Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeBand-limited Soft Actor Critic Model
Soft Actor Critic (SAC) algorithms show remarkable performance in complex simulated environments. A key element of SAC networks is entropy regularization, which prevents the SAC actor from optimizing against fine grained features, oftentimes transient, of the state-action value function. This results in better sample efficiency during early training. We take this idea one step further by artificially bandlimiting the target critic spatial resolution through the addition of a convolutional filter. We derive the closed form solution in the linear case and show that bandlimiting reduces the interdependency between the low and high frequency components of the state-action value approximation, allowing the critic to learn faster. In experiments, the bandlimited SAC outperformed the classic twin-critic SAC in a number of Gym environments, and displayed more stability in returns. We derive novel insights about SAC by adding a stochastic noise disturbance, a technique that is increasingly being used to learn robust policies that transfer well to the real world counterparts.
Soft Actor-Critic Algorithms and Applications
Model-free deep reinforcement learning (RL) algorithms have been successfully applied to a range of challenging sequential decision making and control tasks. However, these methods typically suffer from two major challenges: high sample complexity and brittleness to hyperparameters. Both of these challenges limit the applicability of such methods to real-world domains. In this paper, we describe Soft Actor-Critic (SAC), our recently introduced off-policy actor-critic algorithm based on the maximum entropy RL framework. In this framework, the actor aims to simultaneously maximize expected return and entropy. That is, to succeed at the task while acting as randomly as possible. We extend SAC to incorporate a number of modifications that accelerate training and improve stability with respect to the hyperparameters, including a constrained formulation that automatically tunes the temperature hyperparameter. We systematically evaluate SAC on a range of benchmark tasks, as well as real-world challenging tasks such as locomotion for a quadrupedal robot and robotic manipulation with a dexterous hand. With these improvements, SAC achieves state-of-the-art performance, outperforming prior on-policy and off-policy methods in sample-efficiency and asymptotic performance. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving similar performance across different random seeds. These results suggest that SAC is a promising candidate for learning in real-world robotics tasks.
Regularized Soft Actor-Critic for Behavior Transfer Learning
Existing imitation learning methods mainly focus on making an agent effectively mimic a demonstrated behavior, but do not address the potential contradiction between the behavior style and the objective of a task. There is a general lack of efficient methods that allow an agent to partially imitate a demonstrated behavior to varying degrees, while completing the main objective of a task. In this paper we propose a method called Regularized Soft Actor-Critic which formulates the main task and the imitation task under the Constrained Markov Decision Process framework (CMDP). The main task is defined as the maximum entropy objective used in Soft Actor-Critic (SAC) and the imitation task is defined as a constraint. We evaluate our method on continuous control tasks relevant to video games applications.
6D (2,0) Bootstrap with soft-Actor-Critic
We study numerically the 6D (2,0) superconformal bootstrap using the soft-Actor-Critic (SAC) algorithm as a stochastic optimizer. We focus on the four-point functions of scalar superconformal primaries in the energy-momentum multiplet. Starting from the supergravity limit, we perform searches for adiabatically varied central charges and derive two curves for a collection of 80 CFT data (70 of these data correspond to unprotected long multiplets and 10 to protected short multiplets). We conjecture that the two curves capture the A- and D-series (2,0) theories. Our results are competitive when compared to the existing bounds coming from standard numerical bootstrap methods, and data obtained using the OPE inversion formula. With this paper we are also releasing our Python implementation of the SAC algorithm, BootSTOP. The paper discusses the main functionality features of this package.
Efficient Differentially Private Fine-Tuning of LLMs via Reinforcement Learning
The tension between data privacy and model utility has become the defining bottleneck for the practical deployment of large language models (LLMs) trained on sensitive corpora including healthcare. Differentially private stochastic gradient descent (DP-SGD) guarantees formal privacy, yet it does so at a pronounced cost: gradients are forcibly clipped and perturbed with noise, degrading sample efficiency and final accuracy. Numerous variants have been proposed to soften this trade-off, but they all share a handicap: their control knobs are hard-coded, global, and oblivious to the evolving optimization landscape. Consequently, practitioners are forced either to over-spend privacy budget in pursuit of utility, or to accept mediocre models in order to stay within privacy constraints. We present RLDP, the first framework to cast DP optimization itself as a closed-loop control problem amenable to modern deep reinforcement learning (RL). RLDP continuously senses rich statistics of the learning dynamics and acts by selecting fine-grained per parameter gradient-clipping thresholds as well as the magnitude of injected Gaussian noise. A soft actor-critic (SAC) hyper-policy is trained online during language model fine-tuning; it learns, from scratch, how to allocate the privacy budget where it matters and when it matters. Across more than 1,600 ablation experiments on GPT2-small, Llama-1B, Llama-3B, and Mistral-7B, RLDP delivers perplexity reductions of 1.3-30.5% (mean 5.4%) and an average 5.6% downstream utility gain. RLDP reaches each baseline's final utility after only 13-43% of the gradient-update budget (mean speed-up 71%), all while honoring the same (epsilon, delta)-DP contract and exhibiting equal or lower susceptibility to membership-inference and canary-extraction attacks.
Mirror Descent Policy Optimization
Mirror descent (MD), a well-known first-order method in constrained convex optimization, has recently been shown as an important tool to analyze trust-region algorithms in reinforcement learning (RL). However, there remains a considerable gap between such theoretically analyzed algorithms and the ones used in practice. Inspired by this, we propose an efficient RL algorithm, called {\em mirror descent policy optimization} (MDPO). MDPO iteratively updates the policy by {\em approximately} solving a trust-region problem, whose objective function consists of two terms: a linearization of the standard RL objective and a proximity term that restricts two consecutive policies to be close to each other. Each update performs this approximation by taking multiple gradient steps on this objective function. We derive {\em on-policy} and {\em off-policy} variants of MDPO, while emphasizing important design choices motivated by the existing theory of MD in RL. We highlight the connections between on-policy MDPO and two popular trust-region RL algorithms: TRPO and PPO, and show that explicitly enforcing the trust-region constraint is in fact {\em not} a necessity for high performance gains in TRPO. We then show how the popular soft actor-critic (SAC) algorithm can be derived by slight modifications of off-policy MDPO. Overall, MDPO is derived from the MD principles, offers a unified approach to viewing a number of popular RL algorithms, and performs better than or on-par with TRPO, PPO, and SAC in a number of continuous control tasks. Code is available at https://github.com/manantomar/Mirror-Descent-Policy-Optimization.
Image Augmentation Is All You Need: Regularizing Deep Reinforcement Learning from Pixels
We propose a simple data augmentation technique that can be applied to standard model-free reinforcement learning algorithms, enabling robust learning directly from pixels without the need for auxiliary losses or pre-training. The approach leverages input perturbations commonly used in computer vision tasks to regularize the value function. Existing model-free approaches, such as Soft Actor-Critic (SAC), are not able to train deep networks effectively from image pixels. However, the addition of our augmentation method dramatically improves SAC's performance, enabling it to reach state-of-the-art performance on the DeepMind control suite, surpassing model-based (Dreamer, PlaNet, and SLAC) methods and recently proposed contrastive learning (CURL). Our approach can be combined with any model-free reinforcement learning algorithm, requiring only minor modifications. An implementation can be found at https://sites.google.com/view/data-regularized-q.
Dropout Q-Functions for Doubly Efficient Reinforcement Learning
Randomized ensembled double Q-learning (REDQ) (Chen et al., 2021b) has recently achieved state-of-the-art sample efficiency on continuous-action reinforcement learning benchmarks. This superior sample efficiency is made possible by using a large Q-function ensemble. However, REDQ is much less computationally efficient than non-ensemble counterparts such as Soft Actor-Critic (SAC) (Haarnoja et al., 2018a). To make REDQ more computationally efficient, we propose a method of improving computational efficiency called DroQ, which is a variant of REDQ that uses a small ensemble of dropout Q-functions. Our dropout Q-functions are simple Q-functions equipped with dropout connection and layer normalization. Despite its simplicity of implementation, our experimental results indicate that DroQ is doubly (sample and computationally) efficient. It achieved comparable sample efficiency with REDQ, much better computational efficiency than REDQ, and comparable computational efficiency with that of SAC.
Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization
Reinforcement Learning (RL) plays a crucial role in aligning large language models (LLMs) with human preferences and improving their ability to perform complex tasks. However, current approaches either require significant computational resources due to the use of multiple models and extensive online sampling for training (e.g., PPO) or are framed as bandit problems (e.g., DPO, DRO), which often struggle with multi-step reasoning tasks, such as math problem-solving and complex reasoning that involve long chains of thought. To overcome these limitations, we introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model. The MDP formulation of DQO offers structural advantages over bandit-based methods, enabling more effective process supervision. Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
Probabilistic Mixture-of-Experts for Efficient Deep Reinforcement Learning
Deep reinforcement learning (DRL) has successfully solved various problems recently, typically with a unimodal policy representation. However, grasping distinguishable skills for some tasks with non-unique optima can be essential for further improving its learning efficiency and performance, which may lead to a multimodal policy represented as a mixture-of-experts (MOE). To our best knowledge, present DRL algorithms for general utility do not deploy this method as policy function approximators due to the potential challenge in its differentiability for policy learning. In this work, we propose a probabilistic mixture-of-experts (PMOE) implemented with a Gaussian mixture model (GMM) for multimodal policy, together with a novel gradient estimator for the indifferentiability problem, which can be applied in generic off-policy and on-policy DRL algorithms using stochastic policies, e.g., Soft Actor-Critic (SAC) and Proximal Policy Optimisation (PPO). Experimental results testify the advantage of our method over unimodal polices and two different MOE methods, as well as a method of option frameworks, based on the above two types of DRL algorithms, on six MuJoCo tasks. Different gradient estimations for GMM like the reparameterisation trick (Gumbel-Softmax) and the score-ratio trick are also compared with our method. We further empirically demonstrate the distinguishable primitives learned with PMOE and show the benefits of our method in terms of exploration.
Generalizable Pareto-Optimal Offloading with Reinforcement Learning in Mobile Edge Computing
Mobile edge computing (MEC) is essential for next-generation mobile network applications that prioritize various performance metrics, including delays and energy efficiency. However, conventional single-objective scheduling solutions cannot be directly applied to practical systems in which the preferences (i.e., the weights of different objectives) are often unknown or challenging to specify in advance. In this study, we formulate a multi-objective offloading problem for MEC with multiple edges to minimize the sum of expected long-term energy consumption and delay while considering unknown preferences. To address the challenge of unknown preferences and the potentially diverse MEC systems, we propose a generalizable multi-objective (deep) reinforcement learning (GMORL)-based tasks offloading framework, which employs the Discrete Soft Actor-Critic (Discrete-SAC) method. Our method uses a single policy model to efficiently schedule tasks based on varying preferences and adapt to heterogeneous MEC systems with different CPU frequencies and server quantities. Under the proposed framework, we introduce a histogram-based state encoding method for constructing features for multiple edges in MEC systems, a sophisticated reward function for accurately computing the utilities of delay and energy consumption, and a novel neural network architecture for improving generalization. Simulation results demonstrate that our proposed GMORL scheme enhances the hypervolume of the Pareto front by up to 121.0% compared to benchmarks. Our code are avavilable at https://github.com/gracefulning/Generalizable-Pareto-Optimal-Offloading-with-Reinforcement-Learning-in-Mobile-Edge-Computing
SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight Relabeling
The past years have seen Large Language Models (LLMs) strive not only as generative models but also as agents solving textual sequential decision-making tasks. When facing complex environments where their zero-shot abilities are insufficient, recent work showed online Reinforcement Learning (RL) could be used for the LLM agent to discover and learn efficient strategies interactively. However, most prior work sticks to on-policy algorithms, which greatly reduces the scope of methods such agents could use for both exploration and exploitation, such as experience replay and hindsight relabeling. Yet, such methods may be key for LLM learning agents, and in particular when designing autonomous intrinsically motivated agents sampling and pursuing their own goals (i.e. autotelic agents). This paper presents and studies an adaptation of Soft Actor-Critic and hindsight relabeling to LLM agents. Our method not only paves the path towards autotelic LLM agents that learn online but can also outperform on-policy methods in more classic multi-goal RL environments.
Distributional Soft Actor-Critic with Three Refinements
Reinforcement learning (RL) has shown remarkable success in solving complex decision-making and control tasks. However, many model-free RL algorithms experience performance degradation due to inaccurate value estimation, particularly the overestimation of Q-values, which can lead to suboptimal policies. To address this issue, we previously proposed the Distributional Soft Actor-Critic (DSAC or DSACv1), an off-policy RL algorithm that enhances value estimation accuracy by learning a continuous Gaussian value distribution. Despite its effectiveness, DSACv1 faces challenges such as training instability and sensitivity to reward scaling, caused by high variance in critic gradients due to return randomness. In this paper, we introduce three key refinements to DSACv1 to overcome these limitations and further improve Q-value estimation accuracy: expected value substitution, twin value distribution learning, and variance-based critic gradient adjustment. The enhanced algorithm, termed DSAC with Three refinements (DSAC-T or DSACv2), is systematically evaluated across a diverse set of benchmark tasks. Without the need for task-specific hyperparameter tuning, DSAC-T consistently matches or outperforms leading model-free RL algorithms, including SAC, TD3, DDPG, TRPO, and PPO, in all tested environments. Additionally, DSAC-T ensures a stable learning process and maintains robust performance across varying reward scales. Its effectiveness is further demonstrated through real-world application in controlling a wheeled robot, highlighting its potential for deployment in practical robotic tasks.
Trend-Based SAC Beam Control Method with Zero-Shot in Superconducting Linear Accelerator
The superconducting linear accelerator is a highly flexiable facility for modern scientific discoveries, necessitating weekly reconfiguration and tuning. Accordingly, minimizing setup time proves essential in affording users with ample experimental time. We propose a trend-based soft actor-critic(TBSAC) beam control method with strong robustness, allowing the agents to be trained in a simulated environment and applied to the real accelerator directly with zero-shot. To validate the effectiveness of our method, two different typical beam control tasks were performed on China Accelerator Facility for Superheavy Elements (CAFe II) and a light particle injector(LPI) respectively. The orbit correction tasks were performed in three cryomodules in CAFe II seperately, the time required for tuning has been reduced to one-tenth of that needed by human experts, and the RMS values of the corrected orbit were all less than 1mm. The other transmission efficiency optimization task was conducted in the LPI, our agent successfully optimized the transmission efficiency of radio-frequency quadrupole(RFQ) to over 85% within 2 minutes. The outcomes of these two experiments offer substantiation that our proposed TBSAC approach can efficiently and effectively accomplish beam commissioning tasks while upholding the same standard as skilled human experts. As such, our method exhibits potential for future applications in other accelerator commissioning fields.
Soft Actor-Critic for Discrete Action Settings
Soft Actor-Critic is a state-of-the-art reinforcement learning algorithm for continuous action settings that is not applicable to discrete action settings. Many important settings involve discrete actions, however, and so here we derive an alternative version of the Soft Actor-Critic algorithm that is applicable to discrete action settings. We then show that, even without any hyperparameter tuning, it is competitive with the tuned model-free state-of-the-art on a selection of games from the Atari suite.
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle convergence properties, which necessitate meticulous hyperparameter tuning. Both of these challenges severely limit the applicability of such methods to complex, real-world domains. In this paper, we propose soft actor-critic, an off-policy actor-critic deep RL algorithm based on the maximum entropy reinforcement learning framework. In this framework, the actor aims to maximize expected reward while also maximizing entropy. That is, to succeed at the task while acting as randomly as possible. Prior deep RL methods based on this framework have been formulated as Q-learning methods. By combining off-policy updates with a stable stochastic actor-critic formulation, our method achieves state-of-the-art performance on a range of continuous control benchmark tasks, outperforming prior on-policy and off-policy methods. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving very similar performance across different random seeds.
