Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeUnifying Self-Supervised Clustering and Energy-Based Models
Self-supervised learning excels at learning representations from large amounts of data. At the same time, generative models offer the complementary property of learning information about the underlying data generation process. In this study, we aim at establishing a principled connection between these two paradigms and highlight the benefits of their complementarity. In particular, we perform an analysis of self-supervised learning objectives, elucidating the underlying probabilistic graphical models and presenting a standardized methodology for their derivation from first principles. The analysis suggests a natural means of integrating self-supervised learning with likelihood-based generative models. We instantiate this concept within the realm of cluster-based self-supervised learning and energy models, introducing a lower bound proven to reliably penalize the most important failure modes and unlocking full unification. Our theoretical findings are substantiated through experiments on synthetic and real-world data, including SVHN, CIFAR10, and CIFAR100, demonstrating that our objective function allows to jointly train a backbone network in a discriminative and generative fashion, consequently outperforming existing self-supervised learning strategies in terms of clustering, generation and out-of-distribution detection performance by a wide margin. We also demonstrate that the solution can be integrated into a neuro-symbolic framework to tackle a simple yet non-trivial instantiation of the symbol grounding problem. The code is publicly available at https://github.com/emsansone/GEDI.
Large language models for artificial general intelligence (AGI): A survey of foundational principles and approaches
Generative artificial intelligence (AI) systems based on large-scale pretrained foundation models (PFMs) such as vision-language models, large language models (LLMs), diffusion models and vision-language-action (VLA) models have demonstrated the ability to solve complex and truly non-trivial AI problems in a wide variety of domains and contexts. Multimodal large language models (MLLMs), in particular, learn from vast and diverse data sources, allowing rich and nuanced representations of the world and, thereby, providing extensive capabilities, including the ability to reason, engage in meaningful dialog; collaborate with humans and other agents to jointly solve complex problems; and understand social and emotional aspects of humans. Despite this impressive feat, the cognitive abilities of state-of-the-art LLMs trained on large-scale datasets are still superficial and brittle. Consequently, generic LLMs are severely limited in their generalist capabilities. A number of foundational problems -- embodiment, symbol grounding, causality and memory -- are required to be addressed for LLMs to attain human-level general intelligence. These concepts are more aligned with human cognition and provide LLMs with inherent human-like cognitive properties that support the realization of physically-plausible, semantically meaningful, flexible and more generalizable knowledge and intelligence. In this work, we discuss the aforementioned foundational issues and survey state-of-the art approaches for implementing these concepts in LLMs. Specifically, we discuss how the principles of embodiment, symbol grounding, causality and memory can be leveraged toward the attainment of artificial general intelligence (AGI) in an organic manner.
Language with Vision: a Study on Grounded Word and Sentence Embeddings
Language grounding to vision is an active field of research aiming to enrich text-based representations of word meanings by leveraging perceptual knowledge from vision. Despite many attempts at language grounding, it is still unclear how to effectively inject visual knowledge into the word embeddings of a language in such a way that a proper balance of textual and visual knowledge is maintained. Some common concerns are the following. Is visual grounding beneficial for abstract words or is its contribution only limited to concrete words? What is the optimal way of bridging the gap between text and vision? How much do we gain by visually grounding textual embeddings? The present study addresses these questions by proposing a simple yet very effective grounding approach for pre-trained word embeddings. Our model aligns textual embeddings with vision while largely preserving the distributional statistics that characterize word use in text corpora. By applying a learned alignment, we are able to generate visually grounded embeddings for unseen words, including abstract words. A series of evaluations on word similarity benchmarks shows that visual grounding is beneficial not only for concrete words, but also for abstract words. We also show that our method for visual grounding offers advantages for contextualized embeddings, but only when these are trained on corpora of relatively modest size. Code and grounded embeddings for English are available at https://github.com/Hazel1994/Visually_Grounded_Word_Embeddings_2.
Paladin-mini: A Compact and Efficient Grounding Model Excelling in Real-World Scenarios
This paper introduces two significant contributions to address the issue of grounding claims in a given context. Grounding means that given a context (document) and a claim, there's at least one supportive evidence for the claim in the document. We will introduce Paladin-mini, a compact (3.8B parameters) open-source classifier model (used for labeling data as grounded or ungrounded) engineered for robust performance in real-world scenarios, and the grounding-benchmark, a new evaluation dataset designed to assess performance on critical reasoning tasks. We'll also demonstrate the results of Paladin-mini with benchmarks against the current State-of-the-art and share clear and reproducible results.
Uncovering the Full Potential of Visual Grounding Methods in VQA
Visual Grounding (VG) methods in Visual Question Answering (VQA) attempt to improve VQA performance by strengthening a model's reliance on question-relevant visual information. The presence of such relevant information in the visual input is typically assumed in training and testing. This assumption, however, is inherently flawed when dealing with imperfect image representations common in large-scale VQA, where the information carried by visual features frequently deviates from expected ground-truth contents. As a result, training and testing of VG-methods is performed with largely inaccurate data, which obstructs proper assessment of their potential benefits. In this study, we demonstrate that current evaluation schemes for VG-methods are problematic due to the flawed assumption of availability of relevant visual information. Our experiments show that these methods can be much more effective when evaluation conditions are corrected. Code is provided on GitHub.
Sentence Attention Blocks for Answer Grounding
Answer grounding is the task of locating relevant visual evidence for the Visual Question Answering task. While a wide variety of attention methods have been introduced for this task, they suffer from the following three problems: designs that do not allow the usage of pre-trained networks and do not benefit from large data pre-training, custom designs that are not based on well-grounded previous designs, therefore limiting the learning power of the network, or complicated designs that make it challenging to re-implement or improve them. In this paper, we propose a novel architectural block, which we term Sentence Attention Block, to solve these problems. The proposed block re-calibrates channel-wise image feature-maps by explicitly modeling inter-dependencies between the image feature-maps and sentence embedding. We visually demonstrate how this block filters out irrelevant feature-maps channels based on sentence embedding. We start our design with a well-known attention method, and by making minor modifications, we improve the results to achieve state-of-the-art accuracy. The flexibility of our method makes it easy to use different pre-trained backbone networks, and its simplicity makes it easy to understand and be re-implemented. We demonstrate the effectiveness of our method on the TextVQA-X, VQS, VQA-X, and VizWiz-VQA-Grounding datasets. We perform multiple ablation studies to show the effectiveness of our design choices.
LLaVA-Grounding: Grounded Visual Chat with Large Multimodal Models
With the recent significant advancements in large multi-modal models (LMMs), the importance of their grounding capability in visual chat is increasingly recognized. Despite recent efforts to enable LMMs to support grounding, their capabilities for grounding and chat are usually separate, and their chat performance drops dramatically when asked to ground. The problem is the lack of a dataset for grounded visual chat (GVC). Existing grounding datasets only contain short captions. To address this issue, we have created GVC data that allows for the combination of grounding and chat capabilities. To better evaluate the GVC capabilities, we have introduced a benchmark called Grounding-Bench. Additionally, we have proposed a model design that can support GVC and various types of visual prompts by connecting segmentation models with language models. Experimental results demonstrate that our model outperforms other LMMs on Grounding-Bench. Furthermore, our model achieves competitive performance on classic grounding benchmarks like RefCOCO/+/g and Flickr30K Entities. Our code will be released at https://github.com/UX-Decoder/LLaVA-Grounding .
Towards Visual Grounding: A Survey
Visual Grounding is also known as Referring Expression Comprehension and Phrase Grounding. It involves localizing a natural number of specific regions within an image based on a given textual description. The objective of this task is to emulate the prevalent referential relationships in social conversations, equipping machines with human-like multimodal comprehension capabilities. Consequently, it has extensive applications in various domains. However, since 2021, visual grounding has witnessed significant advancements, with emerging new concepts such as grounded pre-training, grounding multimodal LLMs, generalized visual grounding, and giga-pixel grounding, which have brought numerous new challenges. In this survey, we initially examine the developmental history of visual grounding and provide an overview of essential background knowledge. We systematically track and summarize the advancements and meticulously organize the various settings in visual grounding, thereby establishing precise definitions of these settings to standardize future research and ensure a fair comparison. Additionally, we delve into several advanced topics and highlight numerous applications of visual grounding. Finally, we outline the challenges confronting visual grounding and propose valuable directions for future research, which may serve as inspiration for subsequent researchers. By extracting common technical details, this survey encompasses the representative works in each subtopic over the past decade. To the best, this paper presents the most comprehensive overview currently available in the field of grounding. This survey is designed to be suitable for both beginners and experienced researchers, serving as an invaluable resource for understanding key concepts and tracking the latest research developments. We keep tracing related works at https://github.com/linhuixiao/Awesome-Visual-Grounding.
Towards Understanding Visual Grounding in Visual Language Models
Visual grounding refers to the ability of a model to identify a region within some visual input that matches a textual description. Consequently, a model equipped with visual grounding capabilities can target a wide range of applications in various domains, including referring expression comprehension, answering questions pertinent to fine-grained details in images or videos, caption visual context by explicitly referring to entities, as well as low and high-level control in simulated and real environments. In this survey paper, we review representative works across the key areas of research on modern general-purpose vision language models (VLMs). We first outline the importance of grounding in VLMs, then delineate the core components of the contemporary paradigm for developing grounded models, and examine their practical applications, including benchmarks and evaluation metrics for grounded multimodal generation. We also discuss the multifaceted interrelations among visual grounding, multimodal chain-of-thought, and reasoning in VLMs. Finally, we analyse the challenges inherent to visual grounding and suggest promising directions for future research.
Phi-Ground Tech Report: Advancing Perception in GUI Grounding
With the development of multimodal reasoning models, Computer Use Agents (CUAs), akin to Jarvis from "Iron Man", are becoming a reality. GUI grounding is a core component for CUAs to execute actual actions, similar to mechanical control in robotics, and it directly leads to the success or failure of the system. It determines actions such as clicking and typing, as well as related parameters like the coordinates for clicks. Current end-to-end grounding models still achieve less than 65\% accuracy on challenging benchmarks like ScreenSpot-pro and UI-Vision, indicating they are far from being ready for deployment. % , as a single misclick can result in unacceptable consequences. In this work, we conduct an empirical study on the training of grounding models, examining details from data collection to model training. Ultimately, we developed the Phi-Ground model family, which achieves state-of-the-art performance across all five grounding benchmarks for models under 10B parameters in agent settings. In the end-to-end model setting, our model still achieves SOTA results with scores of \textbf{43.2} on ScreenSpot-pro and \textbf{27.2} on UI-Vision. We believe that the various details discussed in this paper, along with our successes and failures, not only clarify the construction of grounding models but also benefit other perception tasks. Project homepage: https://zhangmiaosen2000.github.io/Phi-Ground/{https://zhangmiaosen2000.github.io/Phi-Ground/}
NAVER: A Neuro-Symbolic Compositional Automaton for Visual Grounding with Explicit Logic Reasoning
Visual Grounding (VG) tasks, such as referring expression detection and segmentation tasks are important for linking visual entities to context, especially in complex reasoning tasks that require detailed query interpretation. This paper explores VG beyond basic perception, highlighting challenges for methods that require reasoning like human cognition. Recent advances in large language methods (LLMs) and Vision-Language methods (VLMs) have improved abilities for visual comprehension, contextual understanding, and reasoning. These methods are mainly split into end-to-end and compositional methods, with the latter offering more flexibility. Compositional approaches that integrate LLMs and foundation models show promising performance but still struggle with complex reasoning with language-based logical representations. To address these limitations, we propose NAVER, a compositional visual grounding method that integrates explicit probabilistic logic reasoning within a finite-state automaton, equipped with a self-correcting mechanism. This design improves robustness and interpretability in inference through explicit logic reasoning. Our results show that NAVER achieves SoTA performance comparing to recent end-to-end and compositional baselines. The code is available at https://github.com/ControlNet/NAVER .
Improved GUI Grounding via Iterative Narrowing
GUI grounding, the task of identifying a precise location on an interface image from a natural language query, plays a crucial role in enhancing the capabilities of Vision-Language Model (VLM) agents. While general VLMs, such as GPT-4V, demonstrate strong performance across various tasks, their proficiency in GUI grounding remains suboptimal. Recent studies have focused on fine-tuning these models specifically for one-shot GUI grounding, yielding significant improvements over baseline performance. We introduce a visual prompting framework called Iterative Narrowing (IN) to further enhance the performance of both general and fine-tuned models in GUI grounding. For evaluation, we tested our method on a comprehensive benchmark comprising different UI platforms.
UniVG-R1: Reasoning Guided Universal Visual Grounding with Reinforcement Learning
Traditional visual grounding methods primarily focus on single-image scenarios with simple textual references. However, extending these methods to real-world scenarios that involve implicit and complex instructions, particularly in conjunction with multiple images, poses significant challenges, which is mainly due to the lack of advanced reasoning ability across diverse multi-modal contexts. In this work, we aim to address the more practical universal grounding task, and propose UniVG-R1, a reasoning guided multimodal large language model (MLLM) for universal visual grounding, which enhances reasoning capabilities through reinforcement learning (RL) combined with cold-start data. Specifically, we first construct a high-quality Chain-of-Thought (CoT) grounding dataset, annotated with detailed reasoning chains, to guide the model towards correct reasoning paths via supervised fine-tuning. Subsequently, we perform rule-based reinforcement learning to encourage the model to identify correct reasoning chains, thereby incentivizing its reasoning capabilities. In addition, we identify a difficulty bias arising from the prevalence of easy samples as RL training progresses, and we propose a difficulty-aware weight adjustment strategy to further strengthen the performance. Experimental results demonstrate the effectiveness of UniVG-R1, which achieves state-of-the-art performance on MIG-Bench with a 9.1% improvement over the previous method. Furthermore, our model exhibits strong generalizability, achieving an average improvement of 23.4% in zero-shot performance across four image and video reasoning grounding benchmarks. The project page can be accessed at https://amap-ml.github.io/UniVG-R1-page/.
ChartAB: A Benchmark for Chart Grounding & Dense Alignment
Charts play an important role in visualization, reasoning, data analysis, and the exchange of ideas among humans. However, existing vision-language models (VLMs) still lack accurate perception of details and struggle to extract fine-grained structures from charts. Such limitations in chart grounding also hinder their ability to compare multiple charts and reason over them. In this paper, we introduce a novel "ChartAlign Benchmark (ChartAB)" to provide a comprehensive evaluation of VLMs in chart grounding tasks, i.e., extracting tabular data, localizing visualization elements, and recognizing various attributes from charts of diverse types and complexities. We design a JSON template to facilitate the calculation of evaluation metrics specifically tailored for each grounding task. By incorporating a novel two-stage inference workflow, the benchmark can further evaluate VLMs' capability to align and compare elements/attributes across two charts. Our analysis of evaluations on several recent VLMs reveals new insights into their perception biases, weaknesses, robustness, and hallucinations in chart understanding. These findings highlight the fine-grained discrepancies among VLMs in chart understanding tasks and point to specific skills that need to be strengthened in current models.
Self-driven Grounding: Large Language Model Agents with Automatical Language-aligned Skill Learning
Large language models (LLMs) show their powerful automatic reasoning and planning capability with a wealth of semantic knowledge about the human world. However, the grounding problem still hinders the applications of LLMs in the real-world environment. Existing studies try to fine-tune the LLM or utilize pre-defined behavior APIs to bridge the LLMs and the environment, which not only costs huge human efforts to customize for every single task but also weakens the generality strengths of LLMs. To autonomously ground the LLM onto the environment, we proposed the Self-Driven Grounding (SDG) framework to automatically and progressively ground the LLM with self-driven skill learning. SDG first employs the LLM to propose the hypothesis of sub-goals to achieve tasks and then verify the feasibility of the hypothesis via interacting with the underlying environment. Once verified, SDG can then learn generalized skills with the guidance of these successfully grounded subgoals. These skills can be further utilized to accomplish more complex tasks which fail to pass the verification phase. Verified in the famous instruction following task set-BabyAI, SDG achieves comparable performance in the most challenging tasks compared with imitation learning methods that cost millions of demonstrations, proving the effectiveness of learned skills and showing the feasibility and efficiency of our framework.
