamination with evaluation benchmarks. To address these limitations, we introduce DeepMath-103K, a new, large-scale dataset comprising approximately 103K mathematical problems, specifically designed to train advanced reasoning models via RL. DeepMath-103K is curated through a rigorous pipeline involving source analysis, stringent decontamination against numerous benchmarks, and filtering for high difficulty (primarily Levels 5-9), significantly exceeding existing open resources in challenge. Each problem includes a verifiable final answer, enabling rule-based RL, and three distinct R1-generated solutions suitable for diverse training paradigms like supervised fine-tuning or distillation. Spanning a wide range of mathematical topics, DeepMath-103K promotes the development of generalizable reasoning. We demonstrate that models trained on DeepMath-103K achieve significant improvements on challenging mathematical benchmarks, validating its effectiveness. We release DeepMath-103K publicly to facilitate community progress in building more capable AI reasoning systems: https://github.com/zwhe99/DeepMath.
EvoSyn: Generalizable Evolutionary Data Synthesis for Verifiable Learning
Reliable verifiable data has become a key driver of capability gains in modern language models, enabling stable reinforcement learning with verifiable rewards and effective distillation that transfers competence across math, coding, and agentic tasks. Yet constructing generalizable synthetic verifiable data remains difficult due to hallucination-prone generation, and weak or trivial verification artifacts that fail to separate strong from weak solutions. Existing approaches often rely on task-specific heuristics or post-hoc filters that do not transfer across domains and lack a principled, universal evaluator of verifiability. In this work, we introduce an evolutionary, task-agnostic, strategy-guided, executably-checkable data synthesis framework that, from minimal seed supervision, jointly synthesizes problems, diverse candidate solutions, and verification artifacts, and iteratively discovers strategies via a consistency-based evaluator that enforces agreement between human-annotated and strategy-induced checks. This pipeline upgrades filtering into principled synthesis: it reliably assembles coherent, verifiable training instances and generalizes without domain-specific rules. Our experiments demonstrate the effectiveness of the proposed approach under both RLVR and model distillation training paradigms. The results show that training with our synthesized data yields significant improvements on both the LiveCodeBench and AgentBench-OS tasks, highlighting the robust generalization of our framework.
Reinforcement Learning with Verifiable yet Noisy Rewards under Imperfect Verifiers
Reinforcement Learning with Verifiable Rewards (RLVR) trains policies against automated verifiers to avoid costly human labeling. To reduce vulnerability to verifier hacking, many RLVR systems collapse rewards to binary {0,1} during training. This choice carries a cost: it introduces false negatives (rejecting correct answers, FNs) and false positives (accepting incorrect ones, FPs). For instance, a rule-based checker may mark the correct fraction 12{36} as wrong when compared against the canonical 1{3} due to brittle parsing/equivalence rules (FN), while a large language model (LLM) judges can be gamed by superficial cues or even a single adversarial token, yielding inflated correctness for wrong solutions (FP). We formalize verifier unreliability by modeling the verifier as a stochastic reward channel with asymmetric noise rates. From this abstraction, we derive two correction algorithms for verifier errors. The first is a backward correction that de-biases the observed binary reward to recover an unbiased estimator of the clean policy gradient. The second is a forward correction that reweights score-function terms so that the expected update direction aligns with the clean gradient; notably, it requires only the FN rate. We implement both as lightweight hooks in a group relative policy optimization (GRPO)-based RLVR pipeline and evaluate them on math-reasoning models and benchmarks. Across models and datasets, both corrections improve over uncorrected training; the forward variant converges faster and remains stable under heavier noise. Finally, we show a practical appeal mechanism in which a lightweight LLM verifier estimates the FN rate online by rechecking rule-based negatives, obtaining outperformance compared with other state-of-the-art contenders.