Distributional Soft Actor-Critic: Off-Policy Reinforcement Learning for Addressing Value Estimation Errors
In reinforcement learning (RL), function approximation errors are known to easily lead to the Q-value overestimations, thus greatly reducing policy performance. This paper presents a distributional soft actor-critic (DSAC) algorithm, which is an off-policy RL method for continuous control setting, to improve the policy performance by mitigating Q-value overestimations. We first discover in theory that learning a distribution function of state-action returns can effectively mitigate Q-value overestimations because it is capable of adaptively adjusting the update stepsize of the Q-value function. Then, a distributional soft policy iteration (DSPI) framework is developed by embedding the return distribution function into maximum entropy RL. Finally, we present a deep off-policy actor-critic variant of DSPI, called DSAC, which directly learns a continuous return distribution by keeping the variance of the state-action returns within a reasonable range to address exploding and vanishing gradient problems. We evaluate DSAC on the suite of MuJoCo continuous control tasks, achieving the state-of-the-art performance.
Symphony: A Heuristic Normalized Calibrated Advantage Actor and Critic Algorithm in application for Humanoid Robots
In our work we not explicitly hint that it is a misconception to think that humans learn fast. Learning process takes time. Babies start learning to move in the restricted liquid area called placenta. Children often are limited by underdeveloped body. Even adults are not allowed to participate in complex competitions right away. However, with robots, when learning from scratch, we often don't have the privilege of waiting for dozen millions of steps. "Swaddling" regularization is responsible for restraining an agent in rapid but unstable development penalizing action strength in a specific way not affecting actions directly. The Symphony, Transitional-policy Deterministic Actor and Critic algorithm, is a concise combination of different ideas for possibility of training humanoid robots from scratch with Sample Efficiency, Sample Proximity and Safety of Actions in mind. It is no secret that continuous increase in Gaussian noise without appropriate smoothing is harmful for motors and gearboxes. Compared to Stochastic algorithms, we set a limited parametric noise and promote a reduced strength of actions, safely increasing entropy, since the actions are kind of immersed in weaker noise. When actions require more extreme values, actions rise above the weak noise. Training becomes empirically much safer for both the environment around and the robot's mechanisms. We use Fading Replay Buffer: using a fixed formula containing the hyperbolic tangent, we adjust the batch sampling probability: the memory contains a recent memory and a long-term memory trail. Fading Replay Buffer allows us to use Temporal Advantage when we improve the current Critic Network prediction compared to the exponential moving average. Temporal Advantage allows us to update Actor and Critic in one pass, as well as combine Actor and Critic in one Object and implement their Losses in one line.
Position control of an acoustic cavitation bubble by reinforcement learning
A control technique is developed via Reinforcement Learning that allows arbitrary controlling of the position of an acoustic cavitation bubble in a dual-frequency standing acoustic wave field. The agent must choose the optimal pressure amplitude values to manipulate the bubble position in the range of x/lambda_0in[0.05, 0.25]. To train the agent an actor-critic off-policy algorithm (Deep Deterministic Policy Gradient) was used that supports continuous action space, which allows setting the pressure amplitude values continuously within 0 and 1, bar. A shaped reward function is formulated that minimizes the distance between the bubble and the target position and implicitly encourages the agent to perform the position control within the shortest amount of time. In some cases, the optimal control can be 7 times faster than the solution expected from the linear theory.
AdaGlimpse: Active Visual Exploration with Arbitrary Glimpse Position and Scale
Active Visual Exploration (AVE) is a task that involves dynamically selecting observations (glimpses), which is critical to facilitate comprehension and navigation within an environment. While modern AVE methods have demonstrated impressive performance, they are constrained to fixed-scale glimpses from rigid grids. In contrast, existing mobile platforms equipped with optical zoom capabilities can capture glimpses of arbitrary positions and scales. To address this gap between software and hardware capabilities, we introduce AdaGlimpse. It uses Soft Actor-Critic, a reinforcement learning algorithm tailored for exploration tasks, to select glimpses of arbitrary position and scale. This approach enables our model to rapidly establish a general awareness of the environment before zooming in for detailed analysis. Experimental results demonstrate that AdaGlimpse surpasses previous methods across various visual tasks while maintaining greater applicability in realistic AVE scenarios.
Maximum Entropy Reinforcement Learning via Energy-Based Normalizing Flow
Existing Maximum-Entropy (MaxEnt) Reinforcement Learning (RL) methods for continuous action spaces are typically formulated based on actor-critic frameworks and optimized through alternating steps of policy evaluation and policy improvement. In the policy evaluation steps, the critic is updated to capture the soft Q-function. In the policy improvement steps, the actor is adjusted in accordance with the updated soft Q-function. In this paper, we introduce a new MaxEnt RL framework modeled using Energy-Based Normalizing Flows (EBFlow). This framework integrates the policy evaluation steps and the policy improvement steps, resulting in a single objective training process. Our method enables the calculation of the soft value function used in the policy evaluation target without Monte Carlo approximation. Moreover, this design supports the modeling of multi-modal action distributions while facilitating efficient action sampling. To evaluate the performance of our method, we conducted experiments on the MuJoCo benchmark suite and a number of high-dimensional robotic tasks simulated by Omniverse Isaac Gym. The evaluation results demonstrate that our method achieves superior performance compared to widely-adopted representative baselines.
Skill-Enhanced Reinforcement Learning Acceleration from Demonstrations
Learning from Demonstration (LfD) aims to facilitate rapid Reinforcement Learning (RL) by leveraging expert demonstrations to pre-train the RL agent. However, the limited availability of expert demonstration data often hinders its ability to effectively aid downstream RL learning. To address this problem, we propose a novel two-stage method dubbed as Skill-enhanced Reinforcement Learning Acceleration (SeRLA). SeRLA introduces a skill-level adversarial Positive-Unlabeled (PU) learning model to extract useful skill prior knowledge by enabling learning from both limited expert data and general low-cost demonstration data in the offline prior learning stage. Subsequently, it deploys a skill-based soft actor-critic algorithm to leverage this acquired prior knowledge in the downstream online RL stage for efficient training of a skill policy network. Moreover, we develop a simple skill-level data enhancement technique to further alleviate data sparsity and improve both skill prior learning and downstream skill policy training. Our experimental results on multiple standard RL environments show the proposed SeRLA method achieves state-of-the-art performance on accelerating reinforcement learning on downstream tasks, especially in the early learning phase.
Anti-Exploration by Random Network Distillation
Despite the success of Random Network Distillation (RND) in various domains, it was shown as not discriminative enough to be used as an uncertainty estimator for penalizing out-of-distribution actions in offline reinforcement learning. In this paper, we revisit these results and show that, with a naive choice of conditioning for the RND prior, it becomes infeasible for the actor to effectively minimize the anti-exploration bonus and discriminativity is not an issue. We show that this limitation can be avoided with conditioning based on Feature-wise Linear Modulation (FiLM), resulting in a simple and efficient ensemble-free algorithm based on Soft Actor-Critic. We evaluate it on the D4RL benchmark, showing that it is capable of achieving performance comparable to ensemble-based methods and outperforming ensemble-free approaches by a wide margin.