Learning Cross-modal Context Graph for Visual Grounding
Visual grounding is a ubiquitous building block in many vision-language tasks and yet remains challenging due to large variations in visual and linguistic features of grounding entities, strong context effect and the resulting semantic ambiguities. Prior works typically focus on learning representations of individual phrases with limited context information. To address their limitations, this paper proposes a language-guided graph representation to capture the global context of grounding entities and their relations, and develop a cross-modal graph matching strategy for the multiple-phrase visual grounding task. In particular, we introduce a modular graph neural network to compute context-aware representations of phrases and object proposals respectively via message propagation, followed by a graph-based matching module to generate globally consistent localization of grounding phrases. We train the entire graph neural network jointly in a two-stage strategy and evaluate it on the Flickr30K Entities benchmark. Extensive experiments show that our method outperforms the prior state of the arts by a sizable margin, evidencing the efficacy of our grounding framework. Code is available at "https://github.com/youngfly11/LCMCG-PyTorch".
GROUNDHOG: Grounding Large Language Models to Holistic Segmentation
Most multimodal large language models (MLLMs) learn language-to-object grounding through causal language modeling where grounded objects are captured by bounding boxes as sequences of location tokens. This paradigm lacks pixel-level representations that are important for fine-grained visual understanding and diagnosis. In this work, we introduce GROUNDHOG, an MLLM developed by grounding Large Language Models to holistic segmentation. GROUNDHOG incorporates a masked feature extractor and converts extracted features into visual entity tokens for the MLLM backbone, which then connects groundable phrases to unified grounding masks by retrieving and merging the entity masks. To train GROUNDHOG, we carefully curated M3G2, a grounded visual instruction tuning dataset with Multi-Modal Multi-Grained Grounding, by harvesting a collection of segmentation-grounded datasets with rich annotations. Our experimental results show that GROUNDHOG achieves superior performance on various language grounding tasks without task-specific fine-tuning, and significantly reduces object hallucination. GROUNDHOG also demonstrates better grounding towards complex forms of visual input and provides easy-to-understand diagnosis in failure cases.
Scaling Computer-Use Grounding via User Interface Decomposition and Synthesis
Graphical user interface (GUI) grounding, the ability to map natural language instructions to specific actions on graphical user interfaces, remains a critical bottleneck in computer use agent development. Current benchmarks oversimplify grounding tasks as short referring expressions, failing to capture the complexity of real-world interactions that require software commonsense, layout understanding, and fine-grained manipulation capabilities. To address these limitations, we introduce OSWorld-G, a comprehensive benchmark comprising 564 finely annotated samples across diverse task types including text matching, element recognition, layout understanding, and precise manipulation. Additionally, we synthesize and release the largest computer use grounding dataset Jedi, which contains 4 million examples through multi-perspective decoupling of tasks. Our multi-scale models trained on Jedi demonstrate its effectiveness by outperforming existing approaches on ScreenSpot-v2, ScreenSpot-Pro, and our OSWorld-G. Furthermore, we demonstrate that improved grounding with Jedi directly enhances agentic capabilities of general foundation models on complex computer tasks, improving from 5% to 27% on OSWorld. Through detailed ablation studies, we identify key factors contributing to grounding performance and verify that combining specialized data for different interface elements enables compositional generalization to novel interfaces. All benchmark, data, checkpoints, and code are open-sourced and available at https://osworld-grounding.github.io.
Improving GUI Grounding with Explicit Position-to-Coordinate Mapping
GUI grounding, the task of mapping natural-language instructions to pixel coordinates, is crucial for autonomous agents, yet remains difficult for current VLMs. The core bottleneck is reliable patch-to-pixel mapping, which breaks when extrapolating to high-resolution displays unseen during training. Current approaches generate coordinates as text tokens directly from visual features, forcing the model to infer complex position-to-pixel mappings implicitly; as a result, accuracy degrades and failures proliferate on new resolutions. We address this with two complementary innovations. First, RULER tokens serve as explicit coordinate markers, letting the model reference positions similar to gridlines on a map and adjust rather than generate coordinates from scratch. Second, Interleaved MRoPE (I-MRoPE) improves spatial encoding by ensuring that width and height dimensions are represented equally, addressing the asymmetry of standard positional schemes. Experiments on ScreenSpot, ScreenSpot-V2, and ScreenSpot-Pro show consistent gains in grounding accuracy, with the largest improvements on high-resolution interfaces. By providing explicit spatial guidance rather than relying on implicit learning, our approach enables more reliable GUI automation across diverse resolutions and platforms.
Reasoning in Space via Grounding in the World
In this paper, we claim that 3D visual grounding is the cornerstone of spatial reasoning and introduce the Grounded-Spatial Reasoner (GS-Reasoner) to explore the effective spatial representations that bridge the gap between them. Existing 3D LLMs suffer from the absence of a unified 3D representation capable of jointly capturing semantic and geometric information. This deficiency is manifested either in poor performance on grounding or in an excessive reliance on external modules, ultimately hindering the seamless integration of grounding and spatial reasoning. To address this, we propose a simple yet effective dual-path pooling mechanism that tightly aligns geometric features with both semantic and positional cues, constructing a unified image patch-based 3D representation that encapsulates all essential information without increasing the number of input tokens. Leveraging this holistic representation, GS-Reasoner is the first 3D LLM that achieves autoregressive grounding entirely without external modules while delivering performance comparable to state-of-the-art models, establishing a unified and self-contained framework for 3D spatial reasoning. To further bridge grounding and spatial reasoning, we introduce the Grounded Chain-of-Thought (GCoT) dataset. This dataset is meticulously curated to include both 3D bounding box annotations for objects referenced in reasoning questions and step-by-step reasoning paths that integrate grounding as a core component of the problem-solving process. Extensive experiments demonstrate that GS-Reasoner achieves impressive results on 3D visual grounding, which in turn significantly enhances its spatial reasoning capabilities, leading to state-of-the-art performance.
HiVG: Hierarchical Multimodal Fine-grained Modulation for Visual Grounding
Visual grounding, which aims to ground a visual region via natural language, is a task that heavily relies on cross-modal alignment. Existing works utilized uni-modal pre-trained models to transfer visual/linguistic knowledge separately while ignoring the multimodal corresponding information. Motivated by recent advancements in contrastive language-image pre-training and low-rank adaptation (LoRA) methods, we aim to solve the grounding task based on multimodal pre-training. However, there exists significant task gaps between pre-training and grounding. Therefore, to address these gaps, we propose a concise and efficient hierarchical multimodal fine-grained modulation framework, namely HiVG. Specifically, HiVG consists of a multi-layer adaptive cross-modal bridge and a hierarchical multimodal low-rank adaptation (Hi LoRA) paradigm. The cross-modal bridge can address the inconsistency between visual features and those required for grounding, and establish a connection between multi-level visual and text features. Hi LoRA prevents the accumulation of perceptual errors by adapting the cross-modal features from shallow to deep layers in a hierarchical manner. Experimental results on five datasets demonstrate the effectiveness of our approach and showcase the significant grounding capabilities as well as promising energy efficiency advantages. The project page: https://github.com/linhuixiao/HiVG.
Symbol tuning improves in-context learning in language models
We present symbol tuning - finetuning language models on in-context input-label pairs where natural language labels (e.g., "positive/negative sentiment") are replaced with arbitrary symbols (e.g., "foo/bar"). Symbol tuning leverages the intuition that when a model cannot use instructions or natural language labels to figure out a task, it must instead do so by learning the input-label mappings. We experiment with symbol tuning across Flan-PaLM models up to 540B parameters and observe benefits across various settings. First, symbol tuning boosts performance on unseen in-context learning tasks and is much more robust to underspecified prompts, such as those without instructions or without natural language labels. Second, symbol-tuned models are much stronger at algorithmic reasoning tasks, with up to 18.2% better performance on the List Functions benchmark and up to 15.3% better performance on the Simple Turing Concepts benchmark. Finally, symbol-tuned models show large improvements in following flipped-labels presented in-context, meaning that they are more capable of using in-context information to override prior semantic knowledge.
Towards Visual Text Grounding of Multimodal Large Language Model
Despite the existing evolution of Multimodal Large Language Models (MLLMs), a non-neglectable limitation remains in their struggle with visual text grounding, especially in text-rich images of documents. Document images, such as scanned forms and infographics, highlight critical challenges due to their complex layouts and textual content. However, current benchmarks do not fully address these challenges, as they mostly focus on visual grounding on natural images, rather than text-rich document images. Thus, to bridge this gap, we introduce TRIG, a novel task with a newly designed instruction dataset for benchmarking and improving the Text-Rich Image Grounding capabilities of MLLMs in document question-answering. Specifically, we propose an OCR-LLM-human interaction pipeline to create 800 manually annotated question-answer pairs as a benchmark and a large-scale training set of 90$ synthetic data based on four diverse datasets. A comprehensive evaluation of various MLLMs on our proposed benchmark exposes substantial limitations in their grounding capability on text-rich images. In addition, we propose two simple and effective TRIG methods based on general instruction tuning and plug-and-play efficient embedding, respectively. By finetuning MLLMs on our synthetic dataset, they promisingly improve spatial reasoning and grounding capabilities.
Benchmarking Abstract and Reasoning Abilities Through A Theoretical Perspective
In this paper, we aim to establish a simple, effective, and theoretically grounded benchmark for rigorously probing abstract reasoning in Large Language Models (LLMs). To achieve this, we first develop a mathematic framework that defines abstract reasoning as the ability to: (i) extract essential patterns independent of surface representations, and (ii) apply consistent rules to these abstract patterns. Based on this framework, we introduce two novel complementary metrics: \(\scoreGamma\) measures basic reasoning accuracy, while \(\scoreDelta\) quantifies a model's reliance on specific symbols rather than underlying patterns - a key indicator of true abstraction versus mere memorization. To implement this measurement, we design a benchmark: systematic symbol remapping in rule-based tasks, which forces models to demonstrate genuine pattern recognition beyond superficial token matching. Extensive LLM evaluations using this benchmark (commercial API models, 7B-70B, multi-agent) reveal:1) critical limitations in non-decimal arithmetic and symbolic reasoning; 2) persistent abstraction gaps despite chain-of-thought prompting; and 3) \(\scoreDelta\)'s effectiveness in robustly measuring memory dependence by quantifying performance degradation under symbol remapping, particularly highlighting operand-specific memorization. These findings underscore that current LLMs, despite domain-specific strengths, still lack robust abstract reasoning, highlighting key areas for future improvement.
Navigating Rifts in Human-LLM Grounding: Study and Benchmark
Language models excel at following instructions but often struggle with the collaborative aspects of conversation that humans naturally employ. This limitation in grounding -- the process by which conversation participants establish mutual understanding -- can lead to outcomes ranging from frustrated users to serious consequences in high-stakes scenarios. To systematically study grounding challenges in human-LLM interactions, we analyze logs from three human-assistant datasets: WildChat, MultiWOZ, and Bing Chat. We develop a taxonomy of grounding acts and build models to annotate and forecast grounding behavior. Our findings reveal significant differences in human-human and human-LLM grounding: LLMs were three times less likely to initiate clarification and sixteen times less likely to provide follow-up requests than humans. Additionally, early grounding failures predicted later interaction breakdowns. Building on these insights, we introduce RIFTS: a benchmark derived from publicly available LLM interaction data containing situations where LLMs fail to initiate grounding. We note that current frontier models perform poorly on RIFTS, highlighting the need to reconsider how we train and prompt LLMs for human interaction. To this end, we develop a preliminary intervention that mitigates grounding failures.
Learning to Assemble Neural Module Tree Networks for Visual Grounding
Visual grounding, a task to ground (i.e., localize) natural language in images, essentially requires composite visual reasoning. However, existing methods over-simplify the composite nature of language into a monolithic sentence embedding or a coarse composition of subject-predicate-object triplet. In this paper, we propose to ground natural language in an intuitive, explainable, and composite fashion as it should be. In particular, we develop a novel modular network called Neural Module Tree network (NMTree) that regularizes the visual grounding along the dependency parsing tree of the sentence, where each node is a neural module that calculates visual attention according to its linguistic feature, and the grounding score is accumulated in a bottom-up direction where as needed. NMTree disentangles the visual grounding from the composite reasoning, allowing the former to only focus on primitive and easy-to-generalize patterns. To reduce the impact of parsing errors, we train the modules and their assembly end-to-end by using the Gumbel-Softmax approximation and its straight-through gradient estimator, accounting for the discrete nature of module assembly. Overall, the proposed NMTree consistently outperforms the state-of-the-arts on several benchmarks. Qualitative results show explainable grounding score calculation in great detail.
Grounding Gaps in Language Model Generations
Effective conversation requires common ground: a shared understanding between the participants. Common ground, however, does not emerge spontaneously in conversation. Speakers and listeners work together to both identify and construct a shared basis while avoiding misunderstanding. To accomplish grounding, humans rely on a range of dialogue acts, like clarification (What do you mean?) and acknowledgment (I understand.). However, it is unclear whether large language models (LLMs) generate text that reflects human grounding. To this end, we curate a set of grounding acts and propose corresponding metrics that quantify attempted grounding. We study whether LLM generations contain grounding acts, simulating turn-taking from several dialogue datasets and comparing results to humans. We find that -- compared to humans -- LLMs generate language with less conversational grounding, instead generating text that appears to simply presume common ground. To understand the roots of the identified grounding gap, we examine the role of instruction tuning and preference optimization, finding that training on contemporary preference data leads to a reduction in generated grounding acts. Altogether, we highlight the need for more research investigating conversational grounding in human-AI interaction.
GUI-AIMA: Aligning Intrinsic Multimodal Attention with a Context Anchor for GUI Grounding
Graphical user interface (GUI) grounding is a key function of computer-use agents, which maps natural-language instructions to actionable screen regions. Existing approaches based on Multimodal Large Language Models (MLLMs) typically formulate it as a text-based coordinate generation task, yet directly generating precise coordinates from visual inputs remains challenging and computationally intensive. An intuitive way to implement GUI grounding is to first select visual patches relevant to the instructions and then determine the precise click location within those patches. Based on the observations that general MLLMs have some native grounding capability, nested within their attentions, we propose GUI-AIMA, an attention-based and coordinate-free supervised fine-tuning framework for efficient GUI grounding. GUI-AIMA aligns the intrinsic multimodal attention of MLLMs with patch-wise grounding signals. These signals are calculated adaptively for diverse user instructions by multi-head aggregation on simplified query-visual attention matrices. Besides, its coordinate-free manner can easily integrate a plug-and-play zoom-in stage. GUI-AIMA-3B was trained with only 85k screenshots, demonstrating exceptional data efficiency and verifying that light training can trigger the native grounding capability of MLLMs. It achieves state-of-the-art performance among 3B models, attaining an average accuracy of 58.6% on ScreenSpot-Pro and 62.2% on OSWorld-G. Project page: https://github.com/sjz5202/GUI-AIMA
What Makes a Maze Look Like a Maze?
A unique aspect of human visual understanding is the ability to flexibly interpret abstract concepts: acquiring lifted rules explaining what they symbolize, grounding them across familiar and unfamiliar contexts, and making predictions or reasoning about them. While off-the-shelf vision-language models excel at making literal interpretations of images (e.g., recognizing object categories such as tree branches), they still struggle to make sense of such visual abstractions (e.g., how an arrangement of tree branches may form the walls of a maze). To address this challenge, we introduce Deep Schema Grounding (DSG), a framework that leverages explicit structured representations of visual abstractions for grounding and reasoning. At the core of DSG are schemas--dependency graph descriptions of abstract concepts that decompose them into more primitive-level symbols. DSG uses large language models to extract schemas, then hierarchically grounds concrete to abstract components of the schema onto images with vision-language models. The grounded schema is used to augment visual abstraction understanding. We systematically evaluate DSG and different methods in reasoning on our new Visual Abstractions Dataset, which consists of diverse, real-world images of abstract concepts and corresponding question-answer pairs labeled by humans. We show that DSG significantly improves the abstract visual reasoning performance of vision-language models, and is a step toward human-aligned understanding of visual abstractions.