Trust, But Verify: A Self-Verification Approach to Reinforcement Learning with Verifiable Rewards
Large Language Models (LLMs) show great promise in complex reasoning, with Reinforcement Learning with Verifiable Rewards (RLVR) being a key enhancement strategy. However, a prevalent issue is ``superficial self-reflection'', where models fail to robustly verify their own outputs. We introduce RISE (Reinforcing Reasoning with Self-Verification), a novel online RL framework designed to tackle this. RISE explicitly and simultaneously trains an LLM to improve both its problem-solving and self-verification abilities within a single, integrated RL process. The core mechanism involves leveraging verifiable rewards from an outcome verifier to provide on-the-fly feedback for both solution generation and self-verification tasks. In each iteration, the model generates solutions, then critiques its own on-policy generated solutions, with both trajectories contributing to the policy update. Extensive experiments on diverse mathematical reasoning benchmarks show that RISE consistently improves model's problem-solving accuracy while concurrently fostering strong self-verification skills. Our analyses highlight the advantages of online verification and the benefits of increased verification compute. Additionally, RISE models exhibit more frequent and accurate self-verification behaviors during reasoning. These advantages reinforce RISE as a flexible and effective path towards developing more robust and self-aware reasoners.
KodCode: A Diverse, Challenging, and Verifiable Synthetic Dataset for Coding
We introduce KodCode, a synthetic dataset that addresses the persistent challenge of acquiring high-quality, verifiable training data across diverse difficulties and domains for training Large Language Models for coding. Existing code-focused resources typically fail to ensure either the breadth of coverage (e.g., spanning simple coding tasks to advanced algorithmic problems) or verifiable correctness (e.g., unit tests). In contrast, KodCode comprises question-solution-test triplets that are systematically validated via a self-verification procedure. Our pipeline begins by synthesizing a broad range of coding questions, then generates solutions and test cases with additional attempts allocated to challenging problems. Finally, post-training data synthesis is done by rewriting questions into diverse formats and generating responses under a test-based reject sampling procedure from a reasoning model (DeepSeek R1). This pipeline yields a large-scale, robust and diverse coding dataset. KodCode is suitable for supervised fine-tuning and the paired unit tests also provide great potential for RL tuning. Fine-tuning experiments on coding benchmarks (HumanEval(+), MBPP(+), BigCodeBench, and LiveCodeBench) demonstrate that KodCode-tuned models achieve state-of-the-art performance, surpassing models like Qwen2.5-Coder-32B-Instruct and DeepSeek-R1-Distill-Llama-70B.
What about gravity in video generation? Post-Training Newton's Laws with Verifiable Rewards
Recent video diffusion models can synthesize visually compelling clips, yet often violate basic physical laws-objects float, accelerations drift, and collisions behave inconsistently-revealing a persistent gap between visual realism and physical realism. We propose NewtonRewards, the first physics-grounded post-training framework for video generation based on verifiable rewards. Instead of relying on human or VLM feedback, NewtonRewards extracts measurable proxies from generated videos using frozen utility models: optical flow serves as a proxy for velocity, while high-level appearance features serve as a proxy for mass. These proxies enable explicit enforcement of Newtonian structure through two complementary rewards: a Newtonian kinematic constraint enforcing constant-acceleration dynamics, and a mass conservation reward preventing trivial, degenerate solutions. We evaluate NewtonRewards on five Newtonian Motion Primitives (free fall, horizontal/parabolic throw, and ramp sliding down/up) using our newly constructed large-scale benchmark, NewtonBench-60K. Across all primitives in visual and physics metrics, NewtonRewards consistently improves physical plausibility, motion smoothness, and temporal coherence over prior post-training methods. It further maintains strong performance under out-of-distribution shifts in height, speed, and friction. Our results show that physics-grounded verifiable rewards offer a scalable path toward physics-aware video generation.
Advancing the lower bounds: An accelerated, stochastic, second-order method with optimal adaptation to inexactness
We present a new accelerated stochastic second-order method that is robust to both gradient and Hessian inexactness, which occurs typically in machine learning. We establish theoretical lower bounds and prove that our algorithm achieves optimal convergence in both gradient and Hessian inexactness in this key setting. We further introduce a tensor generalization for stochastic higher-order derivatives. When the oracles are non-stochastic, the proposed tensor algorithm matches the global convergence of Nesterov Accelerated Tensor method. Both algorithms allow for approximate solutions of their auxiliary subproblems with verifiable conditions on the accuracy of the solution.