Supervised Learning-enhanced Multi-Group Actor Critic for Live Stream Allocation in Feed
In the context of a short video & live stream mixed recommendation scenario, the live stream recommendation system (RS) decides whether to allocate at most one live stream into the video feed for each user request. To maximize long-term user engagement, it is crucial to determine an optimal live stream policy for accurate live stream allocation. The inappropriate live stream allocation policy can significantly affect the duration of the usage app and user retention, which ignores the long-term negative impact of live stream allocation. Recently, reinforcement learning (RL) has been widely applied in recommendation systems to capture long-term user engagement. However, traditional RL algorithms often face divergence and instability problems, which restricts the application and deployment in the large-scale industrial recommendation systems, especially in the aforementioned challenging scenario. To address these challenges, we propose a novel Supervised Learning-enhanced Multi-Group Actor Critic algorithm (SL-MGAC). Specifically, we introduce a supervised learning-enhanced actor-critic framework that incorporates variance reduction techniques, where multi-task reward learning helps restrict bootstrapping error accumulation during critic learning. Additionally, we design a multi-group state decomposition module for both actor and critic networks to reduce prediction variance and improve model stability. We also propose a novel reward function to prevent overly greedy live stream allocation. Empirically, we evaluate the SL-MGAC algorithm using offline policy evaluation (OPE) and online A/B testing. Experimental results demonstrate that the proposed method not only outperforms baseline methods under the platform-level constraints but also exhibits enhanced stability in online recommendation scenarios.
IDQL: Implicit Q-Learning as an Actor-Critic Method with Diffusion Policies
Effective offline RL methods require properly handling out-of-distribution actions. Implicit Q-learning (IQL) addresses this by training a Q-function using only dataset actions through a modified Bellman backup. However, it is unclear which policy actually attains the values represented by this implicitly trained Q-function. In this paper, we reinterpret IQL as an actor-critic method by generalizing the critic objective and connecting it to a behavior-regularized implicit actor. This generalization shows how the induced actor balances reward maximization and divergence from the behavior policy, with the specific loss choice determining the nature of this tradeoff. Notably, this actor can exhibit complex and multimodal characteristics, suggesting issues with the conditional Gaussian actor fit with advantage weighted regression (AWR) used in prior methods. Instead, we propose using samples from a diffusion parameterized behavior policy and weights computed from the critic to then importance sampled our intended policy. We introduce Implicit Diffusion Q-learning (IDQL), combining our general IQL critic with the policy extraction method. IDQL maintains the ease of implementation of IQL while outperforming prior offline RL methods and demonstrating robustness to hyperparameters. Code is available at https://github.com/philippe-eecs/IDQL.
Beyond Exponentially Fast Mixing in Average-Reward Reinforcement Learning via Multi-Level Monte Carlo Actor-Critic
Many existing reinforcement learning (RL) methods employ stochastic gradient iteration on the back end, whose stability hinges upon a hypothesis that the data-generating process mixes exponentially fast with a rate parameter that appears in the step-size selection. Unfortunately, this assumption is violated for large state spaces or settings with sparse rewards, and the mixing time is unknown, making the step size inoperable. In this work, we propose an RL methodology attuned to the mixing time by employing a multi-level Monte Carlo estimator for the critic, the actor, and the average reward embedded within an actor-critic (AC) algorithm. This method, which we call Multi-level Actor-Critic (MAC), is developed especially for infinite-horizon average-reward settings and neither relies on oracle knowledge of the mixing time in its parameter selection nor assumes its exponential decay; it, therefore, is readily applicable to applications with slower mixing times. Nonetheless, it achieves a convergence rate comparable to the state-of-the-art AC algorithms. We experimentally show that these alleviated restrictions on the technical conditions required for stability translate to superior performance in practice for RL problems with sparse rewards.
Critique-RL: Training Language Models for Critiquing through Two-Stage Reinforcement Learning
Training critiquing language models to assess and provide feedback on model outputs is a promising way to improve LLMs for complex reasoning tasks. However, existing approaches typically rely on stronger supervisors for annotating critique data. To address this, we propose Critique-RL, an online RL approach for developing critiquing language models without stronger supervision. Our approach operates on a two-player paradigm: the actor generates a response, the critic provides feedback, and the actor refines the response accordingly. We first reveal that relying solely on indirect reward signals from the actor's outputs for RL optimization often leads to unsatisfactory critics: while their helpfulness (i.e., providing constructive feedback) improves, the discriminability (i.e., determining whether a response is high-quality or not) remains poor, resulting in marginal performance gains. To overcome this, Critique-RL adopts a two-stage optimization strategy. In stage I, it reinforces the discriminability of the critic with direct rule-based reward signals; in stage II, it introduces indirect rewards based on actor refinement to improve the critic's helpfulness, while maintaining its discriminability via appropriate regularization. Extensive experiments across various tasks and models show that Critique-RL delivers substantial performance improvements. For example, it achieves a 9.02% gain on in-domain tasks and a 5.70% gain on out-of-domain tasks for Qwen2.5-7B, highlighting its potential.
Actor-Critic based Improper Reinforcement Learning
We consider an improper reinforcement learning setting where a learner is given M base controllers for an unknown Markov decision process, and wishes to combine them optimally to produce a potentially new controller that can outperform each of the base ones. This can be useful in tuning across controllers, learnt possibly in mismatched or simulated environments, to obtain a good controller for a given target environment with relatively few trials. Towards this, we propose two algorithms: (1) a Policy Gradient-based approach; and (2) an algorithm that can switch between a simple Actor-Critic (AC) based scheme and a Natural Actor-Critic (NAC) scheme depending on the available information. Both algorithms operate over a class of improper mixtures of the given controllers. For the first case, we derive convergence rate guarantees assuming access to a gradient oracle. For the AC-based approach we provide convergence rate guarantees to a stationary point in the basic AC case and to a global optimum in the NAC case. Numerical results on (i) the standard control theoretic benchmark of stabilizing an cartpole; and (ii) a constrained queueing task show that our improper policy optimization algorithm can stabilize the system even when the base policies at its disposal are unstable.
SELU: Self-Learning Embodied MLLMs in Unknown Environments
Recently, multimodal large language models (MLLMs) have demonstrated strong visual understanding and decision-making capabilities, enabling the exploration of autonomously improving MLLMs in unknown environments. However, external feedback like human or environmental feedback is not always available. To address this challenge, existing methods primarily focus on enhancing the decision-making capabilities of MLLMs through voting and scoring mechanisms, while little effort has been paid to improving the environmental comprehension of MLLMs in unknown environments. To fully unleash the self-learning potential of MLLMs, we propose a novel actor-critic self-learning paradigm, dubbed SELU, inspired by the actor-critic paradigm in reinforcement learning. The critic employs self-asking and hindsight relabeling to extract knowledge from interaction trajectories collected by the actor, thereby augmenting its environmental comprehension. Simultaneously, the actor is improved by the self-feedback provided by the critic, enhancing its decision-making. We evaluate our method in the AI2-THOR and VirtualHome environments, and SELU achieves critic improvements of approximately 28% and 30%, and actor improvements of about 20% and 24% via self-learning.
Maximum Entropy Heterogeneous-Agent Reinforcement Learning
Multi-agent reinforcement learning (MARL) has been shown effective for cooperative games in recent years. However, existing state-of-the-art methods face challenges related to sample complexity, training instability, and the risk of converging to a suboptimal Nash Equilibrium. In this paper, we propose a unified framework for learning stochastic policies to resolve these issues. We embed cooperative MARL problems into probabilistic graphical models, from which we derive the maximum entropy (MaxEnt) objective for MARL. Based on the MaxEnt framework, we propose Heterogeneous-Agent Soft Actor-Critic (HASAC) algorithm. Theoretically, we prove the monotonic improvement and convergence to quantal response equilibrium (QRE) properties of HASAC. Furthermore, we generalize a unified template for MaxEnt algorithmic design named Maximum Entropy Heterogeneous-Agent Mirror Learning (MEHAML), which provides any induced method with the same guarantees as HASAC. We evaluate HASAC on six benchmarks: Bi-DexHands, Multi-Agent MuJoCo, StarCraft Multi-Agent Challenge, Google Research Football, Multi-Agent Particle Environment, and Light Aircraft Game. Results show that HASAC consistently outperforms strong baselines, exhibiting better sample efficiency, robustness, and sufficient exploration.