SILG: The Multi-environment Symbolic Interactive Language Grounding Benchmark
Existing work in language grounding typically study single environments. How do we build unified models that apply across multiple environments? We propose the multi-environment Symbolic Interactive Language Grounding benchmark (SILG), which unifies a collection of diverse grounded language learning environments under a common interface. SILG consists of grid-world environments that require generalization to new dynamics, entities, and partially observed worlds (RTFM, Messenger, NetHack), as well as symbolic counterparts of visual worlds that require interpreting rich natural language with respect to complex scenes (ALFWorld, Touchdown). Together, these environments provide diverse grounding challenges in richness of observation space, action space, language specification, and plan complexity. In addition, we propose the first shared model architecture for RL on these environments, and evaluate recent advances such as egocentric local convolution, recurrent state-tracking, entity-centric attention, and pretrained LM using SILG. Our shared architecture achieves comparable performance to environment-specific architectures. Moreover, we find that many recent modelling advances do not result in significant gains on environments other than the one they were designed for. This highlights the need for a multi-environment benchmark. Finally, the best models significantly underperform humans on SILG, which suggests ample room for future work. We hope SILG enables the community to quickly identify new methodologies for language grounding that generalize to a diverse set of environments and their associated challenges.
GroundVLP: Harnessing Zero-shot Visual Grounding from Vision-Language Pre-training and Open-Vocabulary Object Detection
Visual grounding, a crucial vision-language task involving the understanding of the visual context based on the query expression, necessitates the model to capture the interactions between objects, as well as various spatial and attribute information. However, the annotation data of visual grounding task is limited due to its time-consuming and labor-intensive annotation process, resulting in the trained models being constrained from generalizing its capability to a broader domain. To address this challenge, we propose GroundVLP, a simple yet effective zero-shot method that harnesses visual grounding ability from the existing models trained from image-text pairs and pure object detection data, both of which are more conveniently obtainable and offer a broader domain compared to visual grounding annotation data. GroundVLP proposes a fusion mechanism that combines the heatmap from GradCAM and the object proposals of open-vocabulary detectors. We demonstrate that the proposed method significantly outperforms other zero-shot methods on RefCOCO/+/g datasets, surpassing prior zero-shot state-of-the-art by approximately 28\% on the test split of RefCOCO and RefCOCO+. Furthermore, GroundVLP performs comparably to or even better than some non-VLP-based supervised models on the Flickr30k entities dataset. Our code is available at https://github.com/om-ai-lab/GroundVLP.
Evolving Symbolic 3D Visual Grounder with Weakly Supervised Reflection
3D visual grounding (3DVG) is challenging because of the requirement of understanding on visual information, language and spatial relationships. While supervised approaches have achieved superior performance, they are constrained by the scarcity and high cost of 3D vision-language datasets. On the other hand, LLM/VLM based agents are proposed for 3DVG, eliminating the need for training data. However, these methods incur prohibitive time and token costs during inference. To address the challenges, we introduce a novel training-free symbolic framework for 3D visual grounding, namely Evolvable Symbolic Visual Grounder, that offers significantly reduced inference costs compared to previous agent-based methods while maintaining comparable performance. EaSe uses LLM generated codes to compute on spatial relationships. EaSe also implements an automatic pipeline to evaluate and optimize the quality of these codes and integrate VLMs to assist in the grounding process. Experimental results demonstrate that EaSe achieves 52.9% accuracy on Nr3D dataset and 49.2% [email protected] on ScanRefer, which is top-tier among training-free methods. Moreover, it substantially reduces the inference time and cost, offering a balanced trade-off between performance and efficiency. Codes are available at https://github.com/OpenRobotLab/EaSe.
Pseudo-Q: Generating Pseudo Language Queries for Visual Grounding
Visual grounding, i.e., localizing objects in images according to natural language queries, is an important topic in visual language understanding. The most effective approaches for this task are based on deep learning, which generally require expensive manually labeled image-query or patch-query pairs. To eliminate the heavy dependence on human annotations, we present a novel method, named Pseudo-Q, to automatically generate pseudo language queries for supervised training. Our method leverages an off-the-shelf object detector to identify visual objects from unlabeled images, and then language queries for these objects are obtained in an unsupervised fashion with a pseudo-query generation module. Then, we design a task-related query prompt module to specifically tailor generated pseudo language queries for visual grounding tasks. Further, in order to fully capture the contextual relationships between images and language queries, we develop a visual-language model equipped with multi-level cross-modality attention mechanism. Extensive experimental results demonstrate that our method has two notable benefits: (1) it can reduce human annotation costs significantly, e.g., 31% on RefCOCO without degrading original model's performance under the fully supervised setting, and (2) without bells and whistles, it achieves superior or comparable performance compared to state-of-the-art weakly-supervised visual grounding methods on all the five datasets we have experimented. Code is available at https://github.com/LeapLabTHU/Pseudo-Q.
Symbol-LLM: Towards Foundational Symbol-centric Interface For Large Language Models
Large Language Models (LLMs) have greatly propelled the progress in natural language(NL)-centric tasks based on NL interface. However, the NL form is not enough for world knowledge. Current works focus on this question by injecting specific symbolic knowledge into LLM, which ignore two critical challenges: the interrelations between various symbols and the balance between symbolic-centric and NL-centric capabilities. In this work, we tackle these challenges from both a data and framework perspective and introduce Symbol-LLM series models. First, we collect 34 symbolic tasks, covering ~20 different forms, which are unified to capture symbol interrelations. Then, a two-stage tuning framework succeeds in injecting symbolic knowledge without loss of the generality ability. Extensive experiments on both symbol- and NL-centric tasks demonstrate the balanced and superior performances of Symbol-LLM series models.
Context-Informed Grounding Supervision
Large language models (LLMs) are often supplemented with external knowledge to provide information not encoded in their parameters or to reduce hallucination. In such cases, we expect the model to generate responses by grounding its response in the provided external context. However, prior work has shown that simply appending context at inference time does not ensure grounded generation. To address this, we propose Context-INformed Grounding Supervision (CINGS), a post-training supervision in which the model is trained with relevant context prepended to the response, while computing the loss only over the response tokens and masking out the context. Our experiments demonstrate that models trained with CINGS exhibit stronger grounding in both textual and visual domains compared to standard instruction-tuned models. In the text domain, CINGS outperforms other training methods across 11 information-seeking datasets and is complementary to inference-time grounding techniques. In the vision-language domain, replacing a vision-language model's LLM backbone with a CINGS-trained model reduces hallucinations across four benchmarks and maintains factual consistency throughout the generated response. This improved grounding comes without degradation in general downstream performance. Finally, we analyze the mechanism underlying the enhanced grounding in CINGS and find that it induces a shift in the model's prior knowledge and behavior, implicitly encouraging greater reliance on the external context.
DetermiNet: A Large-Scale Diagnostic Dataset for Complex Visually-Grounded Referencing using Determiners
State-of-the-art visual grounding models can achieve high detection accuracy, but they are not designed to distinguish between all objects versus only certain objects of interest. In natural language, in order to specify a particular object or set of objects of interest, humans use determiners such as "my", "either" and "those". Determiners, as an important word class, are a type of schema in natural language about the reference or quantity of the noun. Existing grounded referencing datasets place much less emphasis on determiners, compared to other word classes such as nouns, verbs and adjectives. This makes it difficult to develop models that understand the full variety and complexity of object referencing. Thus, we have developed and released the DetermiNet dataset , which comprises 250,000 synthetically generated images and captions based on 25 determiners. The task is to predict bounding boxes to identify objects of interest, constrained by the semantics of the given determiner. We find that current state-of-the-art visual grounding models do not perform well on the dataset, highlighting the limitations of existing models on reference and quantification tasks.
CLIP-VG: Self-paced Curriculum Adapting of CLIP for Visual Grounding
Visual Grounding (VG) is a crucial topic in the field of vision and language, which involves locating a specific region described by expressions within an image. To reduce the reliance on manually labeled data, unsupervised visual grounding have been developed to locate regions using pseudo-labels. However, the performance of existing unsupervised methods is highly dependent on the quality of pseudo-labels and these methods always encounter issues with limited diversity. In order to utilize vision and language pre-trained models to address the grounding problem, and reasonably take advantage of pseudo-labels, we propose CLIP-VG, a novel method that can conduct self-paced curriculum adapting of CLIP with pseudo-language labels. We propose a simple yet efficient end-to-end network architecture to realize the transfer of CLIP to the visual grounding. Based on the CLIP-based architecture, we further propose single-source and multi-source curriculum adapting algorithms, which can progressively find more reliable pseudo-labels to learn an optimal model, thereby achieving a balance between reliability and diversity for the pseudo-language labels. Our method outperforms the current state-of-the-art unsupervised method by a significant margin on RefCOCO/+/g datasets in both single-source and multi-source scenarios, with improvements ranging from 6.78% to 10.67% and 11.39% to 14.87%, respectively. The results even outperform existing weakly supervised visual grounding methods. Furthermore, our method is also competitive in fully supervised setting. The code and models are available at https://github.com/linhuixiao/CLIP-VG.
Visual Grounding with Multi-modal Conditional Adaptation
Visual grounding is the task of locating objects specified by natural language expressions. Existing methods extend generic object detection frameworks to tackle this task. They typically extract visual and textual features separately using independent visual and textual encoders, then fuse these features in a multi-modal decoder for final prediction. However, visual grounding presents unique challenges. It often involves locating objects with different text descriptions within the same image. Existing methods struggle with this task because the independent visual encoder produces identical visual features for the same image, limiting detection performance. Some recently approaches propose various language-guided visual encoders to address this issue, but they mostly rely solely on textual information and require sophisticated designs. In this paper, we introduce Multi-modal Conditional Adaptation (MMCA), which enables the visual encoder to adaptively update weights, directing its focus towards text-relevant regions. Specifically, we first integrate information from different modalities to obtain multi-modal embeddings. Then we utilize a set of weighting coefficients, which generated from the multimodal embeddings, to reorganize the weight update matrices and apply them to the visual encoder of the visual grounding model. Extensive experiments on four widely used datasets demonstrate that MMCA achieves significant improvements and state-of-the-art results. Ablation experiments further demonstrate the lightweight and efficiency of our method. Our source code is available at: https://github.com/Mr-Bigworth/MMCA.
SimVG: A Simple Framework for Visual Grounding with Decoupled Multi-modal Fusion
Visual grounding is a common vision task that involves grounding descriptive sentences to the corresponding regions of an image. Most existing methods use independent image-text encoding and apply complex hand-crafted modules or encoder-decoder architectures for modal interaction and query reasoning. However, their performance significantly drops when dealing with complex textual expressions. This is because the former paradigm only utilizes limited downstream data to fit the multi-modal feature fusion. Therefore, it is only effective when the textual expressions are relatively simple. In contrast, given the wide diversity of textual expressions and the uniqueness of downstream training data, the existing fusion module, which extracts multimodal content from a visual-linguistic context, has not been fully investigated. In this paper, we present a simple yet robust transformer-based framework, SimVG, for visual grounding. Specifically, we decouple visual-linguistic feature fusion from downstream tasks by leveraging existing multimodal pre-trained models and incorporating additional object tokens to facilitate deep integration of downstream and pre-training tasks. Furthermore, we design a dynamic weight-balance distillation method in the multi-branch synchronous learning process to enhance the representation capability of the simpler branch. This branch only consists of a lightweight MLP, which simplifies the structure and improves reasoning speed. Experiments on six widely used VG datasets, i.e., RefCOCO/+/g, ReferIt, Flickr30K, and GRefCOCO, demonstrate the superiority of SimVG. Finally, the proposed method not only achieves improvements in efficiency and convergence speed but also attains new state-of-the-art performance on these benchmarks. Codes and models will be available at https://github.com/Dmmm1997/SimVG.
LLMs Will Always Hallucinate, and We Need to Live With This
As Large Language Models become more ubiquitous across domains, it becomes important to examine their inherent limitations critically. This work argues that hallucinations in language models are not just occasional errors but an inevitable feature of these systems. We demonstrate that hallucinations stem from the fundamental mathematical and logical structure of LLMs. It is, therefore, impossible to eliminate them through architectural improvements, dataset enhancements, or fact-checking mechanisms. Our analysis draws on computational theory and Godel's First Incompleteness Theorem, which references the undecidability of problems like the Halting, Emptiness, and Acceptance Problems. We demonstrate that every stage of the LLM process-from training data compilation to fact retrieval, intent classification, and text generation-will have a non-zero probability of producing hallucinations. This work introduces the concept of Structural Hallucination as an intrinsic nature of these systems. By establishing the mathematical certainty of hallucinations, we challenge the prevailing notion that they can be fully mitigated.
Neural-Symbolic Recursive Machine for Systematic Generalization
Despite the tremendous success, existing machine learning models still fall short of human-like systematic generalization -- learning compositional rules from limited data and applying them to unseen combinations in various domains. We propose Neural-Symbolic Recursive Machine (NSR) to tackle this deficiency. The core representation of NSR is a Grounded Symbol System (GSS) with combinatorial syntax and semantics, which entirely emerges from training data. Akin to the neuroscience studies suggesting separate brain systems for perceptual, syntactic, and semantic processing, NSR implements analogous separate modules of neural perception, syntactic parsing, and semantic reasoning, which are jointly learned by a deduction-abduction algorithm. We prove that NSR is expressive enough to model various sequence-to-sequence tasks. Superior systematic generalization is achieved via the inductive biases of equivariance and recursiveness embedded in NSR. In experiments, NSR achieves state-of-the-art performance in three benchmarks from different domains: SCAN for semantic parsing, PCFG for string manipulation, and HINT for arithmetic reasoning. Specifically, NSR achieves 100% generalization accuracy on SCAN and PCFG and outperforms state-of-the-art models on HINT by about 23%. Our NSR demonstrates stronger generalization than pure neural networks due to its symbolic representation and inductive biases. NSR also demonstrates better transferability than existing neural-symbolic approaches due to less domain-specific knowledge required.
GRIT: Teaching MLLMs to Think with Images
Recent studies have demonstrated the efficacy of using Reinforcement Learning (RL) in building reasoning models that articulate chains of thoughts prior to producing final answers. However, despite ongoing advances that aim at enabling reasoning for vision-language tasks, existing open-source visual reasoning models typically generate reasoning content with pure natural language, lacking explicit integration of visual information. This limits their ability to produce clearly articulated and visually grounded reasoning chains. To this end, we propose Grounded Reasoning with Images and Texts (GRIT), a novel method for training MLLMs to think with images. GRIT introduces a grounded reasoning paradigm, in which models generate reasoning chains that interleave natural language and explicit bounding box coordinates. These coordinates point to regions of the input image that the model consults during its reasoning process. Additionally, GRIT is equipped with a reinforcement learning approach, GRPO-GR, built upon the GRPO algorithm. GRPO-GR employs robust rewards focused on the final answer accuracy and format of the grounded reasoning output, which eliminates the need for data with reasoning chain annotations or explicit bounding box labels. As a result, GRIT achieves exceptional data efficiency, requiring as few as 20 image-question-answer triplets from existing datasets. Comprehensive evaluations demonstrate that GRIT effectively trains MLLMs to produce coherent and visually grounded reasoning chains, showing a successful unification of reasoning and grounding abilities.
ReGround: Improving Textual and Spatial Grounding at No Cost
When an image generation process is guided by both a text prompt and spatial cues, such as a set of bounding boxes, do these elements work in harmony, or does one dominate the other? Our analysis of a pretrained image diffusion model that integrates gated self-attention into the U-Net reveals that spatial grounding often outweighs textual grounding due to the sequential flow from gated self-attention to cross-attention. We demonstrate that such bias can be significantly mitigated without sacrificing accuracy in either grounding by simply rewiring the network architecture, changing from sequential to parallel for gated self-attention and cross-attention. This surprisingly simple yet effective solution does not require any fine-tuning of the network but significantly reduces the trade-off between the two groundings. Our experiments demonstrate significant improvements from the original GLIGEN to the rewired version in the trade-off between textual grounding and spatial grounding.
Grounding-Aware Token Pruning: Recovering from Drastic Performance Drops in Visual Grounding Caused by Pruning
Recent Multimodal Large Language Models (MLLMs) have demonstrated strong performance in visual grounding, establishing themselves as a general interface for various vision-language applications. This progress has driven the development of token pruning methods to mitigate the high computational costs associated with processing numerous visual tokens. However, we observe that pruning significantly weakens the model's grounding ability, leading to incorrect predictions and drastic performance degradation. In Referring Expression Comprehension (REC), for instance, pruning causes the accuracy of LLaVA on the RefCOCO validation set to drop from 56.14% to 15.34%. Our analysis identifies misaligned position IDs after pruning as the primary cause of this degradation, as both the order and value of these IDs are crucial for maintaining performance in grounding tasks. To address this issue, we propose Grounding-Aware Token Pruning (GAP), a simple yet effective adjustment to position IDs that recovers REC accuracy back to 51.42%, which is 90% of the original performance in the without pruning setting, all while requiring no additional training, memory, or computational overhead. Applied to models such as Shikra, MiniGPTv2, and the LLaVA series, our method consistently improves performance across various token pruning strategies.