Kimi-Dev: Agentless Training as Skill Prior for SWE-Agents
Large Language Models (LLMs) are increasingly applied to software engineering (SWE), with SWE-bench as a key benchmark. Solutions are split into SWE-Agent frameworks with multi-turn interactions and workflow-based Agentless methods with single-turn verifiable steps. We argue these paradigms are not mutually exclusive: reasoning-intensive Agentless training induces skill priors, including localization, code edit, and self-reflection that enable efficient and effective SWE-Agent adaptation. In this work, we first curate the Agentless training recipe and present Kimi-Dev, an open-source SWE LLM achieving 60.4\% on SWE-bench Verified, the best among workflow approaches. With additional SFT adaptation on 5k publicly-available trajectories, Kimi-Dev powers SWE-Agents to 48.6\% pass@1, on par with that of Claude 3.5 Sonnet (241022 version). These results show that structured skill priors from Agentless training can bridge workflow and agentic frameworks for transferable coding agents.
The Invisible Leash: Why RLVR May Not Escape Its Origin
Recent advances in large reasoning models highlight Reinforcement Learning with Verifiable Rewards (RLVR) as a promising method for enhancing AI's capabilities, particularly in solving complex logical tasks. However, it remains unclear whether RLVR truly expands a model's reasoning boundary or merely amplifies high-reward outputs that the base model already knows for improved precision. This study presents a theoretical and empirical investigation that provides fresh insights into the potential limits of RLVR. First, we offer a new theoretical perspective that RLVR is constrained by the base model's support-unable to sample solutions with zero initial probability-and operates as a conservative reweighting mechanism that may restrict the discovery of entirely original solutions. We also identify an entropy-reward tradeoff: while RLVR reliably enhances precision, it may progressively narrow exploration and potentially overlook correct yet underrepresented solutions. Extensive empirical experiments validate that while RLVR consistently improves pass@1, the shrinkage of empirical support generally outweighs the expansion of empirical support under larger sampling budgets, failing to recover correct answers that were previously accessible to the base model. Interestingly, we also observe that while RLVR sometimes increases token-level entropy, resulting in greater uncertainty at each generation step, answer-level entropy declines, indicating that these seemingly more uncertain paths ultimately converge onto a smaller set of distinct answers. Taken together, these findings reveal potential limits of RLVR in extending reasoning horizons. Breaking this invisible leash may require future algorithmic innovations such as explicit exploration mechanisms or hybrid strategies that seed probability mass into underrepresented solution regions.
Supervised Reinforcement Learning: From Expert Trajectories to Step-wise Reasoning
Large Language Models (LLMs) often struggle with problems that require multi-step reasoning. For small-scale open-source models, Reinforcement Learning with Verifiable Rewards (RLVR) fails when correct solutions are rarely sampled even after many attempts, while Supervised Fine-Tuning (SFT) tends to overfit long demonstrations through rigid token-by-token imitation. To address this gap, we propose Supervised Reinforcement Learning (SRL), a framework that reformulates problem solving as generating a sequence of logical "actions". SRL trains the model to generate an internal reasoning monologue before committing to each action. It provides smoother rewards based on the similarity between the model's actions and expert actions extracted from the SFT dataset in a step-wise manner. This supervision offers richer learning signals even when all rollouts are incorrect, while encouraging flexible reasoning guided by expert demonstrations. As a result, SRL enables small models to learn challenging problems previously unlearnable by SFT or RLVR. Moreover, initializing training with SRL before refining with RLVR yields the strongest overall performance. Beyond reasoning benchmarks, SRL generalizes effectively to agentic software engineering tasks, establishing it as a robust and versatile training framework for reasoning-oriented LLMs.