Fine-tuning Flow Matching Generative Models with Intermediate Feedback
Flow-based generative models have shown remarkable success in text-to-image generation, yet fine-tuning them with intermediate feedback remains challenging, especially for continuous-time flow matching models. Most existing approaches solely learn from outcome rewards, struggling with the credit assignment problem. Alternative methods that attempt to learn a critic via direct regression on cumulative rewards often face training instabilities and model collapse in online settings. We present AC-Flow, a robust actor-critic framework that addresses these challenges through three key innovations: (1) reward shaping that provides well-normalized learning signals to enable stable intermediate value learning and gradient control, (2) a novel dual-stability mechanism that combines advantage clipping to prevent destructive policy updates with a warm-up phase that allows the critic to mature before influencing the actor, and (3) a scalable generalized critic weighting scheme that extends traditional reward-weighted methods while preserving model diversity through Wasserstein regularization. Through extensive experiments on Stable Diffusion 3, we demonstrate that AC-Flow achieves state-of-the-art performance in text-to-image alignment tasks and generalization to unseen human preference models. Our results demonstrate that even with a computationally efficient critic model, we can robustly finetune flow models without compromising generative quality, diversity, or stability.
Gradual Transition from Bellman Optimality Operator to Bellman Operator in Online Reinforcement Learning
For continuous action spaces, actor-critic methods are widely used in online reinforcement learning (RL). However, unlike RL algorithms for discrete actions, which generally model the optimal value function using the Bellman optimality operator, RL algorithms for continuous actions typically model Q-values for the current policy using the Bellman operator. These algorithms for continuous actions rely exclusively on policy updates for improvement, which often results in low sample efficiency. This study examines the effectiveness of incorporating the Bellman optimality operator into actor-critic frameworks. Experiments in a simple environment show that modeling optimal values accelerates learning but leads to overestimation bias. To address this, we propose an annealing approach that gradually transitions from the Bellman optimality operator to the Bellman operator, thereby accelerating learning while mitigating bias. Our method, combined with TD3 and SAC, significantly outperforms existing approaches across various locomotion and manipulation tasks, demonstrating improved performance and robustness to hyperparameters related to optimality. The code for this study is available at https://github.com/motokiomura/annealed-q-learning.
SAC Flow: Sample-Efficient Reinforcement Learning of Flow-Based Policies via Velocity-Reparameterized Sequential Modeling
Training expressive flow-based policies with off-policy reinforcement learning is notoriously unstable due to gradient pathologies in the multi-step action sampling process. We trace this instability to a fundamental connection: the flow rollout is algebraically equivalent to a residual recurrent computation, making it susceptible to the same vanishing and exploding gradients as RNNs. To address this, we reparameterize the velocity network using principles from modern sequential models, introducing two stable architectures: Flow-G, which incorporates a gated velocity, and Flow-T, which utilizes a decoded velocity. We then develop a practical SAC-based algorithm, enabled by a noise-augmented rollout, that facilitates direct end-to-end training of these policies. Our approach supports both from-scratch and offline-to-online learning and achieves state-of-the-art performance on continuous control and robotic manipulation benchmarks, eliminating the need for common workarounds like policy distillation or surrogate objectives.
Hyperspherical Normalization for Scalable Deep Reinforcement Learning
Scaling up the model size and computation has brought consistent performance improvements in supervised learning. However, this lesson often fails to apply to reinforcement learning (RL) because training the model on non-stationary data easily leads to overfitting and unstable optimization. In response, we introduce SimbaV2, a novel RL architecture designed to stabilize optimization by (i) constraining the growth of weight and feature norm by hyperspherical normalization; and (ii) using a distributional value estimation with reward scaling to maintain stable gradients under varying reward magnitudes. Using the soft actor-critic as a base algorithm, SimbaV2 scales up effectively with larger models and greater compute, achieving state-of-the-art performance on 57 continuous control tasks across 4 domains. The code is available at https://dojeon-ai.github.io/SimbaV2.
Interactive Learning from Policy-Dependent Human Feedback
This paper investigates the problem of interactively learning behaviors communicated by a human teacher using positive and negative feedback. Much previous work on this problem has made the assumption that people provide feedback for decisions that is dependent on the behavior they are teaching and is independent from the learner's current policy. We present empirical results that show this assumption to be false -- whether human trainers give a positive or negative feedback for a decision is influenced by the learner's current policy. Based on this insight, we introduce {\em Convergent Actor-Critic by Humans} (COACH), an algorithm for learning from policy-dependent feedback that converges to a local optimum. Finally, we demonstrate that COACH can successfully learn multiple behaviors on a physical robot.
Soft Self-Consistency Improves Language Model Agents
Generations from large language models (LLMs) can be improved by sampling and scoring multiple solutions to select a final answer. Current "sample and select" methods such as self-consistency (SC) rely on majority voting to score answers. However, when tasks have many distinct and valid answers, selection by voting requires a large number of samples. This makes SC prohibitively expensive for interactive tasks that involve generating multiple actions (answers) sequentially. After establishing that majority voting fails to provide consistent gains on such tasks, we demonstrate how to increase success rates by softening the scoring criterion. We introduce Soft Self-Consistency (SOFT-SC), which replaces SC's discontinuous scoring with a continuous score computed from model likelihoods, allowing for selection even when actions are sparsely distributed. SOFT-SC improves both performance and efficiency on long-horizon interactive tasks, requiring half as many samples as SC for comparable or better performance. For a fixed number of samples, SOFT-SC leads to a 1.3% increase over SC in absolute success rate on writing bash programs, a 6.6% increase on online shopping (WebShop), and a 4.7% increase for an interactive household game (ALFWorld). Finally, we show that SOFT-SC can be applied to both open-source and black-box models.
Thespian: Multi-Character Text Role-Playing Game Agents
Text-adventure games and text role-playing games are grand challenges for reinforcement learning game playing agents. Text role-playing games are open-ended environments where an agent must faithfully play a particular character. We consider the distinction between characters and actors, where an actor agent has the ability to play multiple characters. We present a framework we call a thespian agent that can learn to emulate multiple characters along with a soft prompt that can be used to direct it as to which character to play at any time. We further describe an attention mechanism that allows the agent to learn new characters that are based on previously learned characters in a few-shot fashion. We show that our agent outperforms the state of the art agent framework in multi-character learning and few-shot learning.
The Lighthouse of Language: Enhancing LLM Agents via Critique-Guided Improvement
Large language models (LLMs) have recently transformed from text-based assistants to autonomous agents capable of planning, reasoning, and iteratively improving their actions. While numerical reward signals and verifiers can effectively rank candidate actions, they often provide limited contextual guidance. In contrast, natural language feedback better aligns with the generative capabilities of LLMs, providing richer and more actionable suggestions. However, parsing and implementing this feedback effectively can be challenging for LLM-based agents. In this work, we introduce Critique-Guided Improvement (CGI), a novel two-player framework, comprising an actor model that explores an environment and a critic model that generates detailed nature language feedback. By training the critic to produce fine-grained assessments and actionable revisions, and the actor to utilize these critiques, our approach promotes more robust exploration of alternative strategies while avoiding local optima. Experiments in three interactive environments show that CGI outperforms existing baselines by a substantial margin. Notably, even a small critic model surpasses GPT-4 in feedback quality. The resulting actor achieves state-of-the-art performance, demonstrating the power of explicit iterative guidance to enhance decision-making in LLM-based agents.
Critic-CoT: Boosting the reasoning abilities of large language model via Chain-of-thoughts Critic
Self-critic has become an important mechanism for enhancing the reasoning performance of LLMs. However, current approaches mainly involve basic prompts without further training, which tend to be over-simplified, leading to limited accuracy.Moreover, there is a lack of in-depth investigation of the relationship between LLM's ability to criticism and its task-solving performance.To address these issues, we propose Critic-CoT, a novel framework that pushes LLMs toward System-2-like critic capability, via step-wise CoT reasoning format and distant-supervision data construction, without the need for human annotation. Experiments on GSM8K and MATH show that via filtering out invalid solutions or iterative refinement, our enhanced model boosts task-solving performance, which demonstrates the effectiveness of our method. Further, we find that training on critique and refinement alone improves the generation. We hope our work could shed light on future research on improving the reasoning and critic ability of LLMs.