Towards Verifiable Text Generation with Symbolic References
Large language models (LLMs) have demonstrated an impressive ability to synthesize plausible and fluent text. However they remain vulnerable to hallucinations, and thus their outputs generally require manual human verification for high-stakes applications, which can be time-consuming and difficult. This paper proposes symbolically grounded generation (SymGen) as a simple approach for enabling easier validation of an LLM's output. SymGen prompts an LLM to interleave its regular output text with explicit symbolic references to fields present in some conditioning data (e.g., a table in JSON format). The references can be used to display the provenance of different spans of text in the generation, reducing the effort required for manual verification. Across data-to-text and question answering experiments, we find that LLMs are able to directly output text that makes use of symbolic references while maintaining fluency and accuracy.
GRAD: Graph-Retrieved Adaptive Decoding for Hallucination Mitigation
Hallucination mitigation remains a persistent challenge for large language models (LLMs), even as model scales grow. Existing approaches often rely on external knowledge sources, such as structured databases or knowledge graphs, accessed through prompting or retrieval. However, prompt-based grounding is fragile and domain-sensitive, while symbolic knowledge integration incurs heavy retrieval and formatting costs. Motivated by knowledge graphs, we introduce Graph-Retrieved Adaptive Decoding (GRAD), a decoding-time method that grounds generation in corpus-derived evidence without retraining. GRAD constructs a sparse token transition graph by accumulating next-token logits across a small retrieved corpus in a single forward pass. During decoding, graph-retrieved logits are max-normalized and adaptively fused with model logits to favor high-evidence continuations while preserving fluency. Across three models and a range of question-answering benchmarks spanning intrinsic, extrinsic hallucination, and factuality tasks, GRAD consistently surpasses baselines, achieving up to 9.7% higher intrinsic accuracy, 8.6% lower hallucination rates, and 6.9% greater correctness compared to greedy decoding, while attaining the highest truth--informativeness product score among all methods. GRAD offers a lightweight, plug-and-play alternative to contrastive decoding and knowledge graph augmentation, demonstrating that statistical evidence from corpus-level token transitions can effectively steer generation toward more truthful and verifiable outputs.
GroundingME: Exposing the Visual Grounding Gap in MLLMs through Multi-Dimensional Evaluation
Visual grounding, localizing objects from natural language descriptions, represents a critical bridge between language and vision understanding. While multimodal large language models (MLLMs) achieve impressive scores on existing benchmarks, a fundamental question remains: can MLLMs truly ground language in vision with human-like sophistication, or are they merely pattern-matching on simplified datasets? Current benchmarks fail to capture real-world complexity where humans effortlessly navigate ambiguous references and recognize when grounding is impossible. To rigorously assess MLLMs' true capabilities, we introduce GroundingME, a benchmark that systematically challenges models across four critical dimensions: (1) Discriminative, distinguishing highly similar objects, (2) Spatial, understanding complex relational descriptions, (3) Limited, handling occlusions or tiny objects, and (4) Rejection, recognizing ungroundable queries. Through careful curation combining automated generation with human verification, we create 1,005 challenging examples mirroring real-world complexity. Evaluating 25 state-of-the-art MLLMs reveals a profound capability gap: the best model achieves only 45.1% accuracy, while most score 0% on rejection tasks, reflexively hallucinating objects rather than acknowledging their absence, raising critical safety concerns for deployment. We explore two strategies for improvements: (1) test-time scaling selects optimal response by thinking trajectory to improve complex grounding by up to 2.9%, and (2) data-mixture training teaches models to recognize ungroundable queries, boosting rejection accuracy from 0% to 27.9%. GroundingME thus serves as both a diagnostic tool revealing current limitations in MLLMs and a roadmap toward human-level visual grounding.
Think Twice, Click Once: Enhancing GUI Grounding via Fast and Slow Systems
Humans can flexibly switch between different modes of thinking based on task complexity: from rapid intuitive judgments to in-depth analytical understanding. However, current Graphical User Interface (GUI) grounding systems which locate interface elements based on natural language instructions rely solely on immediate prediction without reasoning, struggling to understand complex interface layouts with nested structures and hierarchical relationships, limiting their effectiveness on complex interfaces. Inspired by human dual-system cognition, we present Focus, a novel GUI grounding framework that combines fast prediction with systematic analysis. The framework dynamically switches between rapid and deliberate processing through an adaptive system switching based on task complexity, optimizing both efficiency and accuracy. Focus decomposes grounding into progressive stages: interface summarization, visual focused analysis, and precise coordinate prediction. This structured decomposition enables systematic understanding of both interface layouts and visual relationships. Extensive experiments show that Focus achieves state-of-the-art performance using only 300K of the training data with a 2B parameter model compared to existing approaches. Focus demonstrates superior performance particularly in complex GUI scenarios, achieving 77.4% average accuracy on ScreenSpot and 13.3% on the more challenging ScreenSpot-Pro. Our analysis reveals the effectiveness of this dual-system approach while demonstrating its potential for improving complex GUI interaction scenarios.
Learning GUI Grounding with Spatial Reasoning from Visual Feedback
Graphical User Interface (GUI) grounding is commonly framed as a coordinate prediction task -- given a natural language instruction, generate on-screen coordinates for actions such as clicks and keystrokes. However, recent Vision Language Models (VLMs) often fail to predict accurate numeric coordinates when processing high-resolution GUI images with complex layouts. To address this issue, we reframe GUI grounding as an interactive search task, where the VLM generates actions to move a cursor in the GUI to locate UI elements. At each step, the model determines the target object, evaluates the spatial relations between the cursor and the target, and moves the cursor closer to the target conditioned on the movement history. In this interactive process, the rendered cursor provides visual feedback to help the model align its predictions with the corresponding on-screen locations. We train our GUI grounding model, GUI-Cursor, using multi-step online reinforcement learning with a dense trajectory-based reward function. Our experimental results show that GUI-Cursor, based on Qwen2.5-VL-7B, improves the GUI grounding accuracy and achieves state-of-the-art results on ScreenSpot-v2 (88.8% rightarrow 93.9%) and ScreenSpot-Pro (26.8% rightarrow 56.5%). Moreover, we observe that GUI-Cursor learns to solve the problem within two steps for 95\% of instances and can adaptively conduct more steps on more difficult examples.
Can VLMs Recall Factual Associations From Visual References?
Through a controlled study, we identify a systematic deficiency in the multimodal grounding of Vision Language Models (VLMs). While VLMs can recall factual associations when provided a textual reference to an entity; their ability to do so is significantly diminished when the reference is visual instead. Forcing VLMs to rely on image representations of an entity halves their ability to recall factual knowledge, suggesting that VLMs struggle to link their internal knowledge of an entity with its image representation. We show that such linking failures are correlated with the expression of distinct patterns in model internal states, and that probes on these internal states achieve over 92% accuracy at flagging cases where the VLM response is unreliable. These probes can be applied, without retraining, to identify when a VLM will fail to correctly answer a question that requires an understanding of multimodal input. When used to facilitate selective prediction on a visual question answering task, the probes increase coverage by 7.87% (absolute) while also reducing the risk of error by 0.9% (absolute). Addressing the systematic, detectable deficiency is an important avenue in language grounding, and we provide informed recommendations for future directions.
MedSG-Bench: A Benchmark for Medical Image Sequences Grounding
Visual grounding is essential for precise perception and reasoning in multimodal large language models (MLLMs), especially in medical imaging domains. While existing medical visual grounding benchmarks primarily focus on single-image scenarios, real-world clinical applications often involve sequential images, where accurate lesion localization across different modalities and temporal tracking of disease progression (e.g., pre- vs. post-treatment comparison) require fine-grained cross-image semantic alignment and context-aware reasoning. To remedy the underrepresentation of image sequences in existing medical visual grounding benchmarks, we propose MedSG-Bench, the first benchmark tailored for Medical Image Sequences Grounding. It comprises eight VQA-style tasks, formulated into two paradigms of the grounding tasks, including 1) Image Difference Grounding, which focuses on detecting change regions across images, and 2) Image Consistency Grounding, which emphasizes detection of consistent or shared semantics across sequential images. MedSG-Bench covers 76 public datasets, 10 medical imaging modalities, and a wide spectrum of anatomical structures and diseases, totaling 9,630 question-answer pairs. We benchmark both general-purpose MLLMs (e.g., Qwen2.5-VL) and medical-domain specialized MLLMs (e.g., HuatuoGPT-vision), observing that even the advanced models exhibit substantial limitations in medical sequential grounding tasks. To advance this field, we construct MedSG-188K, a large-scale instruction-tuning dataset tailored for sequential visual grounding, and further develop MedSeq-Grounder, an MLLM designed to facilitate future research on fine-grained understanding across medical sequential images. The benchmark, dataset, and model are available at https://huggingface.co/MedSG-Bench
Test-Time Reinforcement Learning for GUI Grounding via Region Consistency
Graphical User Interface (GUI) grounding, the task of mapping natural language instructions to precise screen coordinates, is fundamental to autonomous GUI agents. While existing methods achieve strong performance through extensive supervised training or reinforcement learning with labeled rewards, they remain constrained by the cost and availability of pixel-level annotations. We observe that when models generate multiple predictions for the same GUI element, the spatial overlap patterns reveal implicit confidence signals that can guide more accurate localization. Leveraging this insight, we propose GUI-RC (Region Consistency), a test-time scaling method that constructs spatial voting grids from multiple sampled predictions to identify consensus regions where models show highest agreement. Without any training, GUI-RC improves accuracy by 2-3% across various architectures on ScreenSpot benchmarks. We further introduce GUI-RCPO (Region Consistency Policy Optimization), which transforms these consistency patterns into rewards for test-time reinforcement learning. By computing how well each prediction aligns with the collective consensus, GUI-RCPO enables models to iteratively refine their outputs on unlabeled data during inference. Extensive experiments demonstrate the generality of our approach: GUI-RC boosts Qwen2.5-VL-3B-Instruct from 80.11% to 83.57% on ScreenSpot-v2, while GUI-RCPO further improves it to 85.14% through self-supervised optimization. Our approach reveals the untapped potential of test-time scaling and test-time reinforcement learning for GUI grounding, offering a promising path toward more robust and data-efficient GUI agents.
Grounding Computer Use Agents on Human Demonstrations
Building reliable computer-use agents requires grounding: accurately connecting natural language instructions to the correct on-screen elements. While large datasets exist for web and mobile interactions, high-quality resources for desktop environments are limited. To address this gap, we introduce GroundCUA, a large-scale desktop grounding dataset built from expert human demonstrations. It covers 87 applications across 12 categories and includes 56K screenshots, with every on-screen element carefully annotated for a total of over 3.56M human-verified annotations. From these demonstrations, we generate diverse instructions that capture a wide range of real-world tasks, providing high-quality data for model training. Using GroundCUA, we develop the GroundNext family of models that map instructions to their target UI elements. At both 3B and 7B scales, GroundNext achieves state-of-the-art results across five benchmarks using supervised fine-tuning, while requiring less than one-tenth the training data of prior work. Reinforcement learning post-training further improves performance, and when evaluated in an agentic setting on the OSWorld benchmark using o3 as planner, GroundNext attains comparable or superior results to models trained with substantially more data,. These results demonstrate the critical role of high-quality, expert-driven datasets in advancing general-purpose computer-use agents.
ViGoR: Improving Visual Grounding of Large Vision Language Models with Fine-Grained Reward Modeling
By combining natural language understanding and the generation capabilities and breadth of knowledge of large language models with image perception, recent large vision language models (LVLMs) have shown unprecedented reasoning capabilities in the real world. However, the generated text often suffers from inaccurate grounding in the visual input, resulting in errors such as hallucinating nonexistent scene elements, missing significant parts of the scene, and inferring incorrect attributes and relationships between objects. To address these issues, we introduce a novel framework, ViGoR (Visual Grounding Through Fine-Grained Reward Modeling) that utilizes fine-grained reward modeling to significantly enhance the visual grounding of LVLMs over pre-trained baselines. This improvement is efficiently achieved using much cheaper human evaluations instead of full supervisions, as well as automated methods. We show the effectiveness of our approach through numerous metrics on several benchmarks. Additionally, we construct a comprehensive and challenging dataset specifically designed to validate the visual grounding capabilities of LVLMs. Finally, we plan to release our human annotation comprising approximately 16,000 images and generated text pairs with fine-grained evaluations to contribute to related research in the community.
SceneVerse: Scaling 3D Vision-Language Learning for Grounded Scene Understanding
3D vision-language grounding, which focuses on aligning language with the 3D physical environment, stands as a cornerstone in the development of embodied agents. In comparison to recent advancements in the 2D domain, grounding language in 3D scenes faces several significant challenges: (i) the inherent complexity of 3D scenes due to the diverse object configurations, their rich attributes, and intricate relationships; (ii) the scarcity of paired 3D vision-language data to support grounded learning; and (iii) the absence of a unified learning framework to distill knowledge from grounded 3D data. In this work, we aim to address these three major challenges in 3D vision-language by examining the potential of systematically upscaling 3D vision-language learning in indoor environments. We introduce the first million-scale 3D vision-language dataset, SceneVerse, encompassing about 68K 3D indoor scenes and comprising 2.5M vision-language pairs derived from both human annotations and our scalable scene-graph-based generation approach. We demonstrate that this scaling allows for a unified pre-training framework, Grounded Pre-training for Scenes (GPS), for 3D vision-language learning. Through extensive experiments, we showcase the effectiveness of GPS by achieving state-of-the-art performance on all existing 3D visual grounding benchmarks. The vast potential of SceneVerse and GPS is unveiled through zero-shot transfer experiments in the challenging 3D vision-language tasks. Project website: https://scene-verse.github.io .
Three Ways to Improve Verbo-visual Fusion for Dense 3D Visual Grounding
3D visual grounding is the task of localizing the object in a 3D scene which is referred by a description in natural language. With a wide range of applications ranging from autonomous indoor robotics to AR/VR, the task has recently risen in popularity. A common formulation to tackle 3D visual grounding is grounding-by-detection, where localization is done via bounding boxes. However, for real-life applications that require physical interactions, a bounding box insufficiently describes the geometry of an object. We therefore tackle the problem of dense 3D visual grounding, i.e. referral-based 3D instance segmentation. We propose a dense 3D grounding network ConcreteNet, featuring three novel stand-alone modules which aim to improve grounding performance for challenging repetitive instances, i.e. instances with distractors of the same semantic class. First, we introduce a bottom-up attentive fusion module that aims to disambiguate inter-instance relational cues, next we construct a contrastive training scheme to induce separation in the latent space, and finally we resolve view-dependent utterances via a learned global camera token. ConcreteNet ranks 1st on the challenging ScanRefer online benchmark by a considerable +9.43% accuracy at 50% IoU and has won the ICCV 3rd Workshop on Language for 3D Scenes "3D Object Localization" challenge.
Migician: Revealing the Magic of Free-Form Multi-Image Grounding in Multimodal Large Language Models
The recent advancement of Multimodal Large Language Models (MLLMs) has significantly improved their fine-grained perception of single images and general comprehension across multiple images. However, existing MLLMs still face challenges in achieving precise grounding in complex multi-image scenarios. To address this, we first explore a Chain-of-Thought (CoT) framework that integrates single-image grounding with multi-image comprehension. While partially effective, it remains unstable and struggles to capture abstract visual information due to its non-end-to-end nature. Therefore, we introduce Migician, the first multi-image grounding model capable of performing free-form and accurate grounding across multiple images. To support this, we present the MGrounding-630k dataset, which comprises data for several multi-image grounding tasks derived from existing datasets, along with newly generated free-form grounding instruction-following data. Furthermore, we propose MIG-Bench, a comprehensive benchmark specifically designed for evaluating multi-image grounding capabilities. Experimental results demonstrate that our model achieves significantly superior multi-image grounding capabilities, outperforming the best existing MLLMs by 21.61% and even surpassing much larger 70B models. Our code, model, dataset, and benchmark are fully open-sourced.