The Majority is not always right: RL training for solution aggregation
Scaling up test-time compute, by generating multiple independent solutions and selecting or aggregating among them, has become a central paradigm for improving large language models (LLMs) on challenging reasoning tasks. While most prior work relies on simple majority voting or reward model ranking to aggregate solutions, these approaches may only yield limited benefits. In this work, we propose to learn aggregation as an explicit reasoning skill: given a set of candidate solutions, we train an aggregator model to review, reconcile, and synthesize a final, correct answer using reinforcement learning from verifiable rewards. A key ingredient is careful balancing of easy and hard training examples, allowing the model to learn both to recover minority-but-correct answers as well as easy majority-correct answers. Empirically, we find our method, AggLM, outperforms both strong rule-based and reward-model baselines, across multiple benchmarks. Furthermore, it generalizes effectively to solutions from differing models, including stronger ones than contained in the training data, all while requiring substantially fewer tokens than majority voting with larger numbers of solutions.
Challenging the Boundaries of Reasoning: An Olympiad-Level Math Benchmark for Large Language Models
In recent years, the rapid development of large reasoning models has resulted in the saturation of existing benchmarks for evaluating mathematical reasoning, highlighting the urgent need for more challenging and rigorous evaluation frameworks. To address this gap, we introduce OlymMATH, a novel Olympiad-level mathematical benchmark, designed to rigorously test the complex reasoning capabilities of LLMs. OlymMATH features 200 meticulously curated problems, each manually verified and available in parallel English and Chinese versions. The problems are systematically organized into two distinct difficulty tiers: (1) AIME-level problems (easy) that establish a baseline for mathematical reasoning assessment, and (2) significantly more challenging problems (hard) designed to push the boundaries of current state-of-the-art models. In our benchmark, these problems span four core mathematical fields, each including a verifiable numerical solution to enable objective, rule-based evaluation. Empirical results underscore the significant challenge presented by OlymMATH, with state-of-the-art models including DeepSeek-R1 and OpenAI's o3-mini demonstrating notably limited accuracy on the hard subset. Furthermore, the benchmark facilitates comprehensive bilingual assessment of mathematical reasoning abilities-a critical dimension that remains largely unaddressed in mainstream mathematical reasoning benchmarks. We release the OlymMATH benchmark at the STILL project: https://github.com/RUCAIBox/Slow_Thinking_with_LLMs.
JSTprove: Pioneering Verifiable AI for a Trustless Future
The integration of machine learning (ML) systems into critical industries such as healthcare, finance, and cybersecurity has transformed decision-making processes, but it also brings new challenges around trust, security, and accountability. As AI systems become more ubiquitous, ensuring the transparency and correctness of AI-driven decisions is crucial, especially when they have direct consequences on privacy, security, or fairness. Verifiable AI, powered by Zero-Knowledge Machine Learning (zkML), offers a robust solution to these challenges. zkML enables the verification of AI model inferences without exposing sensitive data, providing an essential layer of trust and privacy. However, traditional zkML systems typically require deep cryptographic expertise, placing them beyond the reach of most ML engineers. In this paper, we introduce JSTprove, a specialized zkML toolkit, built on Polyhedra Network's Expander backend, to enable AI developers and ML engineers to generate and verify proofs of AI inference. JSTprove provides an end-to-end verifiable AI inference pipeline that hides cryptographic complexity behind a simple command-line interface while exposing auditable artifacts for reproducibility. We present the design, innovations, and real-world use cases of JSTprove as well as our blueprints and tooling to encourage community review and extension. JSTprove therefore serves both as a usable zkML product for current engineering needs and as a reproducible foundation for future research and production deployments of verifiable AI.
Reinforcement Learning with Verifiable Rewards Implicitly Incentivizes Correct Reasoning in Base LLMs
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a promising paradigm for advancing the reasoning capabilities of Large Language Models (LLMs). However, a critical paradox clouds its efficacy: RLVR-tuned models often underperform their base models on the Pass@K metric for solution-finding, leading to the hypothesis that RLVR merely re-weights existing reasoning paths at the cost of reasoning diversity. In this work, we resolve this contradiction by identifying the source of the problem: the Pass@K metric itself is a flawed measure of reasoning, as it credits correct final answers that probably arise from inaccurate or incomplete chains of thought (CoTs). To address this, we introduce a more precise evaluation metric, CoT-Pass@K, which mandates that both the reasoning path and the final answer be correct. We provide a new theoretical foundation that formalizes how RLVR, unlike traditional RL, is uniquely structured to incentivize logical integrity. Our empirical results are supportive: using CoT-Pass@K, we observe that RLVR can incentivize the generalization of correct reasoning for all values of K. Furthermore, by analyzing the training dynamics, we find that this enhanced reasoning capability emerges early in the training process and smoothly generalizes. Our work provides a clear perspective on the role of RLVR, offers a more reliable method for its evaluation, and confirms its potential to genuinely advance machine reasoning.