ASSISTGUI: Task-Oriented Desktop Graphical User Interface Automation
Graphical User Interface (GUI) automation holds significant promise for assisting users with complex tasks, thereby boosting human productivity. Existing works leveraging Large Language Model (LLM) or LLM-based AI agents have shown capabilities in automating tasks on Android and Web platforms. However, these tasks are primarily aimed at simple device usage and entertainment operations. This paper presents a novel benchmark, AssistGUI, to evaluate whether models are capable of manipulating the mouse and keyboard on the Windows platform in response to user-requested tasks. We carefully collected a set of 100 tasks from nine widely-used software applications, such as, After Effects and MS Word, each accompanied by the necessary project files for better evaluation. Moreover, we propose an advanced Actor-Critic Embodied Agent framework, which incorporates a sophisticated GUI parser driven by an LLM-agent and an enhanced reasoning mechanism adept at handling lengthy procedural tasks. Our experimental results reveal that our GUI Parser and Reasoning mechanism outshine existing methods in performance. Nevertheless, the potential remains substantial, with the best model attaining only a 46% success rate on our benchmark. We conclude with a thorough analysis of the current methods' limitations, setting the stage for future breakthroughs in this domain.
Two-Stage Constrained Actor-Critic for Short Video Recommendation
The wide popularity of short videos on social media poses new opportunities and challenges to optimize recommender systems on the video-sharing platforms. Users sequentially interact with the system and provide complex and multi-faceted responses, including watch time and various types of interactions with multiple videos. One the one hand, the platforms aims at optimizing the users' cumulative watch time (main goal) in long term, which can be effectively optimized by Reinforcement Learning. On the other hand, the platforms also needs to satisfy the constraint of accommodating the responses of multiple user interactions (auxiliary goals) such like, follow, share etc. In this paper, we formulate the problem of short video recommendation as a Constrained Markov Decision Process (CMDP). We find that traditional constrained reinforcement learning algorithms can not work well in this setting. We propose a novel two-stage constrained actor-critic method: At stage one, we learn individual policies to optimize each auxiliary signal. At stage two, we learn a policy to (i) optimize the main signal and (ii) stay close to policies learned at the first stage, which effectively guarantees the performance of this main policy on the auxiliaries. Through extensive offline evaluations, we demonstrate effectiveness of our method over alternatives in both optimizing the main goal as well as balancing the others. We further show the advantage of our method in live experiments of short video recommendations, where it significantly outperforms other baselines in terms of both watch time and interactions. Our approach has been fully launched in the production system to optimize user experiences on the platform.
Solving Conformal Field Theories with Artificial Intelligence
In this paper we deploy for the first time Reinforcement-Learning algorithms in the context of the conformal-bootstrap programme to obtain numerical solutions of conformal field theories (CFTs). As an illustration, we use a soft Actor-Critic algorithm and find approximate solutions to the truncated crossing equations of two-dimensional CFTs, successfully identifying well-known theories like the 2D Ising model and the 2D CFT of a compactified scalar. Our methods can perform efficient high-dimensional searches that can be used to study arbitrary (unitary or non-unitary) CFTs in any spacetime dimension.
CDSA: Conservative Denoising Score-based Algorithm for Offline Reinforcement Learning
Distribution shift is a major obstacle in offline reinforcement learning, which necessitates minimizing the discrepancy between the learned policy and the behavior policy to avoid overestimating rare or unseen actions. Previous conservative offline RL algorithms struggle to generalize to unseen actions, despite their success in learning good in-distribution policy. In contrast, we propose to use the gradient fields of the dataset density generated from a pre-trained offline RL algorithm to adjust the original actions. We decouple the conservatism constraints from the policy, thus can benefit wide offline RL algorithms. As a consequence, we propose the Conservative Denoising Score-based Algorithm (CDSA) which utilizes the denoising score-based model to model the gradient of the dataset density, rather than the dataset density itself, and facilitates a more accurate and efficient method to adjust the action generated by the pre-trained policy in a deterministic and continuous MDP environment. In experiments, we show that our approach significantly improves the performance of baseline algorithms in D4RL datasets, and demonstrate the generalizability and plug-and-play capability of our model across different pre-trained offline RL policy in different tasks. We also validate that the agent exhibits greater risk aversion after employing our method while showcasing its ability to generalize effectively across diverse tasks.
Actor-Critics Can Achieve Optimal Sample Efficiency
Actor-critic algorithms have become a cornerstone in reinforcement learning (RL), leveraging the strengths of both policy-based and value-based methods. Despite recent progress in understanding their statistical efficiency, no existing work has successfully learned an epsilon-optimal policy with a sample complexity of O(1/epsilon^2) trajectories with general function approximation when strategic exploration is necessary. We address this open problem by introducing a novel actor-critic algorithm that attains a sample-complexity of O(dH^5 log|A|/epsilon^2 + d H^4 log|F|/ epsilon^2) trajectories, and accompanying T regret when the Bellman eluder dimension d does not increase with T at more than a log T rate. Here, F is the critic function class, A is the action space, and H is the horizon in the finite horizon MDP setting. Our algorithm integrates optimism, off-policy critic estimation targeting the optimal Q-function, and rare-switching policy resets. We extend this to the setting of Hybrid RL, showing that initializing the critic with offline data yields sample efficiency gains compared to purely offline or online RL. Further, utilizing access to offline data, we provide a non-optimistic provably efficient actor-critic algorithm that only additionally requires N_{off} geq c_{off}^*dH^4/epsilon^2 in exchange for omitting optimism, where c_{off}^* is the single-policy concentrability coefficient and N_{off} is the number of offline samples. This addresses another open problem in the literature. We further provide numerical experiments to support our theoretical findings.
A2C is a special case of PPO
Advantage Actor-critic (A2C) and Proximal Policy Optimization (PPO) are popular deep reinforcement learning algorithms used for game AI in recent years. A common understanding is that A2C and PPO are separate algorithms because PPO's clipped objective appears significantly different than A2C's objective. In this paper, however, we show A2C is a special case of PPO. We present theoretical justifications and pseudocode analysis to demonstrate why. To validate our claim, we conduct an empirical experiment using Stable-baselines3, showing A2C and PPO produce the exact same models when other settings are controlled.
HAMLET: Hyperadaptive Agent-based Modeling for Live Embodied Theatrics
Creating an immersive and interactive theatrical experience is a long-term goal in the field of interactive narrative. The emergence of large language model (LLM) is providing a new path to achieve this goal. However, existing LLM-based drama generation methods often result in agents that lack initiative and cannot interact with the physical scene. Furthermore, these methods typically require detailed user input to drive the drama. These limitations reduce the interactivity and immersion of online real-time performance. To address the above challenges, we propose HAMLET, a multi-agent framework focused on drama creation and online performance. Given a simple topic, the framework generates a narrative blueprint, guiding the subsequent improvisational performance. During the online performance, each actor is given an autonomous mind. This means that actors can make independent decisions based on their own background, goals, and emotional state. In addition to conversations with other actors, their decisions can also change the state of scene props through actions such as opening a letter or picking up a weapon. The change is then broadcast to other related actors, updating what they know and care about, which in turn influences their next action. To evaluate the quality of drama performance generated by HAMLET, we designed an evaluation method to assess three primary aspects, including character performance, narrative quality, and interaction experience. The experimental evaluation shows that HAMLET can create expressive and coherent theatrical experiences.