Parallel Vertex Diffusion for Unified Visual Grounding
Unified visual grounding pursues a simple and generic technical route to leverage multi-task data with less task-specific design. The most advanced methods typically present boxes and masks as vertex sequences to model referring detection and segmentation as an autoregressive sequential vertex generation paradigm. However, generating high-dimensional vertex sequences sequentially is error-prone because the upstream of the sequence remains static and cannot be refined based on downstream vertex information, even if there is a significant location gap. Besides, with limited vertexes, the inferior fitting of objects with complex contours restricts the performance upper bound. To deal with this dilemma, we propose a parallel vertex generation paradigm for superior high-dimension scalability with a diffusion model by simply modifying the noise dimension. An intuitive materialization of our paradigm is Parallel Vertex Diffusion (PVD) to directly set vertex coordinates as the generation target and use a diffusion model to train and infer. We claim that it has two flaws: (1) unnormalized coordinate caused a high variance of loss value; (2) the original training objective of PVD only considers point consistency but ignores geometry consistency. To solve the first flaw, Center Anchor Mechanism (CAM) is designed to convert coordinates as normalized offset values to stabilize the training loss value. For the second flaw, Angle summation loss (ASL) is designed to constrain the geometry difference of prediction and ground truth vertexes for geometry-level consistency. Empirical results show that our PVD achieves state-of-the-art in both referring detection and segmentation, and our paradigm is more scalable and efficient than sequential vertex generation with high-dimension data.
No Labels, No Problem: Training Visual Reasoners with Multimodal Verifiers
Visual reasoning is challenging, requiring both precise object grounding and understanding complex spatial relationships. Existing methods fall into two camps: language-only chain-of-thought approaches, which demand large-scale (image, query, answer) supervision, and program-synthesis approaches which use pre-trained models and avoid training, but suffer from flawed logic and erroneous grounding. We propose an annotation-free training framework that improves both reasoning and grounding. Our framework uses AI-powered verifiers: an LLM verifier refines LLM reasoning via reinforcement learning, while a VLM verifier strengthens visual grounding through automated hard-negative mining, eliminating the need for ground truth labels. This design combines the strengths of modern AI systems: advanced language-only reasoning models for decomposing spatial queries into simpler subtasks, and strong vision specialist models improved via performant VLM critics. We evaluate our approach across diverse spatial reasoning tasks, and show that our method improves visual reasoning and surpasses open-source and proprietary models, while with our improved visual grounding model we further outperform recent text-only visual reasoning methods. Project webpage: https://glab-caltech.github.io/valor/
AffordanceLLM: Grounding Affordance from Vision Language Models
Affordance grounding refers to the task of finding the area of an object with which one can interact. It is a fundamental but challenging task, as a successful solution requires the comprehensive understanding of a scene in multiple aspects including detection, localization, and recognition of objects with their parts, of geo-spatial configuration/layout of the scene, of 3D shapes and physics, as well as of the functionality and potential interaction of the objects and humans. Much of the knowledge is hidden and beyond the image content with the supervised labels from a limited training set. In this paper, we make an attempt to improve the generalization capability of the current affordance grounding by taking the advantage of the rich world, abstract, and human-object-interaction knowledge from pretrained large-scale vision language models. Under the AGD20K benchmark, our proposed model demonstrates a significant performance gain over the competing methods for in-the-wild object affordance grounding. We further demonstrate it can ground affordance for objects from random Internet images, even if both objects and actions are unseen during training. Project site: https://jasonqsy.github.io/AffordanceLLM/
Can Many-Shot In-Context Learning Help Long-Context LLM Judges? See More, Judge Better!
Leveraging Large Language Models (LLMs) as judges for evaluating the performance of LLMs has recently garnered attention. Nonetheless, this type of approach concurrently introduces potential biases from LLMs, raising concerns about the reliability of the evaluation results. To mitigate this issue, we propose and study two versions of many-shot in-context prompts, Reinforced and Unsupervised ICL, for helping GPT-4o-as-a-Judge in single answer grading. The former uses in-context examples with model-generated rationales, and the latter without. Based on the designed prompts, we investigate the impact of scaling the number of in-context examples on the agreement and quality of the evaluation. Furthermore, we first reveal the symbol bias in GPT-4o-as-a-Judge for pairwise comparison and then propose a simple yet effective approach to mitigate it. Experimental results show that advanced long-context LLMs, such as GPT-4o, perform better in the many-shot regime than in the zero-shot regime. Meanwhile, the experimental results further verify the effectiveness of the symbol bias mitigation approach.
Open Eyes, Then Reason: Fine-grained Visual Mathematical Understanding in MLLMs
Current multimodal large language models (MLLMs) often underperform on mathematical problem-solving tasks that require fine-grained visual understanding. The limitation is largely attributable to inadequate perception of geometric primitives during image-level contrastive pre-training (e.g., CLIP). While recent efforts to improve math MLLMs have focused on scaling up mathematical visual instruction datasets and employing stronger LLM backbones, they often overlook persistent errors in visual recognition. In this paper, we systematically evaluate the visual grounding capabilities of state-of-the-art MLLMs and reveal a significant negative correlation between visual grounding accuracy and problem-solving performance, underscoring the critical role of fine-grained visual understanding. Notably, advanced models like GPT-4o exhibit a 70% error rate when identifying geometric entities, highlighting that this remains a key bottleneck in visual mathematical reasoning. To address this, we propose a novel approach, SVE-Math (Selective Vision-Enhanced Mathematical MLLM), featuring a geometric-grounded vision encoder and a feature router that dynamically adjusts the contribution of hierarchical visual feature maps. Our model recognizes accurate visual primitives and generates precise visual prompts tailored to the language model's reasoning needs. In experiments, SVE-Math-Qwen2.5-7B outperforms other 7B models by 15% on MathVerse and is compatible with GPT-4V on MathVista. Despite being trained on smaller datasets, SVE-Math-7B achieves competitive performance on GeoQA, rivaling models trained on significantly larger datasets. Our findings emphasize the importance of incorporating fine-grained visual understanding into MLLMs and provide a promising direction for future research.
ScanReason: Empowering 3D Visual Grounding with Reasoning Capabilities
Although great progress has been made in 3D visual grounding, current models still rely on explicit textual descriptions for grounding and lack the ability to reason human intentions from implicit instructions. We propose a new task called 3D reasoning grounding and introduce a new benchmark ScanReason which provides over 10K question-answer-location pairs from five reasoning types that require the synerization of reasoning and grounding. We further design our approach, ReGround3D, composed of the visual-centric reasoning module empowered by Multi-modal Large Language Model (MLLM) and the 3D grounding module to obtain accurate object locations by looking back to the enhanced geometry and fine-grained details from the 3D scenes. A chain-of-grounding mechanism is proposed to further boost the performance with interleaved reasoning and grounding steps during inference. Extensive experiments on the proposed benchmark validate the effectiveness of our proposed approach.
Visual Grounding with Attention-Driven Constraint Balancing
Unlike Object Detection, Visual Grounding task necessitates the detection of an object described by complex free-form language. To simultaneously model such complex semantic and visual representations, recent state-of-the-art studies adopt transformer-based models to fuse features from both modalities, further introducing various modules that modulate visual features to align with the language expressions and eliminate the irrelevant redundant information. However, their loss function, still adopting common Object Detection losses, solely governs the bounding box regression output, failing to fully optimize for the above objectives. To tackle this problem, in this paper, we first analyze the attention mechanisms of transformer-based models. Building upon this, we further propose a novel framework named Attention-Driven Constraint Balancing (AttBalance) to optimize the behavior of visual features within language-relevant regions. Extensive experimental results show that our method brings impressive improvements. Specifically, we achieve constant improvements over five different models evaluated on four different benchmarks. Moreover, we attain a new state-of-the-art performance by integrating our method into QRNet.
CoT3DRef: Chain-of-Thoughts Data-Efficient 3D Visual Grounding
3D visual grounding is the ability to localize objects in 3D scenes conditioned by utterances. Most existing methods devote the referring head to localize the referred object directly, causing failure in complex scenarios. In addition, it does not illustrate how and why the network reaches the final decision. In this paper, we address this question Can we design an interpretable 3D visual grounding framework that has the potential to mimic the human perception system?. To this end, we formulate the 3D visual grounding problem as a sequence-to-sequence task by first predicting a chain of anchors and then the final target. Interpretability not only improves the overall performance but also helps us identify failure cases. Following the chain of thoughts approach enables us to decompose the referring task into interpretable intermediate steps, boosting the performance and making our framework extremely data-efficient. Moreover, our proposed framework can be easily integrated into any existing architecture. We validate our approach through comprehensive experiments on the Nr3D, Sr3D, and Scanrefer benchmarks and show consistent performance gains compared to existing methods without requiring manually annotated data. Furthermore, our proposed framework, dubbed CoT3DRef, is significantly data-efficient, whereas on the Sr3D dataset, when trained only on 10% of the data, we match the SOTA performance that trained on the entire data.
Grounding Large Language Models in Interactive Environments with Online Reinforcement Learning
Recent works successfully leveraged Large Language Models' (LLM) abilities to capture abstract knowledge about world's physics to solve decision-making problems. Yet, the alignment between LLMs' knowledge and the environment can be wrong and limit functional competence due to lack of grounding. In this paper, we study an approach (named GLAM) to achieve this alignment through functional grounding: we consider an agent using an LLM as a policy that is progressively updated as the agent interacts with the environment, leveraging online Reinforcement Learning to improve its performance to solve goals. Using an interactive textual environment designed to study higher-level forms of functional grounding, and a set of spatial and navigation tasks, we study several scientific questions: 1) Can LLMs boost sample efficiency for online learning of various RL tasks? 2) How can it boost different forms of generalization? 3) What is the impact of online learning? We study these questions by functionally grounding several variants (size, architecture) of FLAN-T5.
RefChartQA: Grounding Visual Answer on Chart Images through Instruction Tuning
Recently, Vision Language Models (VLMs) have increasingly emphasized document visual grounding to achieve better human-computer interaction, accessibility, and detailed understanding. However, its application to visualizations such as charts remains under-explored due to the inherent complexity of interleaved visual-numerical relationships in chart images. Existing chart understanding methods primarily focus on answering questions without explicitly identifying the visual elements that support their predictions. To bridge this gap, we introduce RefChartQA, a novel benchmark that integrates Chart Question Answering (ChartQA) with visual grounding, enabling models to refer elements at multiple granularities within chart images. Furthermore, we conduct a comprehensive evaluation by instruction-tuning 5 state-of-the-art VLMs across different categories. Our experiments demonstrate that incorporating spatial awareness via grounding improves response accuracy by over 15%, reducing hallucinations, and improving model reliability. Additionally, we identify key factors influencing text-spatial alignment, such as architectural improvements in TinyChart, which leverages a token-merging module for enhanced feature fusion. Our dataset is open-sourced for community development and further advancements. All models and code will be publicly available at https://github.com/moured/RefChartQA.
R-VLM: Region-Aware Vision Language Model for Precise GUI Grounding
Visual agent models for automating human activities on Graphical User Interfaces (GUIs) have emerged as a promising research direction, driven by advances in large Vision Language Models (VLMs). A critical challenge in GUI automation is the precise grounding of interface elements across diverse platforms. Existing vision-only GUI agents directly ground elements from large and cluttered screenshots, requiring them to process substantial irrelevant information that compromises their accuracy. In addition, these approaches typically employ basic cross-entropy loss for learning grounding objectives, which fails to effectively capture grounding quality compared to established object detection metrics like Intersection-over-Union (IoU). To address these issues, we introduce R-VLM, a novel GUI grounding approach that leverages zoomed-in region proposals for precise element localization. We also propose an IoU-aware objective function that facilitates model convergence toward high IoU predictions. Our approach bridges the gap between VLMs and conventional object detection techniques, improving the state-of-the-art grounding accuracy by 13% across diverse GUI platforms on the GUI grounding benchmarks ScreenSpot and AgentStudio. In addition, our R-VLM approach shows 3.2-9.7% absolute accuracy improvements in GUI navigation tasks on the AITW and Mind2Web benchmarks.
Ground-R1: Incentivizing Grounded Visual Reasoning via Reinforcement Learning
Large Vision-Language Models (LVLMs) have demonstrated impressive general capabilities across a wide range of multi-modal tasks. However, the reasoning processes of LVLMs often suffer from unreliable outputs and limited interpretability. To address this, grounded visual reasoning has emerged as a promising paradigm that enforces responses anchored on salient visual evidence regions. However, existing approaches typically rely on costly supervision such as bounding box annotations, chain-of-thought rationale or external tool calls, limiting their scalability. In this work, we propose Ground-R1, a reinforcement learning framework that enables grounded visual reasoning without requiring explicit evidence or rationale annotations. Ground-R1 consists of a grounding phase that generates evidence region rollouts based on format constraints, and an answering phase that produces responses guided by both answer correctness and format adherence rewards. Extensive experiments across multiple visual reasoning benchmarks manifest that Ground-R1 achieves superior performance and exhibits emergent cognitive behaviors such as uncertainty awareness, spatial perception, and iterative refinement, offering a scalable and interpretable alternative to existing approaches.
Mapping Natural Language Commands to Web Elements
The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset.
Learning to Compose and Reason with Language Tree Structures for Visual Grounding
Grounding natural language in images, such as localizing "the black dog on the left of the tree", is one of the core problems in artificial intelligence, as it needs to comprehend the fine-grained and compositional language space. However, existing solutions rely on the association between the holistic language features and visual features, while neglect the nature of compositional reasoning implied in the language. In this paper, we propose a natural language grounding model that can automatically compose a binary tree structure for parsing the language and then perform visual reasoning along the tree in a bottom-up fashion. We call our model RVG-TREE: Recursive Grounding Tree, which is inspired by the intuition that any language expression can be recursively decomposed into two constituent parts, and the grounding confidence score can be recursively accumulated by calculating their grounding scores returned by sub-trees. RVG-TREE can be trained end-to-end by using the Straight-Through Gumbel-Softmax estimator that allows the gradients from the continuous score functions passing through the discrete tree construction. Experiments on several benchmarks show that our model achieves the state-of-the-art performance with more explainable reasoning.
SeqTR: A Simple yet Universal Network for Visual Grounding
In this paper, we propose a simple yet universal network termed SeqTR for visual grounding tasks, e.g., phrase localization, referring expression comprehension (REC) and segmentation (RES). The canonical paradigms for visual grounding often require substantial expertise in designing network architectures and loss functions, making them hard to generalize across tasks. To simplify and unify the modeling, we cast visual grounding as a point prediction problem conditioned on image and text inputs, where either the bounding box or binary mask is represented as a sequence of discrete coordinate tokens. Under this paradigm, visual grounding tasks are unified in our SeqTR network without task-specific branches or heads, e.g., the convolutional mask decoder for RES, which greatly reduces the complexity of multi-task modeling. In addition, SeqTR also shares the same optimization objective for all tasks with a simple cross-entropy loss, further reducing the complexity of deploying hand-crafted loss functions. Experiments on five benchmark datasets demonstrate that the proposed SeqTR outperforms (or is on par with) the existing state-of-the-arts, proving that a simple yet universal approach for visual grounding is indeed feasible. Source code is available at https://github.com/sean-zhuh/SeqTR.
Grounding or Guessing? Visual Signals for Detecting Hallucinations in Sign Language Translation
Hallucination, where models generate fluent text unsupported by visual evidence, remains a major flaw in vision-language models and is particularly critical in sign language translation (SLT). In SLT, meaning depends on precise grounding in video, and gloss-free models are especially vulnerable because they map continuous signer movements directly into natural language without intermediate gloss supervision that serves as alignment. We argue that hallucinations arise when models rely on language priors rather than visual input. To capture this, we propose a token-level reliability measure that quantifies how much the decoder uses visual information. Our method combines feature-based sensitivity, which measures internal changes when video is masked, with counterfactual signals, which capture probability differences between clean and altered video inputs. These signals are aggregated into a sentence-level reliability score, providing a compact and interpretable measure of visual grounding. We evaluate the proposed measure on two SLT benchmarks (PHOENIX-2014T and CSL-Daily) with both gloss-based and gloss-free models. Our results show that reliability predicts hallucination rates, generalizes across datasets and architectures, and decreases under visual degradations. Beyond these quantitative trends, we also find that reliability distinguishes grounded tokens from guessed ones, allowing risk estimation without references; when combined with text-based signals (confidence, perplexity, or entropy), it further improves hallucination risk estimation. Qualitative analysis highlights why gloss-free models are more susceptible to hallucinations. Taken together, our findings establish reliability as a practical and reusable tool for diagnosing hallucinations in SLT, and lay the groundwork for more robust hallucination detection in multimodal generation.