Promoting Efficient Reasoning with Verifiable Stepwise Reward
Large reasoning models (LRMs) have recently achieved significant progress in complex reasoning tasks, aided by reinforcement learning with verifiable rewards. However, LRMs often suffer from overthinking, expending excessive computation on simple problems and reducing efficiency. Existing efficient reasoning methods typically require accurate task assessment to preset token budgets or select reasoning modes, which limits their flexibility and reliability. In this work, we revisit the essence of overthinking and identify that encouraging effective steps while penalizing ineffective ones is key to its solution. To this end, we propose a novel rule-based verifiable stepwise reward mechanism (VSRM), which assigns rewards based on the performance of intermediate states in the reasoning trajectory. This approach is intuitive and naturally fits the step-by-step nature of reasoning tasks. We conduct extensive experiments on standard mathematical reasoning benchmarks, including AIME24 and AIME25, by integrating VSRM with PPO and Reinforce++. Results show that our method achieves substantial output length reduction while maintaining original reasoning performance, striking an optimal balance between efficiency and accuracy. Further analysis of overthinking frequency and pass@k score before and after training demonstrates that our approach in deed effectively suppresses ineffective steps and encourages effective reasoning, fundamentally alleviating the overthinking problem. All code will be released upon acceptance.
The Choice of Divergence: A Neglected Key to Mitigating Diversity Collapse in Reinforcement Learning with Verifiable Reward
A central paradox in fine-tuning Large Language Models (LLMs) with Reinforcement Learning with Verifiable Reward (RLVR) is the frequent degradation of multi-attempt performance (Pass@k) despite improvements in single-attempt accuracy (Pass@1). This is often accompanied by catastrophic forgetting, where models lose previously acquired skills. While various methods have been proposed, the choice and function of the divergence term have been surprisingly unexamined as a proactive solution. We argue that standard RLVR objectives -- both those using the mode-seeking reverse KL-divergence and those forgoing a divergence term entirely -- lack a crucial mechanism for knowledge retention. The reverse-KL actively accelerates this decay by narrowing the policy, while its absence provides no safeguard against the model drifting from its diverse knowledge base. We propose a fundamental shift in perspective: using the divergence term itself as the solution. Our framework, Diversity-Preserving Hybrid RL (DPH-RL), leverages mass-covering f-divergences (like forward-KL and JS-divergence) to function as a rehearsal mechanism. By continuously referencing the initial policy, this approach forces the model to maintain broad solution coverage. Extensive experiments on math and SQL generation demonstrate that DPH-RL not only resolves the Pass@k degradation but improves both Pass@1 and Pass@k in- and out-of-domain. Additionally, DPH-RL is more training-efficient because it computes f-divergence using generator functions, requiring only sampling from the initial policy and no online reference model. Our work highlights a crucial, overlooked axis for improving RLVR, demonstrating that the proper selection of a divergence measure is a powerful tool for building more general and diverse reasoning models.