Training Language Models to Critique With Multi-agent Feedback
Critique ability, a meta-cognitive capability of humans, presents significant challenges for LLMs to improve. Recent works primarily rely on supervised fine-tuning (SFT) using critiques generated by a single LLM like GPT-4. However, these model-generated critiques often exhibit flaws due to the inherent complexity of the critique. Consequently, fine-tuning LLMs on such flawed critiques typically limits the model's performance and propagates these flaws into the learned model. To overcome these challenges, this paper proposes a novel data generation pipeline, named MultiCritique, that improves the critique ability of LLMs by utilizing multi-agent feedback in both the SFT and reinforcement learning (RL) stages. First, our data generation pipeline aggregates high-quality critiques from multiple agents instead of a single model, with crucial information as input for simplifying the critique. Furthermore, our pipeline improves the preference accuracy of critique quality through multi-agent feedback, facilitating the effectiveness of RL in improving the critique ability of LLMs. Based on our proposed MultiCritique data generation pipeline, we construct the MultiCritiqueDataset for the SFT and RL fine-tuning stages. Extensive experimental results on two benchmarks demonstrate: 1) the superior quality of our constructed SFT dataset compared to existing critique datasets; 2) additional improvements to the critique ability of LLMs brought by the RL stage. Notably, our fine-tuned 7B model significantly surpasses other advanced 7B-13B open-source models, approaching the performance of advanced 70B LLMs and GPT-4. Codes, datasets and model weights will be publicly available.
Offline Actor-Critic Reinforcement Learning Scales to Large Models
We show that offline actor-critic reinforcement learning can scale to large models - such as transformers - and follows similar scaling laws as supervised learning. We find that offline actor-critic algorithms can outperform strong, supervised, behavioral cloning baselines for multi-task training on a large dataset containing both sub-optimal and expert behavior on 132 continuous control tasks. We introduce a Perceiver-based actor-critic model and elucidate the key model features needed to make offline RL work with self- and cross-attention modules. Overall, we find that: i) simple offline actor critic algorithms are a natural choice for gradually moving away from the currently predominant paradigm of behavioral cloning, and ii) via offline RL it is possible to learn multi-task policies that master many domains simultaneously, including real robotics tasks, from sub-optimal demonstrations or self-generated data.
Asynchronous Methods for Deep Reinforcement Learning
We propose a conceptually simple and lightweight framework for deep reinforcement learning that uses asynchronous gradient descent for optimization of deep neural network controllers. We present asynchronous variants of four standard reinforcement learning algorithms and show that parallel actor-learners have a stabilizing effect on training allowing all four methods to successfully train neural network controllers. The best performing method, an asynchronous variant of actor-critic, surpasses the current state-of-the-art on the Atari domain while training for half the time on a single multi-core CPU instead of a GPU. Furthermore, we show that asynchronous actor-critic succeeds on a wide variety of continuous motor control problems as well as on a new task of navigating random 3D mazes using a visual input.
Soft Adaptive Policy Optimization
Reinforcement learning (RL) plays an increasingly important role in enhancing the reasoning capabilities of large language models (LLMs), yet stable and performant policy optimization remains challenging. Token-level importance ratios often exhibit high variance-a phenomenon exacerbated in Mixture-of-Experts models-leading to unstable updates. Existing group-based policy optimization methods, such as GSPO and GRPO, alleviate this problem via hard clipping, making it difficult to maintain both stability and effective learning. We propose Soft Adaptive Policy Optimization (SAPO), which replaces hard clipping with a smooth, temperature-controlled gate that adaptively attenuates off-policy updates while preserving useful learning signals. Compared with GSPO and GRPO, SAPO is both sequence-coherent and token-adaptive. Like GSPO, SAPO maintains sequence-level coherence, but its soft gating forms a continuous trust region that avoids the brittle hard clipping band used in GSPO. When a sequence contains a few highly off-policy tokens, GSPO suppresses all gradients for that sequence, whereas SAPO selectively down-weights only the offending tokens and preserves the learning signal from the near-on-policy ones, improving sample efficiency. Relative to GRPO, SAPO replaces hard token-level clipping with smooth, temperature-controlled scaling, enabling more informative and stable updates. Empirical results on mathematical reasoning benchmarks indicate that SAPO exhibits improved training stability and higher Pass@1 performance under comparable training budgets. Moreover, we employ SAPO to train the Qwen3-VL model series, demonstrating that SAPO yields consistent performance gains across diverse tasks and different model sizes. Overall, SAPO provides a more reliable, scalable, and effective optimization strategy for RL training of LLMs.
Look Before You Leap: A GUI-Critic-R1 Model for Pre-Operative Error Diagnosis in GUI Automation
In recent years, Multimodal Large Language Models (MLLMs) have been extensively utilized for multimodal reasoning tasks, including Graphical User Interface (GUI) automation. Unlike general offline multimodal tasks, GUI automation is executed in online interactive environments, necessitating step-by-step decision-making based on real-time status of the environment. This task has a lower tolerance for decision-making errors at each step, as any mistakes may cumulatively disrupt the process and potentially lead to irreversible outcomes like deletions or payments. To address these issues, we introduce a pre-operative critic mechanism that provides effective feedback prior to the actual execution, by reasoning about the potential outcome and correctness of actions. Specifically, we propose a Suggestion-aware Gradient Relative Policy Optimization (S-GRPO) strategy to construct our pre-operative critic model GUI-Critic-R1, incorporating a novel suggestion reward to enhance the reliability of the model's feedback. Furthermore, we develop a reasoning-bootstrapping based data collection pipeline to create a GUI-Critic-Train and a GUI-Critic-Test, filling existing gaps in GUI critic data. Static experiments on the GUI-Critic-Test across both mobile and web domains reveal that our GUI-Critic-R1 offers significant advantages in critic accuracy compared to current MLLMs. Dynamic evaluation on GUI automation benchmark further highlights the effectiveness and superiority of our model, as evidenced by improved success rates and operational efficiency.
Black Box Few-Shot Adaptation for Vision-Language models
Vision-Language (V-L) models trained with contrastive learning to align the visual and language modalities have been shown to be strong few-shot learners. Soft prompt learning is the method of choice for few-shot downstream adaptation aiming to bridge the modality gap caused by the distribution shift induced by the new domain. While parameter-efficient, prompt learning still requires access to the model weights and can be computationally infeasible for large models with billions of parameters. To address these shortcomings, in this work, we describe a black-box method for V-L few-shot adaptation that (a) operates on pre-computed image and text features and hence works without access to the model's weights, (b) it is orders of magnitude faster at training time, (c) it is amenable to both supervised and unsupervised training, and (d) it can be even used to align image and text features computed from uni-modal models. To achieve this, we propose Linear Feature Alignment (LFA), a simple linear approach for V-L re-alignment in the target domain. LFA is initialized from a closed-form solution to a least-squares problem and then it is iteratively updated by minimizing a re-ranking loss. Despite its simplicity, our approach can even surpass soft-prompt learning methods as shown by extensive experiments on 11 image and 2 video datasets.
Variational Quantum Soft Actor-Critic for Robotic Arm Control
Deep Reinforcement Learning is emerging as a promising approach for the continuous control task of robotic arm movement. However, the challenges of learning robust and versatile control capabilities are still far from being resolved for real-world applications, mainly because of two common issues of this learning paradigm: the exploration strategy and the slow learning speed, sometimes known as "the curse of dimensionality". This work aims at exploring and assessing the advantages of the application of Quantum Computing to one of the state-of-art Reinforcement Learning techniques for continuous control - namely Soft Actor-Critic. Specifically, the performance of a Variational Quantum Soft Actor-Critic on the movement of a virtual robotic arm has been investigated by means of digital simulations of quantum circuits. A quantum advantage over the classical algorithm has been found in terms of a significant decrease in the amount of required parameters for satisfactory model training, paving the way for further promising developments.
ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization
The varying significance of distinct primitive behaviors during the policy learning process has been overlooked by prior model-free RL algorithms. Leveraging this insight, we explore the causal relationship between different action dimensions and rewards to evaluate the significance of various primitive behaviors during training. We introduce a causality-aware entropy term that effectively identifies and prioritizes actions with high potential impacts for efficient exploration. Furthermore, to prevent excessive focus on specific primitive behaviors, we analyze the gradient dormancy phenomenon and introduce a dormancy-guided reset mechanism to further enhance the efficacy of our method. Our proposed algorithm, ACE: Off-policy Actor-critic with Causality-aware Entropy regularization, demonstrates a substantial performance advantage across 29 diverse continuous control tasks spanning 7 domains compared to model-free RL baselines, which underscores the effectiveness, versatility, and efficient sample efficiency of our approach. Benchmark results and videos are available at https://ace-rl.github.io/.