Coarse-Tuning Models of Code with Reinforcement Learning Feedback
Large Language Models (LLMs) pre-trained on code have recently emerged as the dominant approach to program synthesis. However, these models are trained using next-token prediction, which ignores the syntax and semantics of code. We propose RLCF, that further trains a pre-trained LLM via reinforcement learning, using feedback from a grounding function that scores the quality of the code. The grounding function uses (i) compiler-derived feedback on whether the code it generates passes a set of correctness checks; and (ii) feedback from a different LLM that compares the generated code to a reference code. RLCF is model- and language-agnostic. We empirically evaluate it on the MBJP and MathQA tasks for Java. Our experiments show that RLCF raises the odds that an LLM-generated program compiles, is executable, and produces the right output on tests, often allowing LLMs to match the performance of 2x-8x larger LLMs.
StoryReasoning Dataset: Using Chain-of-Thought for Scene Understanding and Grounded Story Generation
Visual storytelling systems struggle to maintain character identity across frames and link actions to appropriate subjects, frequently leading to referential hallucinations. These issues can be addressed through grounding of characters, objects, and other entities on the visual elements. We propose StoryReasoning, a dataset containing 4,178 stories derived from 52,016 movie images, with both structured scene analyses and grounded stories. Each story maintains character and object consistency across frames while explicitly modeling multi-frame relationships through structured tabular representations. Our approach features cross-frame object re-identification using visual similarity and face recognition, chain-of-thought reasoning for explicit narrative modeling, and a grounding scheme that links textual elements to visual entities across multiple frames. We establish baseline performance by fine-tuning Qwen2.5-VL 7B, creating Qwen Storyteller, which performs end-to-end object detection, re-identification, and landmark detection while maintaining consistent object references throughout the story. Evaluation demonstrates a reduction from 4.06 to 3.56 (-12.3%) hallucinations on average per story when compared to a non-fine-tuned model.
Error-Driven Scene Editing for 3D Grounding in Large Language Models
Despite recent progress in 3D-LLMs, they remain limited in accurately grounding language to visual and spatial elements in 3D environments. This limitation stems in part from training data that focuses on language reasoning rather than spatial understanding due to scarce 3D resources, leaving inherent grounding biases unresolved. To address this, we propose 3D scene editing as a key mechanism to generate precise visual counterfactuals that mitigate these biases through fine-grained spatial manipulation, without requiring costly scene reconstruction or large-scale 3D data collection. Furthermore, to make these edits targeted and directly address the specific weaknesses of the model, we introduce DEER-3D, an error-driven framework following a structured "Decompose, Diagnostic Evaluation, Edit, and Re-train" workflow, rather than broadly or randomly augmenting data as in conventional approaches. Specifically, upon identifying a grounding failure of the 3D-LLM, our framework first diagnoses the exact predicate-level error (e.g., attribute or spatial relation). It then executes minimal, predicate-aligned 3D scene edits, such as recoloring or repositioning, to produce targeted counterfactual supervision for iterative model fine-tuning, significantly enhancing grounding accuracy. We evaluate our editing pipeline across multiple benchmarks for 3D grounding and scene understanding tasks, consistently demonstrating improvements across all evaluated datasets through iterative refinement. DEER-3D underscores the effectiveness of targeted, error-driven scene editing in bridging linguistic reasoning capabilities with spatial grounding in 3D LLMs.
UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation. In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/ .
Localizing Moments in Long Video Via Multimodal Guidance
The recent introduction of the large-scale long-form MAD dataset for language grounding in videos has enabled researchers to investigate the performance of current state-of-the-art methods in the long-form setup, with unexpected findings. In fact, current grounding methods alone fail at tackling this challenging task and setup due to their inability to process long video sequences. In this work, we propose an effective way to circumvent the long-form burden by introducing a new component to grounding pipelines: a Guidance model. The purpose of the Guidance model is to efficiently remove irrelevant video segments from the search space of grounding methods by coarsely aligning the sentence to chunks of the movies and then applying legacy grounding methods where high correlation is found. We term these video segments as non-describable moments. This two-stage approach reveals to be effective in boosting the performance of several different grounding baselines on the challenging MAD dataset, achieving new state-of-the-art performance.
VenusBench-GD: A Comprehensive Multi-Platform GUI Benchmark for Diverse Grounding Tasks
GUI grounding is a critical component in building capable GUI agents. However, existing grounding benchmarks suffer from significant limitations: they either provide insufficient data volume and narrow domain coverage, or focus excessively on a single platform and require highly specialized domain knowledge. In this work, we present VenusBench-GD, a comprehensive, bilingual benchmark for GUI grounding that spans multiple platforms, enabling hierarchical evaluation for real-word applications. VenusBench-GD contributes as follows: (i) we introduce a large-scale, cross-platform benchmark with extensive coverage of applications, diverse UI elements, and rich annotated data, (ii) we establish a high-quality data construction pipeline for grounding tasks, achieving higher annotation accuracy than existing benchmarks, and (iii) we extend the scope of element grounding by proposing a hierarchical task taxonomy that divides grounding into basic and advanced categories, encompassing six distinct subtasks designed to evaluate models from complementary perspectives. Our experimental findings reveal critical insights: general-purpose multimodal models now match or even surpass specialized GUI models on basic grounding tasks. In contrast, advanced tasks, still favor GUI-specialized models, though they exhibit significant overfitting and poor robustness. These results underscore the necessity of comprehensive, multi-tiered evaluation frameworks.
Semantic Grounding Index: Geometric Bounds on Context Engagement in RAG Systems
When retrieval-augmented generation (RAG) systems hallucinate, what geometric trace does this leave in embedding space? We introduce the Semantic Grounding Index (SGI), defined as the ratio of angular distances from the response to the question versus the context on the unit hypersphere S^{d-1}.Our central finding is semantic laziness: hallucinated responses remain angularly proximate to questions rather than departing toward retrieved contexts. On HaluEval (n=5,000), we observe large effect sizes (Cohen's d ranging from 0.92 to 1.28) across five embedding models with mean cross-model correlation r=0.85. Crucially, we derive from the spherical triangle inequality that SGI's discriminative power should increase with question-context angular separation θ(q,c)-a theoretical prediction confirmed empirically: effect size rises monotonically from d=0.61 -low θ(q,c), to d=1.27 -high θ(q,c), with AUC improving from 0.72 to 0.83. Subgroup analysis reveals that SGI excels on long responses (d=2.05) and short questions (d=1.22), while remaining robust across context lengths. Calibration analysis yields ECE=0.10, indicating SGI scores can serve as probability estimates, not merely rankings. A critical negative result on TruthfulQA (AUC=0.478) establishes that angular geometry measures topical engagement rather than factual accuracy. SGI provides computationally efficient, theoretically grounded infrastructure for identifying responses that warrant verification in production RAG deployments.
GLaMM: Pixel Grounding Large Multimodal Model
Large Multimodal Models (LMMs) extend Large Language Models to the vision domain. Initial efforts towards LMMs used holistic images and text prompts to generate ungrounded textual responses. Very recently, region-level LMMs have been used to generate visually grounded responses. However, they are limited to only referring a single object category at a time, require users to specify the regions in inputs, or cannot offer dense pixel-wise object grounding. In this work, we present Grounding LMM (GLaMM), the first model that can generate natural language responses seamlessly intertwined with corresponding object segmentation masks. GLaMM not only grounds objects appearing in the conversations but is flexible enough to accept both textual and optional visual prompts (region of interest) as input. This empowers users to interact with the model at various levels of granularity, both in textual and visual domains. Due to the lack of standard benchmarks for the novel setting of generating visually grounded detailed conversations, we introduce a comprehensive evaluation protocol with our curated grounded conversations. Our proposed Grounded Conversation Generation (GCG) task requires densely grounded concepts in natural scenes at a large-scale. To this end, we propose a densely annotated Grounding-anything Dataset (GranD) using our proposed automated annotation pipeline that encompasses 7.5M unique concepts grounded in a total of 810M regions available with segmentation masks. Besides GCG, GLaMM also performs effectively on several downstream tasks e.g., referring expression segmentation, image and region-level captioning and vision-language conversations. Project Page: https://mbzuai-oryx.github.io/groundingLMM.
Response: Emergent analogical reasoning in large language models
In their recent Nature Human Behaviour paper, "Emergent analogical reasoning in large language models," (Webb, Holyoak, and Lu, 2023) the authors argue that "large language models such as GPT-3 have acquired an emergent ability to find zero-shot solutions to a broad range of analogy problems." In this response, we provide counterexamples of the letter string analogies. In our tests, GPT-3 fails to solve even the easiest variants of the problems presented in the original paper. Zero-shot reasoning is an extraordinary claim that requires extraordinary evidence. We do not see that evidence in our experiments. To strengthen claims of humanlike reasoning such as zero-shot reasoning, it is important that the field develop approaches that rule out data memorization.
GroundingBooth: Grounding Text-to-Image Customization
Recent studies in text-to-image customization show great success in generating personalized object variants given several images of a subject. While existing methods focus more on preserving the identity of the subject, they often fall short of controlling the spatial relationship between objects. In this work, we introduce GroundingBooth, a framework that achieves zero-shot instance-level spatial grounding on both foreground subjects and background objects in the text-to-image customization task. Our proposed text-image grounding module and masked cross-attention layer allow us to generate personalized images with both accurate layout alignment and identity preservation while maintaining text-image coherence. With such layout control, our model inherently enables the customization of multiple subjects at once. Our model is evaluated on both layout-guided image synthesis and reference-based customization tasks, showing strong results compared to existing methods. Our work is the first work to achieve a joint grounding on both subject-driven foreground generation and text-driven background generation.
How do Language Models Bind Entities in Context?
To correctly use in-context information, language models (LMs) must bind entities to their attributes. For example, given a context describing a "green square" and a "blue circle", LMs must bind the shapes to their respective colors. We analyze LM representations and identify the binding ID mechanism: a general mechanism for solving the binding problem, which we observe in every sufficiently large model from the Pythia and LLaMA families. Using causal interventions, we show that LMs' internal activations represent binding information by attaching binding ID vectors to corresponding entities and attributes. We further show that binding ID vectors form a continuous subspace, in which distances between binding ID vectors reflect their discernability. Overall, our results uncover interpretable strategies in LMs for representing symbolic knowledge in-context, providing a step towards understanding general in-context reasoning in large-scale LMs.
UI-Ins: Enhancing GUI Grounding with Multi-Perspective Instruction-as-Reasoning
GUI grounding, which maps natural-language instructions to actionable UI elements, is a core capability of GUI agents. Prior works largely treats instructions as a static proxy for user intent, overlooking the impact of instruction diversity and quality on grounding performance. Through a careful investigation of existing grounding datasets, we find a 23.3% flaw rate in their instructions and show that inference-time exploitation of instruction diversity yields up to a substantial 76% relative performance improvement. In this paper, we introduce the Instruction-as-Reasoning paradigm, treating instructions as dynamic analytical pathways that offer distinct perspectives and enabling the model to select the most effective pathway during reasoning. To achieve this, we propose a two-stage training framework: supervised fine-tuning (SFT) on synthesized, diverse instructions to instill multi-perspective reasoning, followed by reinforcement learning (RL) to optimize pathway selection and composition. Our resulting models, UI-Ins-7B and UI-Ins-32B, achieve state-of-the-art results on five challenging grounding benchmarks and exhibit emergent reasoning, selectively composing and synthesizing novel instruction pathways at inference. In particular, UI-Ins-32B attains the best grounding accuracy, scoring 87.3% on UI-I2E-Bench, 57.0% on ScreenSpot-Pro, and 84.9% on MMBench-GUI L2. Furthermore, our model demonstrates strong agentic potential, achieving a 74.1% success rate on AndroidWorld using UI-Ins-7B as the executor. Our in-depth analysis reveals additional insights such as how reasoning can be formulated to enhance rather than hinder grounding performance, and how our method mitigates policy collapse in the SFT+RL framework. All code and model checkpoints will be publicly released in https://github.com/alibaba/UI-Ins.
PixFoundation: Are We Heading in the Right Direction with Pixel-level Vision Foundation Models?
Multiple works have emerged to push the boundaries on multi-modal large language models (MLLMs) towards pixel-level understanding. Such approaches have shown strong performance on benchmarks for referring expression segmentation and grounded conversation generation. The current trend in pixel-level MLLMs is to train with pixel-level grounding supervision on large-scale labelled data. However, we show that such MLLMs when evaluated on recent challenging vision centric benchmarks, exhibit a weak ability in visual question answering. Surprisingly, some of these methods even downgrade the grounding ability of MLLMs that were never trained with such supervision. In this work, we propose two novel challenging benchmarks and show that MLLMs without pixel-level grounding supervision can outperform the state of the art in such tasks when evaluating both the pixel-level grounding and visual question answering. We propose simple baselines to extract the grounding information that can be plugged into any MLLM, which we call as PixFoundation. More importantly, we study the research question of "When does grounding emerge in MLLMs that are not trained with pixel-level grounding supervision?" We show that grounding can coincide with object parts or location/appearance information. Code repository is at https://github.com/MSiam/PixFoundation/.
Leveraging Print Debugging to Improve Code Generation in Large Language Models
Large language models (LLMs) have made significant progress in code generation tasks, but their performance in tackling programming problems with complex data structures and algorithms remains suboptimal. To address this issue, we propose an in-context learning approach that guides LLMs to debug by using a "print debugging" method, which involves inserting print statements to trace and analysing logs for fixing the bug. We collect a Leetcode problem dataset and evaluate our method using the Leetcode online judging system. Experiments with GPT-4 demonstrate the effectiveness of our approach, outperforming rubber duck debugging in easy and medium-level Leetcode problems by 1.5% and 17.9%.
Task-oriented Sequential Grounding in 3D Scenes
Grounding natural language in physical 3D environments is essential for the advancement of embodied artificial intelligence. Current datasets and models for 3D visual grounding predominantly focus on identifying and localizing objects from static, object-centric descriptions. These approaches do not adequately address the dynamic and sequential nature of task-oriented grounding necessary for practical applications. In this work, we propose a new task: Task-oriented Sequential Grounding in 3D scenes, wherein an agent must follow detailed step-by-step instructions to complete daily activities by locating a sequence of target objects in indoor scenes. To facilitate this task, we introduce SG3D, a large-scale dataset containing 22,346 tasks with 112,236 steps across 4,895 real-world 3D scenes. The dataset is constructed using a combination of RGB-D scans from various 3D scene datasets and an automated task generation pipeline, followed by human verification for quality assurance. We adapted three state-of-the-art 3D visual grounding models to the sequential grounding task and evaluated their performance on SG3D. Our results reveal that while these models perform well on traditional benchmarks, they face significant challenges with task-oriented sequential grounding, underscoring the need for further research in this area.
DeepPerception: Advancing R1-like Cognitive Visual Perception in MLLMs for Knowledge-Intensive Visual Grounding
Human experts excel at fine-grained visual discrimination by leveraging domain knowledge to refine perceptual features, a capability that remains underdeveloped in current Multimodal Large Language Models (MLLMs). Despite possessing vast expert-level knowledge, MLLMs struggle to integrate reasoning into visual perception, often generating direct responses without deeper analysis. To bridge this gap, we introduce knowledge-intensive visual grounding (KVG), a novel visual grounding task that requires both fine-grained perception and domain-specific knowledge integration. To address the challenges of KVG, we propose DeepPerception, an MLLM enhanced with cognitive visual perception capabilities. Our approach consists of (1) an automated data synthesis pipeline that generates high-quality, knowledge-aligned training samples, and (2) a two-stage training framework combining supervised fine-tuning for cognitive reasoning scaffolding and reinforcement learning to optimize perception-cognition synergy. To benchmark performance, we introduce KVG-Bench a comprehensive dataset spanning 10 domains with 1.3K manually curated test cases. Experimental results demonstrate that DeepPerception significantly outperforms direct fine-tuning, achieving +8.08\% accuracy improvements on KVG-Bench and exhibiting +4.60\% superior cross-domain generalization over baseline approaches. Our findings highlight the importance of integrating cognitive processes into MLLMs for human-like visual perception and open new directions for multimodal reasoning research. The data, codes, and models are released at https://github.com/thunlp/DeepPerception.