DeepSearch: Overcome the Bottleneck of Reinforcement Learning with Verifiable Rewards via Monte Carlo Tree Search
Although RLVR has become an essential component for developing advanced reasoning skills in LLMs, contemporary studies have documented training plateaus that emerge following thousands of optimization steps, demonstrating notable decreases in performance gains despite increased computational investment. This limitation stems from the sparse exploration patterns inherent in current RLVR practices, where models rely on limited rollouts that often miss critical reasoning paths and fail to provide systematic coverage of the solution space. We present DeepSearch, a framework that integrates Monte Carlo Tree Search directly into RLVR training. In contrast to existing methods that rely on tree search only at inference, DeepSearch embeds structured search into the training loop, enabling systematic exploration and fine-grained credit assignment across reasoning steps. Through training-time exploration, DeepSearch addresses the fundamental bottleneck of insufficient exploration, which leads to diminishing performance improvements over prolonged training steps. Our contributions include: (1) a global frontier selection strategy that prioritizes promising nodes across the search tree, (2) selection with entropy-based guidance that identifies confident paths for supervision, and (3) adaptive replay buffer training with solution caching for efficiency. Experiments on mathematical reasoning benchmarks show that DeepSearch achieves 62.95% average accuracy and establishes a new state-of-the-art for 1.5B reasoning models - using 5.7x fewer GPU hours than extended training approaches. These results highlight the importance of strategic exploration over brute-force scaling and demonstrate the promise of algorithmic innovation for advancing RLVR methodologies. DeepSearch establishes a new direction for scaling reasoning capabilities through systematic search rather than prolonged computation.
Humanity's Last Exam
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
Reinforced Preference Optimization for Recommendation
Recent breakthroughs in large language models (LLMs) have fundamentally shifted recommender systems from discriminative to generative paradigms, where user behavior modeling is achieved by generating target items conditioned on historical interactions. Yet current generative recommenders still suffer from two core limitations: the lack of high-quality negative modeling and the reliance on implicit rewards. Reinforcement learning with verifiable rewards (RLVR) offers a natural solution by enabling on-policy sampling of harder negatives and grounding optimization in explicit reward signals. However, applying RLVR to generative recommenders remains non-trivial. Its unique generation space often leads to invalid or repetitive items that undermine sampling efficiency, and ranking supervision is sparse since most items receive identical zero rewards. To address these challenges, we propose Reinforced Preference Optimization for Recommendation (ReRe), a reinforcement-based paradigm tailored to LLM-based recommenders, an important direction in generative recommendation. ReRe incorporates constrained beam search to improve sampling efficiency and diversify hard negatives, while augmenting rule-based accuracy rewards with auxiliary ranking rewards for finer-grained supervision. Extensive experiments on three real-world datasets demonstrate that ReRe consistently outperforms both traditional and LLM-based recommenders in ranking performance. Further analysis shows that ReRe not only enhances performance across both base and SFT-initialized models but also generalizes robustly across different backbone families and scales. Beyond empirical gains, we systematically investigate the design space of RLVR in recommendation across generation, sampling strategy, reward modeling, and optimization algorithm, offering insights for future research.
FormalGeo: An Extensible Formalized Framework for Olympiad Geometric Problem Solving
This is the first paper in a series of work we have accomplished over the past three years. In this paper, we have constructed a consistent formal plane geometry system. This will serve as a crucial bridge between IMO-level plane geometry challenges and readable AI automated reasoning. Within this formal framework, we have been able to seamlessly integrate modern AI models with our formal system. AI is now capable of providing deductive reasoning solutions to IMO-level plane geometry problems, just like handling other natural languages, and these proofs are readable, traceable, and verifiable. We propose the geometry formalization theory (GFT) to guide the development of the geometry formal system. Based on the GFT, we have established the FormalGeo, which consists of 88 geometric predicates and 196 theorems. It can represent, validate, and solve IMO-level geometry problems. we also have crafted the FGPS (formal geometry problem solver) in Python. It serves as both an interactive assistant for verifying problem-solving processes and an automated problem solver. We've annotated the formalgeo7k and formalgeo-imo datasets. The former contains 6,981 (expand to 133,818 through data augmentation) geometry problems, while the latter includes 18 (expand to 2,627 and continuously increasing) IMO-level challenging geometry problems. All annotated problems include detailed formal language descriptions and solutions. Implementation of the formal system and experiments validate the correctness and utility of the GFT. The backward depth-first search method only yields a 2.42% problem-solving failure rate, and we can incorporate deep learning techniques to achieve lower one. The source code of FGPS and datasets are available at https://github.com/BitSecret/FGPS.
