- A Large-Scale Exploit Instrumentation Study of AI/ML Supply Chain Attacks in Hugging Face Models The development of machine learning (ML) techniques has led to ample opportunities for developers to develop and deploy their own models. Hugging Face serves as an open source platform where developers can share and download other models in an effort to make ML development more collaborative. In order for models to be shared, they first need to be serialized. Certain Python serialization methods are considered unsafe, as they are vulnerable to object injection. This paper investigates the pervasiveness of these unsafe serialization methods across Hugging Face, and demonstrates through an exploitation approach, that models using unsafe serialization methods can be exploited and shared, creating an unsafe environment for ML developers. We investigate to what extent Hugging Face is able to flag repositories and files using unsafe serialization methods, and develop a technique to detect malicious models. Our results show that Hugging Face is home to a wide range of potentially vulnerable models. 3 authors · Oct 6, 2024
- An Empirical Study of Safetensors' Usage Trends and Developers' Perceptions Developers are sharing pre-trained Machine Learning (ML) models through a variety of model sharing platforms, such as Hugging Face, in an effort to make ML development more collaborative. To share the models, they must first be serialized. While there are many methods of serialization in Python, most of them are unsafe. To tame this insecurity, Hugging Face released safetensors as a way to mitigate the threats posed by unsafe serialization formats. In this context, this paper investigates developer's shifts towards using safetensors on Hugging Face in an effort to understand security practices in the ML development community, as well as how developers react to new methods of serialization. Our results find that more developers are adopting safetensors, and many safetensor adoptions were made by automated conversions of existing models by Hugging Face's conversion tool. We also found, however, that a majority of developers ignore the conversion tool's pull requests, and that while many developers are facing issues with using safetensors, they are eager to learn about and adapt the format. 4 authors · Jan 3