R2G: Reasoning to Ground in 3D Scenes
We propose Reasoning to Ground (R2G), a neural symbolic model that grounds the target objects within 3D scenes in a reasoning manner. In contrast to prior works, R2G explicitly models the 3D scene with a semantic concept-based scene graph; recurrently simulates the attention transferring across object entities; thus makes the process of grounding the target objects with the highest probability interpretable. Specifically, we respectively embed multiple object properties within the graph nodes and spatial relations among entities within the edges, utilizing a predefined semantic vocabulary. To guide attention transferring, we employ learning or prompting-based methods to analyze the referential utterance and convert it into reasoning instructions within the same semantic space. In each reasoning round, R2G either (1) merges current attention distribution with the similarity between the instruction and embedded entity properties or (2) shifts the attention across the scene graph based on the similarity between the instruction and embedded spatial relations. The experiments on Sr3D/Nr3D benchmarks show that R2G achieves a comparable result with the prior works while maintaining improved interpretability, breaking a new path for 3D language grounding.
Learning to Generate Grounded Visual Captions without Localization Supervision
When automatically generating a sentence description for an image or video, it often remains unclear how well the generated caption is grounded, that is whether the model uses the correct image regions to output particular words, or if the model is hallucinating based on priors in the dataset and/or the language model. The most common way of relating image regions with words in caption models is through an attention mechanism over the regions that are used as input to predict the next word. The model must therefore learn to predict the attentional weights without knowing the word it should localize. This is difficult to train without grounding supervision since recurrent models can propagate past information and there is no explicit signal to force the captioning model to properly ground the individual decoded words. In this work, we help the model to achieve this via a novel cyclical training regimen that forces the model to localize each word in the image after the sentence decoder generates it, and then reconstruct the sentence from the localized image region(s) to match the ground-truth. Our proposed framework only requires learning one extra fully-connected layer (the localizer), a layer that can be removed at test time. We show that our model significantly improves grounding accuracy without relying on grounding supervision or introducing extra computation during inference, for both image and video captioning tasks. Code is available at https://github.com/chihyaoma/cyclical-visual-captioning .
Attention-driven GUI Grounding: Leveraging Pretrained Multimodal Large Language Models without Fine-Tuning
Recent advancements in Multimodal Large Language Models (MLLMs) have generated significant interest in their ability to autonomously interact with and interpret Graphical User Interfaces (GUIs). A major challenge in these systems is grounding-accurately identifying critical GUI components such as text or icons based on a GUI image and a corresponding text query. Traditionally, this task has relied on fine-tuning MLLMs with specialized training data to predict component locations directly. However, in this paper, we propose a novel Tuning-free Attention-driven Grounding (TAG) method that leverages the inherent attention patterns in pretrained MLLMs to accomplish this task without the need for additional fine-tuning. Our method involves identifying and aggregating attention maps from specific tokens within a carefully constructed query prompt. Applied to MiniCPM-Llama3-V 2.5, a state-of-the-art MLLM, our tuning-free approach achieves performance comparable to tuning-based methods, with notable success in text localization. Additionally, we demonstrate that our attention map-based grounding technique significantly outperforms direct localization predictions from MiniCPM-Llama3-V 2.5, highlighting the potential of using attention maps from pretrained MLLMs and paving the way for future innovations in this domain.
MATHGLANCE: Multimodal Large Language Models Do Not Know Where to Look in Mathematical Diagrams
Diagrams serve as a fundamental form of visual language, representing complex concepts and their inter-relationships through structured symbols, shapes, and spatial arrangements. Unlike natural images, their inherently symbolic and abstract nature poses significant challenges for Multimodal Large Language Models (MLLMs). However, current benchmarks conflate perceptual and reasoning tasks, making it difficult to assess whether MLLMs genuinely understand mathematical diagrams beyond superficial pattern recognition. To address this gap, we introduce MATHGLANCE, a benchmark specifically designed to isolate and evaluate mathematical perception in MLLMs. MATHGLANCE comprises 1.2K images and 1.6K carefully curated questions spanning four perception tasks: shape classification, object counting, relationship identification, and object grounding, covering diverse domains including plane geometry, solid geometry, and graphical representations. Our evaluation of MLLMs reveals that their ability to understand diagrams is notably limited, particularly in fine-grained grounding tasks. In response, we construct GeoPeP, a perception-oriented dataset of 200K structured geometry image-text pairs explicitly annotated with geometric primitives and precise spatial relationships. Training MLLM on GeoPeP leads to significant gains in perceptual accuracy, which in turn substantially improves mathematical reasoning. Our benchmark and dataset establish critical standards for evaluating and advancing multimodal mathematical understanding, providing valuable resources and insights to foster future MLLM research.
AI Mother Tongue: Self-Emergent Communication in MARL via Endogenous Symbol Systems
In Decentralized Multi-Agent Reinforcement Learning (MARL), the development of Emergent Communication has long been constrained by the ``Joint Exploration Dilemma'', leading agents to fall into a ``Communication Vacuum Equilibrium'' . Traditional methods address this by introducing inductive biases to facilitate communication emergence . This study fundamentally questions whether such artificial inductive biases are, in fact, over-engineering. Through experiments with the ``AI Mother Tongue'' (AIM) framework, based on a Vector Quantized Variational Autoencoder (VQ-VAE), we demonstrate that when agents possess an endogenous symbol system, their neural representations naturally exhibit spontaneous semantic compression and Nash equilibrium-driven semantic convergence, achieving effective symbolic communication without external inductive biases. This aligns with recent neuroscience findings suggesting that the human brain does not directly use human language for internal thought , and resonates with research on ``soft thinking'' capabilities in Large Language Models (LLMs) . Compared to traditional explicit communication methods, AIM demonstrates stronger generality and efficiency. The interpretable analysis toolkit developed in this study confirms that symbol usage exhibits a significant power-law distribution, leading to three major theoretical insights: the ``Neural Communication Hypothesis'', the ``Tool-First Principle'', and the ``Semantic Interpretability Paradigm''. Future research will explore the integration of Hierarchical Quantized Variational Autoencoders (HQ-VAE) to enhance AIM's complex expressive capabilities and investigate the potential for ``Reinforcement Learning (RL) Low-Level Pre-training''. This discovery offers new avenues for bridging symbolism and connectionism.
SwimVG: Step-wise Multimodal Fusion and Adaption for Visual Grounding
Visual grounding aims to ground an image region through natural language, which heavily relies on cross-modal alignment. Most existing methods transfer visual/linguistic knowledge separately by fully fine-tuning uni-modal pre-trained models, followed by a simple stack of visual-language transformers for multimodal fusion. However, these approaches not only limit adequate interaction between visual and linguistic contexts, but also incur significant computational costs. Therefore, to address these issues, we explore a step-wise multimodal fusion and adaption framework, namely SwimVG. Specifically, SwimVG proposes step-wise multimodal prompts (Swip) and cross-modal interactive adapters (CIA) for visual grounding, replacing the cumbersome transformer stacks for multimodal fusion. Swip can improve {the} alignment between the vision and language representations step by step, in a token-level fusion manner. In addition, weight-level CIA further promotes multimodal fusion by cross-modal interaction. Swip and CIA are both parameter-efficient paradigms, and they fuse the cross-modal features from shallow to deep layers gradually. Experimental results on four widely-used benchmarks demonstrate that SwimVG achieves remarkable abilities and considerable benefits in terms of efficiency. Our code is available at https://github.com/liuting20/SwimVG.
GLIGEN: Open-Set Grounded Text-to-Image Generation
Large-scale text-to-image diffusion models have made amazing advances. However, the status quo is to use text input alone, which can impede controllability. In this work, we propose GLIGEN, Grounded-Language-to-Image Generation, a novel approach that builds upon and extends the functionality of existing pre-trained text-to-image diffusion models by enabling them to also be conditioned on grounding inputs. To preserve the vast concept knowledge of the pre-trained model, we freeze all of its weights and inject the grounding information into new trainable layers via a gated mechanism. Our model achieves open-world grounded text2img generation with caption and bounding box condition inputs, and the grounding ability generalizes well to novel spatial configurations and concepts. GLIGEN's zero-shot performance on COCO and LVIS outperforms that of existing supervised layout-to-image baselines by a large margin.
Improving the Reasoning of Multi-Image Grounding in MLLMs via Reinforcement Learning
Recently, Multimodal Large Language Models (MLLMs) excel at visual grounding in single-image scenarios with textual references. However, their performance degrades when handling real-world applications that involve complex multi-image compositions and multi-modal instructions, revealing limitations in cross-image reasoning and generalization. To address these challenges, we adopt a Reinforcement Learning (RL) based post-training strategy to improve the reasoning of MLLMs in multi-image grounding tasks. Our approach begins with synthesizing high-quality chain-of-thought (CoT) data for cold-start initialization, followed by supervised fine-tuning (SFT) using low-rank adaptation (LoRA). The cold-start training stage enables the model to identify correct solutions. Subsequently, we perform rejection sampling using the merged SFT model to curate high-quality RL data and leverage rule-based RL to guide the model toward optimal reasoning paths. Extensive experimental results demonstrate the effectiveness of our approach, yielding improvements of +9.04% on MIG-Bench, +6.37% on MC-Bench, and +4.98% on several out-of-domain reasoning grounding benchmarks compared to the SFT baseline. Furthermore, our method exhibits strong generalization in multi-image perception, with gains of +3.1% and +2.4% over the base model on BLINK and MMIU benchmarks, respectively.
Instructing Large Language Models to Identify and Ignore Irrelevant Conditions
Math word problem (MWP) solving requires generating a reasoning path based on a given problem description that often contains irrelevant conditions. Existing chain-of-thought (CoT) prompting methods elicited multi-step reasoning abilities of large language models (LLMs) to solve MWPs. However, they were seriously confused by the irrelevant conditions, resulting in low accuracy. In this paper, we propose a novel approach named I^3C that instructs LLMs to identify and ignore irrelevant conditions. It identifies a set of irrelevant condition candidates that have a weak semantic relevance with the question. Then it prompts LLMs to verify the irrelevant conditions. Lastly it instructs the LLMs with the verification on relevant and irrelevant conditions to avoid confusion and improve reasoning paths. Moreover, we propose to select (problem, reasoning paths) pairs as demonstrations to enhance I^3C with few-shot reasoning. We develop I^3C-Select that selects the most confusing problems based on the semantic relevance measurement. We conduct extensive experiments on eight MWP datasets. I^3C can be combined with any CoT prompting methods to improve the performance of solving MWPs. Notably, with GPT-3.5-Turbo and I^3C-Select, we achieve an accuracy of 96.0 and 94.1 on GSM-IC2-1K and GSM-ICM-1K, respectively, significantly outperforming the state-of-the-art few-shot prompting method Complex-CoT by +11.7 and +11.1. Our implementation is made publicly available at https://wzy6642.github.io/I3C.github.io/.
Stochastic LLMs do not Understand Language: Towards Symbolic, Explainable and Ontologically Based LLMs
In our opinion the exuberance surrounding the relative success of data-driven large language models (LLMs) is slightly misguided and for several reasons (i) LLMs cannot be relied upon for factual information since for LLMs all ingested text (factual or non-factual) was created equal; (ii) due to their subsymbolic na-ture, whatever 'knowledge' these models acquire about language will always be buried in billions of microfeatures (weights), none of which is meaningful on its own; and (iii) LLMs will often fail to make the correct inferences in several linguistic contexts (e.g., nominal compounds, copredication, quantifier scope ambi-guities, intensional contexts. Since we believe the relative success of data-driven large language models (LLMs) is not a reflection on the symbolic vs. subsymbol-ic debate but a reflection on applying the successful strategy of a bottom-up reverse engineering of language at scale, we suggest in this paper applying the effective bottom-up strategy in a symbolic setting resulting in symbolic, explainable, and ontologically grounded language models.
Unified Representation Space for 3D Visual Grounding
3D visual grounding (3DVG) is a critical task in scene understanding that aims to identify objects in 3D scenes based on text descriptions. However, existing methods rely on separately pre-trained vision and text encoders, resulting in a significant gap between the two modalities in terms of spatial geometry and semantic categories. This discrepancy often causes errors in object positioning and classification. The paper proposes UniSpace-3D, which innovatively introduces a unified representation space for 3DVG, effectively bridging the gap between visual and textual features. Specifically, UniSpace-3D incorporates three innovative designs: i) a unified representation encoder that leverages the pre-trained CLIP model to map visual and textual features into a unified representation space, effectively bridging the gap between the two modalities; ii) a multi-modal contrastive learning module that further reduces the modality gap; iii) a language-guided query selection module that utilizes the positional and semantic information to identify object candidate points aligned with textual descriptions. Extensive experiments demonstrate that UniSpace-3D outperforms baseline models by at least 2.24% on the ScanRefer and Nr3D/Sr3D datasets. The code will be made available upon acceptance of the paper.
Connecting the Dots: Training-Free Visual Grounding via Agentic Reasoning
Visual grounding, the task of linking textual queries to specific regions within images, plays a pivotal role in vision-language integration. Existing methods typically rely on extensive task-specific annotations and fine-tuning, limiting their ability to generalize effectively to novel or out-of-distribution scenarios. To address these limitations, we introduce GroundingAgent, a novel agentic visual grounding framework that operates without any task-specific fine-tuning. GroundingAgent employs a structured, iterative reasoning mechanism that integrates pretrained open-vocabulary object detectors, multimodal large language models (MLLMs), and large language models (LLMs) to progressively refine candidate regions through joint semantic and spatial analyses. Remarkably, GroundingAgent achieves an average zero-shot grounding accuracy of 65.1 % on widely-used benchmarks (RefCOCO, RefCOCO+, RefCOCOg), entirely without fine-tuning. Furthermore, by substituting MLLM-generated captions with the original query texts, the accuracy at the selection stage alone reaches approximately 90 %, closely matching supervised performance and underscoring the critical role of LLM reasoning capabilities. GroundingAgent also offers strong interpretability, transparently illustrating each reasoning step and providing clear insights into its decision-making process.
Draw Me a Flower: Processing and Grounding Abstraction in Natural Language
Abstraction is a core tenet of human cognition and communication. When composing natural language instructions, humans naturally evoke abstraction to convey complex procedures in an efficient and concise way. Yet, interpreting and grounding abstraction expressed in NL has not yet been systematically studied in NLP, with no accepted benchmarks specifically eliciting abstraction in NL. In this work, we set the foundation for a systematic study of processing and grounding abstraction in NLP. First, we deliver a novel abstraction elicitation method and present Hexagons, a 2D instruction-following game. Using Hexagons we collected over 4k naturally-occurring visually-grounded instructions rich with diverse types of abstractions. From these data, we derive an instruction-to-execution task and assess different types of neural models. Our results show that contemporary models and modeling practices are substantially inferior to human performance, and that models' performance is inversely correlated with the level of abstraction, showing less satisfying performance on higher levels of abstraction. These findings are consistent across models and setups, confirming that abstraction is a challenging phenomenon deserving further attention and study in NLP/AI research.
Hallucination is Inevitable: An Innate Limitation of Large Language Models
Hallucination has been widely recognized to be a significant drawback for large language models (LLMs). There have been many works that attempt to reduce the extent of hallucination. These efforts have mostly been empirical so far, which cannot answer the fundamental question whether it can be completely eliminated. In this paper, we formalize the problem and show that it is impossible to eliminate hallucination in LLMs. Specifically, we define a formal world where hallucination is defined as inconsistencies between a computable LLM and a computable ground truth function. By employing results from learning theory, we show that LLMs cannot learn all of the computable functions and will therefore always hallucinate. Since the formal world is a part of the real world which is much more complicated, hallucinations are also inevitable for real world LLMs. Furthermore, for real world LLMs constrained by provable time complexity, we describe the hallucination-prone tasks and empirically validate our claims. Finally, using the formal world framework, we discuss the possible mechanisms and efficacies of existing hallucination mitigators as well as the practical implications on the safe deployment of LLMs.