rStar-Coder: Scaling Competitive Code Reasoning with a Large-Scale Verified Dataset
Advancing code reasoning in large language models (LLMs) is fundamentally limited by the scarcity of high-difficulty datasets, especially those with verifiable input-output test cases necessary for rigorous solution validation at scale. We introduce rStar-Coder, which significantly improves LLM code reasoning capabilities by constructing a large-scale, verified dataset of 418K competition-level code problems, 580K long-reasoning solutions along with rich test cases of varying difficulty. This is achieved through three core contributions: (1) we curate competitive programming code problems and oracle solutions to synthesize new, solvable problems; (2) we introduce a reliable input-output test case synthesis pipeline that decouples the generation into a three-step input generation method and a mutual verification mechanism for effective output labeling; (3) we augment problems with high-quality, test-case-verified long-reasoning solutions. Extensive experiments on Qwen models (1.5B-14B) across various code reasoning benchmarks demonstrate the superiority of rStar-Coder dataset, achieving leading performance comparable to frontier reasoning LLMs with much smaller model sizes. On LiveCodeBench, rStar-Coder improves Qwen2.5-7B from 17.4% to an impressive 57.3%, and Qwen2.5-14B from 23.3% to 62.5%, surpassing o3-mini (low) by3.1%. On the more challenging USA Computing Olympiad, our 7B model achieves an average pass@1 accuracy of 16.15%, outperforming the frontier-level QWQ-32B. Code and the dataset will be released at https://github.com/microsoft/rStar.
Abduct, Act, Predict: Scaffolding Causal Inference for Automated Failure Attribution in Multi-Agent Systems
Failure attribution in multi-agent systems -- pinpointing the exact step where a decisive error occurs -- is a critical yet unsolved challenge. Current methods treat this as a pattern recognition task over long conversation logs, leading to critically low step-level accuracy (below 17\%), which renders them impractical for debugging complex systems. Their core weakness is a fundamental inability to perform robust counterfactual reasoning: to determine if correcting a single action would have actually averted the task failure. To bridge this counterfactual inference gap, we introduce Abduct-Act-Predict (A2P) Scaffolding, a novel agent framework that transforms failure attribution from pattern recognition into a structured causal inference task. A2P explicitly guides a large language model through a formal three-step reasoning process within a single inference pass: (1) Abduction, to infer the hidden root causes behind an agent's actions; (2) Action, to define a minimal corrective intervention; and (3) Prediction, to simulate the subsequent trajectory and verify if the intervention resolves the failure. This structured approach leverages the holistic context of the entire conversation while imposing a rigorous causal logic on the model's analysis. Our extensive experiments on the Who\&When benchmark demonstrate its efficacy. On the Algorithm-Generated dataset, A2P achieves 47.46\% step-level accuracy, a 2.85times improvement over the 16.67\% of the baseline. On the more complex Hand-Crafted dataset, it achieves 29.31\% step accuracy, a 2.43times improvement over the baseline's 12.07\%. By reframing the problem through a causal lens, A2P Scaffolding provides a robust, verifiable, and significantly more accurate solution for automated failure attribution. Ours code are released at https://github.com/ResearAI/A2P.
Solver-Informed RL: Grounding Large Language Models for Authentic Optimization Modeling
Optimization modeling is fundamental to decision-making across diverse domains.Despite progress in automating optimization formulation from natural language descriptions, Large Language Models (LLMs) often struggle to generate formally correct and usable models due to hallucinations, posing a challenge for reliable automation. Inspired by the success of Reinforcement Learning (RL) in enhancing Large Reasoning Models, we present Solver-Informed Reinforcement Learning (SIRL).This novel framework leverages external optimization solvers as verifiable reward mechanisms to significantly improve the authenticity of LLMs for optimization modeling.Acting as precise verifiers, these solvers automatically assess the executable code and the instance-level mathematical model represented by the associated LP file, yielding precise and comprehensive feedback signals -- including syntax, feasibility, and solution quality that directly inform the RL process. This automated verification process, powered by classic optimization solvers, also underpins our instance-enhanced self-consistency method to synthesize high-quality training data. Extensive experiments on diverse public benchmarks demonstrate that SIRL achieves state-of-the-art performance, substantially outperforming existing methods in generating accurate and executable optimization models.