Emergent Visual Grounding in Large Multimodal Models Without Grounding Supervision
Current large multimodal models (LMMs) face challenges in grounding, which requires the model to relate language components to visual entities. Contrary to the common practice that fine-tunes LMMs with additional grounding supervision, we find that the grounding ability can in fact emerge in LMMs trained without explicit grounding supervision. To reveal this emerging grounding, we introduce an "attend-and-segment" method which leverages attention maps from standard LMMs to perform pixel-level segmentation. Furthermore, to enhance the grounding ability, we propose DIFFLMM, an LMM utilizing a diffusion-based visual encoder, as opposed to the standard CLIP visual encoder, and trained with the same weak supervision. Without being constrained by the biases and limited scale of grounding-specific supervision data, our approach is more generalizable and scalable. We achieve competitive performance on both grounding-specific and general visual question answering benchmarks, compared with grounding LMMs and generalist LMMs, respectively. Notably, we achieve a 44.2 grounding mask recall on grounded conversation generation without any grounding supervision, outperforming the extensively supervised model GLaMM. Project page: https://GroundLMM-ICCV.github.io.
Transformer-based Spatial Grounding: A Comprehensive Survey
Spatial grounding, the process of associating natural language expressions with corresponding image regions, has rapidly advanced due to the introduction of transformer-based models, significantly enhancing multimodal representation and cross-modal alignment. Despite this progress, the field lacks a comprehensive synthesis of current methodologies, dataset usage, evaluation metrics, and industrial applicability. This paper presents a systematic literature review of transformer-based spatial grounding approaches from 2018 to 2025. Our analysis identifies dominant model architectures, prevalent datasets, and widely adopted evaluation metrics, alongside highlighting key methodological trends and best practices. This study provides essential insights and structured guidance for researchers and practitioners, facilitating the development of robust, reliable, and industry-ready transformer-based spatial grounding models.
Grounded Chain-of-Thought for Multimodal Large Language Models
Despite great progress, existing multimodal large language models (MLLMs) are prone to visual hallucination, greatly impeding their trustworthy applications. In this paper, we study this problem from the perspective of visual-spatial reasoning, and propose a new learning task for MLLMs, termed Grounded Chain-of-Thought (GCoT). Different from recent visual CoT studies, which focus more on visual knowledge reasoning, GCoT is keen to helping MLLMs to recognize and ground the relevant visual cues step by step, thereby predicting the correct answer with grounding coordinates as the intuitive basis. To facilitate this task, we also carefully design and construct a dataset called multimodal grounded chain-of-thought (MM-GCoT) consisting of 24,022 GCoT examples for 5,033 images. Besides, a comprehensive consistency evaluation system is also introduced, including the metrics of answer accuracy, grounding accuracy and answer-grounding consistency. We further design and conduct a bunch of experiments on 12 advanced MLLMs, and reveal some notable findings: i. most MLLMs performs poorly on the consistency evaluation, indicating obvious visual hallucination; ii. visual hallucination is not directly related to the parameter size and general multimodal performance, i.e., a larger and stronger MLLM is not less affected by this issue. Lastly, we also demonstrate that the proposed dataset can help existing MLLMs to well cultivate their GCoT capability and reduce the inconsistent answering significantly. Moreover, their GCoT can be also generalized to exiting multimodal tasks, such as open-world QA and REC.
World-to-Words: Grounded Open Vocabulary Acquisition through Fast Mapping in Vision-Language Models
The ability to connect language units to their referents in the physical world, referred to as grounding, is crucial to learning and understanding grounded meanings of words. While humans demonstrate fast mapping in new word learning, it remains unclear whether modern vision-language models can truly represent language with their grounded meanings and how grounding may further bootstrap new word learning. To this end, we introduce Grounded Open Vocabulary Acquisition (GOVA) to examine grounding and bootstrapping in open-world language learning. As an initial attempt, we propose object-oriented BERT (OctoBERT), a novel visually-grounded language model by pre-training on image-text pairs highlighting grounding as an objective. Through extensive experiments and analysis, we demonstrate that OctoBERT is a more coherent and fast grounded word learner, and that the grounding ability acquired during pre-training helps the model to learn unseen words more rapidly and robustly. Our code is available at https://github.com/sled-group/world-to-words
Pre-Training Multimodal Hallucination Detectors with Corrupted Grounding Data
Multimodal language models can exhibit hallucinations in their outputs, which limits their reliability. The ability to automatically detect these errors is important for mitigating them, but has been less explored and existing efforts do not localize hallucinations, instead framing this as a classification task. In this work, we first pose multimodal hallucination detection as a sequence labeling task where models must localize hallucinated text spans and present a strong baseline model. Given the high cost of human annotations for this task, we propose an approach to improve the sample efficiency of these models by creating corrupted grounding data, which we use for pre-training. Leveraging phrase grounding data, we generate hallucinations to replace grounded spans and create hallucinated text. Experiments show that pre-training on this data improves sample efficiency when fine-tuning, and that the learning signal from the grounding data plays an important role in these improvements.
Grounding of Textual Phrases in Images by Reconstruction
Grounding (i.e. localizing) arbitrary, free-form textual phrases in visual content is a challenging problem with many applications for human-computer interaction and image-text reference resolution. Few datasets provide the ground truth spatial localization of phrases, thus it is desirable to learn from data with no or little grounding supervision. We propose a novel approach which learns grounding by reconstructing a given phrase using an attention mechanism, which can be either latent or optimized directly. During training our approach encodes the phrase using a recurrent network language model and then learns to attend to the relevant image region in order to reconstruct the input phrase. At test time, the correct attention, i.e., the grounding, is evaluated. If grounding supervision is available it can be directly applied via a loss over the attention mechanism. We demonstrate the effectiveness of our approach on the Flickr 30k Entities and ReferItGame datasets with different levels of supervision, ranging from no supervision over partial supervision to full supervision. Our supervised variant improves by a large margin over the state-of-the-art on both datasets.
Symbolic Graphics Programming with Large Language Models
Large language models (LLMs) excel at program synthesis, yet their ability to produce symbolic graphics programs (SGPs) that render into precise visual content remains underexplored. We study symbolic graphics programming, where the goal is to generate an SGP from a natural-language description. This task also serves as a lens into how LLMs understand the visual world by prompting them to generate images rendered from SGPs. Among various SGPs, our paper sticks to scalable vector graphics (SVGs). We begin by examining the extent to which LLMs can generate SGPs. To this end, we introduce SGP-GenBench, a comprehensive benchmark covering object fidelity, scene fidelity, and compositionality (attribute binding, spatial relations, numeracy). On SGP-GenBench, we discover that frontier proprietary models substantially outperform open-source models, and performance correlates well with general coding capabilities. Motivated by this gap, we aim to improve LLMs' ability to generate SGPs. We propose a reinforcement learning (RL) with verifiable rewards approach, where a format-validity gate ensures renderable SVG, and a cross-modal reward aligns text and the rendered image via strong vision encoders (e.g., SigLIP for text-image and DINO for image-image). Applied to Qwen-2.5-7B, our method substantially improves SVG generation quality and semantics, achieving performance on par with frontier systems. We further analyze training dynamics, showing that RL induces (i) finer decomposition of objects into controllable primitives and (ii) contextual details that improve scene coherence. Our results demonstrate that symbolic graphics programming offers a precise and interpretable lens on cross-modal grounding.
Several questions of visual generation in 2024
This paper does not propose any new algorithms but instead outlines various problems in the field of visual generation based on the author's personal understanding. The core of these problems lies in how to decompose visual signals, with all other issues being closely related to this central problem and stemming from unsuitable approaches to signal decomposition. This paper aims to draw researchers' attention to the significance of Visual Signal Decomposition.
ScreenSpot-Pro: GUI Grounding for Professional High-Resolution Computer Use
Recent advancements in Multi-modal Large Language Models (MLLMs) have led to significant progress in developing GUI agents for general tasks such as web browsing and mobile phone use. However, their application in professional domains remains under-explored. These specialized workflows introduce unique challenges for GUI perception models, including high-resolution displays, smaller target sizes, and complex environments. In this paper, we introduce ScreenSpot-Pro, a new benchmark designed to rigorously evaluate the grounding capabilities of MLLMs in high-resolution professional settings. The benchmark comprises authentic high-resolution images from a variety of professional domains with expert annotations. It spans 23 applications across five industries and three operating systems. Existing GUI grounding models perform poorly on this dataset, with the best model achieving only 18.9%. Our experiments reveal that strategically reducing the search area enhances accuracy. Based on this insight, we propose ScreenSeekeR, a visual search method that utilizes the GUI knowledge of a strong planner to guide a cascaded search, achieving state-of-the-art performance with 48.1% without any additional training. We hope that our benchmark and findings will advance the development of GUI agents for professional applications. Code, data and leaderboard can be found at https://gui-agent.github.io/grounding-leaderboard.
MAIRA-2: Grounded Radiology Report Generation
Radiology reporting is a complex task that requires detailed image understanding, integration of multiple inputs, including comparison with prior imaging, and precise language generation. This makes it ideal for the development and use of generative multimodal models. Here, we extend report generation to include the localisation of individual findings on the image - a task we call grounded report generation. Prior work indicates that grounding is important for clarifying image understanding and interpreting AI-generated text. Therefore, grounded reporting stands to improve the utility and transparency of automated report drafting. To enable evaluation of grounded reporting, we propose a novel evaluation framework - RadFact - leveraging the reasoning capabilities of large language models (LLMs). RadFact assesses the factuality of individual generated sentences, as well as correctness of generated spatial localisations when present. We introduce MAIRA-2, a large multimodal model combining a radiology-specific image encoder with a LLM, and trained for the new task of grounded report generation on chest X-rays. MAIRA-2 uses more comprehensive inputs than explored previously: the current frontal image, the current lateral image, the prior frontal image and prior report, as well as the Indication, Technique and Comparison sections of the current report. We demonstrate that these additions significantly improve report quality and reduce hallucinations, establishing a new state of the art on findings generation (without grounding) on MIMIC-CXR while demonstrating the feasibility of grounded reporting as a novel and richer task.
GROOViST: A Metric for Grounding Objects in Visual Storytelling
A proper evaluation of stories generated for a sequence of images -- the task commonly referred to as visual storytelling -- must consider multiple aspects, such as coherence, grammatical correctness, and visual grounding. In this work, we focus on evaluating the degree of grounding, that is, the extent to which a story is about the entities shown in the images. We analyze current metrics, both designed for this purpose and for general vision-text alignment. Given their observed shortcomings, we propose a novel evaluation tool, GROOViST, that accounts for cross-modal dependencies, temporal misalignments (the fact that the order in which entities appear in the story and the image sequence may not match), and human intuitions on visual grounding. An additional advantage of GROOViST is its modular design, where the contribution of each component can be assessed and interpreted individually.
SymDPO: Boosting In-Context Learning of Large Multimodal Models with Symbol Demonstration Direct Preference Optimization
As language models continue to scale, Large Language Models (LLMs) have exhibited emerging capabilities in In-Context Learning (ICL), enabling them to solve language tasks by prefixing a few in-context demonstrations (ICDs) as context. Inspired by these advancements, researchers have extended these techniques to develop Large Multimodal Models (LMMs) with ICL capabilities. However, existing LMMs face a critical issue: they often fail to effectively leverage the visual context in multimodal demonstrations and instead simply follow textual patterns. This indicates that LMMs do not achieve effective alignment between multimodal demonstrations and model outputs. To address this problem, we propose Symbol Demonstration Direct Preference Optimization (SymDPO). Specifically, SymDPO aims to break the traditional paradigm of constructing multimodal demonstrations by using random symbols to replace text answers within instances. This forces the model to carefully understand the demonstration images and establish a relationship between the images and the symbols to answer questions correctly. We validate the effectiveness of this method on multiple benchmarks, demonstrating that with SymDPO, LMMs can more effectively understand the multimodal context within examples and utilize this knowledge to answer questions better.
MC-Bench: A Benchmark for Multi-Context Visual Grounding in the Era of MLLMs
While multimodal large language models (MLLMs) have demonstrated extraordinary vision-language understanding capabilities and shown potential to serve as general-purpose assistants, their abilities to solve instance-level visual-language problems beyond a single image warrant further exploration. In order to assess these unproven abilities of MLLMs, this paper proposes a new visual grounding task called multi-context visual grounding, which aims to localize instances of interest across multiple images based on open-ended text prompts. To facilitate this research, we meticulously construct a new dataset MC-Bench for benchmarking the visual grounding capabilities of MLLMs. MC-Bench features 2K high-quality and manually annotated samples, consisting of instance-level labeled image pairs and corresponding text prompts that indicate the target instances in the images. In total, there are three distinct styles of text prompts, covering 20 practical skills. We benchmark over 20 state-of-the-art MLLMs and foundation models with potential multi-context visual grounding capabilities. Our evaluation reveals a non-trivial performance gap between existing MLLMs and humans across all metrics. We also observe that existing MLLMs typically outperform foundation models without LLMs only on image-level metrics, and the specialist MLLMs trained on single images often struggle to generalize to multi-image scenarios. Moreover, a simple stepwise baseline integrating advanced MLLM and a detector can significantly surpass prior end-to-end MLLMs. We hope our MC-Bench and empirical findings can encourage the research community to further explore and enhance the untapped potentials of MLLMs in instance-level tasks, particularly in multi-image contexts. Project page: https://xuyunqiu.github.io/MC-Bench/.
GRILL: Grounded Vision-language Pre-training via Aligning Text and Image Regions
Generalization to unseen tasks is an important ability for few-shot learners to achieve better zero-/few-shot performance on diverse tasks. However, such generalization to vision-language tasks including grounding and generation tasks has been under-explored; existing few-shot VL models struggle to handle tasks that involve object grounding and multiple images such as visual commonsense reasoning or NLVR2. In this paper, we introduce GRILL, GRounded vIsion Language aLigning, a novel VL model that can be generalized to diverse tasks including visual question answering, captioning, and grounding tasks with no or very few training instances. Specifically, GRILL learns object grounding and localization by exploiting object-text alignments, which enables it to transfer to grounding tasks in a zero-/few-shot fashion. We evaluate our model on various zero-/few-shot VL tasks and show that it consistently surpasses the state-of-the-art few-shot methods.
GPT-4V(ision) is a Generalist Web Agent, if Grounded
The recent development on large multimodal models (LMMs), especially GPT-4V(ision) and Gemini, has been quickly expanding the capability boundaries of multimodal models beyond traditional tasks like image captioning and visual question answering. In this work, we explore the potential of LMMs like GPT-4V as a generalist web agent that can follow natural language instructions to complete tasks on any given website. We propose SEEACT, a generalist web agent that harnesses the power of LMMs for integrated visual understanding and acting on the web. We evaluate on the recent MIND2WEB benchmark. In addition to standard offline evaluation on cached websites, we enable a new online evaluation setting by developing a tool that allows running web agents on live websites. We show that GPT-4V presents a great potential for web agents - it can successfully complete 50% of the tasks on live websites if we manually ground its textual plans into actions on the websites. This substantially outperforms text-only LLMs like GPT-4 or smaller models (FLAN-T5 and BLIP-2) specifically fine-tuned for web agents. However, grounding still remains a major challenge. Existing LMM grounding strategies like set-of-mark prompting turns out not effective for web agents, and the best grounding strategy we develop in this paper leverages both the HTML text and visuals. Yet, there is still a substantial gap with oracle grounding, leaving ample room for further improvement.
Grounded Language Acquisition From Object and Action Imagery
Deep learning approaches to natural language processing have made great strides in recent years. While these models produce symbols that convey vast amounts of diverse knowledge, it is unclear how such symbols are grounded in data from the world. In this paper, we explore the development of a private language for visual data representation by training emergent language (EL) encoders/decoders in both i) a traditional referential game environment and ii) a contrastive learning environment utilizing a within-class matching training paradigm. An additional classification layer utilizing neural machine translation and random forest classification was used to transform symbolic representations (sequences of integer symbols) to class labels. These methods were applied in two experiments focusing on object recognition and action recognition. For object recognition, a set of sketches produced by human participants from real imagery was used (Sketchy dataset) and for action recognition, 2D trajectories were generated from 3D motion capture systems (MOVI dataset). In order to interpret the symbols produced for data in each experiment, gradient-weighted class activation mapping (Grad-CAM) methods were used to identify pixel regions indicating semantic features which contribute evidence towards symbols in learned languages. Additionally, a t-distributed stochastic neighbor embedding (t-SNE) method was used to investigate embeddings learned by CNN feature extractors.