Mistral-C2F: Coarse to Fine Actor for Analytical and Reasoning Enhancement in RLHF and Effective-Merged LLMs
Despite the advances in Large Language Models (LLMs), exemplified by models like GPT-4 and Claude, smaller-scale LLMs such as Llama and Mistral often struggle with generating in-depth and coherent dialogues. This paper presents a novel two-step Coarse-to-Fine Actor model to address the inherent limitations in conversational and analytical capabilities of small-sized LLMs. Our approach begins with the Policy-based Coarse Actor, employing a technique we term "Continuous Maximization". The Coarse Actor establishes an enhanced, knowledge-rich pool adept at aligning with human preference styles in analysis and reasoning. Through the RLHF process, it employs Continuous Maximization, a strategy that dynamically and adaptively extends the output length limit, enabling the generation of more detailed and analytical content. Subsequently, the Fine Actor refines this analytical content, addressing the generation of excessively redundant information from the Coarse Actor. We introduce a "Knowledge Residue Merger" approach, refining the content from the Coarse Actor and merging it with an existing Instruction model to improve quality, correctness, and reduce redundancies. We applied our methodology to the popular Mistral model, creating Mistral-C2F, which has demonstrated exceptional performance across 11 general language tasks and the MT-Bench Dialogue task, outperforming similar-scale models and even larger models with 13B and 30B parameters. Our model has significantly improved conversational and analytical reasoning abilities.
MMC: Iterative Refinement of VLM Reasoning via MCTS-based Multimodal Critique
Visual language models (VLMs) have demonstrated strong performance across diverse multimodal reasoning tasks but still face challenges such as hallucinations, resulting in incorrect reasoning outcomes. Inspired by recent research on external feedback mechanisms in large language models (LLMs), we propose a multimodal actor-critic framework to enhance VLM reasoning capabilities. Specifically, the actor model generates step-by-step reasoning paths based on image and text inputs, while the critic model evaluates these reasoning paths and provides corrective feedback. The actor model iteratively refines its reasoning based on the feedback until the reasoning outcome is deemed satisfactory by the critic model. To reduce reliance on costly manual annotations, we introduce an automated method for constructing multimodal critique datasets. By leveraging Monte Carlo Tree Search (MCTS), we systematically guide the actor model to explore diverse reasoning paths. To obtain critique data for correcting erroneous reasoning steps, we prompt an annotator model to compare pairs of reasoning paths diverging from a shared ancestor node - one leading to a correct conclusion and the other to an incorrect one. This approach enables us to construct the MMC (MCTS-based Multimodal Critique) dataset, upon which we further develop a comprehensive training and inference pipeline. Extensive experiments conducted on several public benchmark datasets and mainstream VLMs demonstrate that our approach significantly improves the performance of VLM on complex multimodal reasoning tasks, underscoring its effectiveness and wide applicability.
LLaVA-Critic-R1: Your Critic Model is Secretly a Strong Policy Model
In vision-language modeling, critic models are typically trained to evaluate outputs -- assigning scalar scores or pairwise preferences -- rather than to generate responses. This separation from policy models, which produce the responses, is so entrenched that critics are rarely considered for direct policy use. In this work, we challenge this convention. We propose to reorganize preference-labeled critic datasets into verifiable training signals and perform reinforcement learning directly on a base generative model, producing LLaVA-Critic-R1, a multimodal critic trained to optimize preference judgments while retaining full generation ability. Surprisingly, LLaVA-Critic-R1 emerges not only as a top-performing critic but also as a competitive policy model -- matching or surpassing specialized reasoning VLMs trained with in-domain data across 26 visual reasoning and understanding benchmarks, with an average gain of +5.7% over its base model (Qwen-2.5-VL-7B). Extending this approach to existing strong reasoning VLMs yields LLaVA-Critic-R1+, which further advances policy performance without sacrificing critic quality, achieving a SoTA performance of 71.9 on MMMU at the 7B scale. Finally, we show that the enhanced critic ability benefits inference: applying self-critique at test time yields an average +13.8% improvement on five representative reasoning tasks without additional training. Our results reveal that RL training on critic data can produce a unified model excelling at both evaluation and generation, offering a simple path toward scalable, self-improving multimodal systems.
L^{2}NAS: Learning to Optimize Neural Architectures via Continuous-Action Reinforcement Learning
Neural architecture search (NAS) has achieved remarkable results in deep neural network design. Differentiable architecture search converts the search over discrete architectures into a hyperparameter optimization problem which can be solved by gradient descent. However, questions have been raised regarding the effectiveness and generalizability of gradient methods for solving non-convex architecture hyperparameter optimization problems. In this paper, we propose L^{2}NAS, which learns to intelligently optimize and update architecture hyperparameters via an actor neural network based on the distribution of high-performing architectures in the search history. We introduce a quantile-driven training procedure which efficiently trains L^{2}NAS in an actor-critic framework via continuous-action reinforcement learning. Experiments show that L^{2}NAS achieves state-of-the-art results on NAS-Bench-201 benchmark as well as DARTS search space and Once-for-All MobileNetV3 search space. We also show that search policies generated by L^{2}NAS are generalizable and transferable across different training datasets with minimal fine-tuning.
Hybrid Learning and Optimization methods for solving Capacitated Vehicle Routing Problem
The Capacitated Vehicle Routing Problem (CVRP) is a fundamental NP-hard problem in logistics. Augmented Lagrangian Methods (ALM) for solving CVRP performance depends heavily on well-tuned penalty parameters. In this paper, we propose a hybrid optimization approach that integrates deep reinforcement learning (RL) to automate the selection of penalty parameter values within both classical (RL-C-ALM) and quantum-enhanced (RL-Q-ALM) ALM solvers. Using Soft Actor-Critic, our approach learns penalty values from CVRP instance features and constraint violations. In RL-Q-ALM, subproblems are encoded as QUBOs and solved using Variational Quantum Eigensolvers (VQE). The agent learns across episodes by maximizing solution feasibility and minimizing cost. Experiments show that RL-C-ALM outperforms manually tuned ALM on synthetic and benchmark CVRP instances, achieving better solutions with fewer iterations. Also, RL-Q-ALM matches classical solution quality on small instances but incurs higher runtimes due to quantum overhead. Our results highlight the potential of combining RL with classical and quantum solvers for scalable, adaptive combinatorial optimization.
Exploring the Promise and Limits of Real-Time Recurrent Learning
Real-time recurrent learning (RTRL) for sequence-processing recurrent neural networks (RNNs) offers certain conceptual advantages over backpropagation through time (BPTT). RTRL requires neither caching past activations nor truncating context, and enables online learning. However, RTRL's time and space complexity make it impractical. To overcome this problem, most recent work on RTRL focuses on approximation theories, while experiments are often limited to diagnostic settings. Here we explore the practical promise of RTRL in more realistic settings. We study actor-critic methods that combine RTRL and policy gradients, and test them in several subsets of DMLab-30, ProcGen, and Atari-2600 environments. On DMLab memory tasks, our system trained on fewer than 1.2 B environmental frames is competitive with or outperforms well-known IMPALA and R2D2 baselines trained on 10 B frames. To scale to such challenging tasks, we focus on certain well-known neural architectures with element-wise recurrence, allowing for tractable RTRL without approximation. Importantly, we also discuss rarely addressed limitations of RTRL in real-world applications, such as its complexity in the multi-layer case.
On the Soft-Subnetwork for Few-shot Class Incremental Learning
Inspired by Regularized Lottery Ticket Hypothesis (RLTH), which hypothesizes that there exist smooth (non-binary) subnetworks within a dense network that achieve the competitive performance of the dense network, we propose a few-shot class incremental learning (FSCIL) method referred to as Soft-SubNetworks (SoftNet). Our objective is to learn a sequence of sessions incrementally, where each session only includes a few training instances per class while preserving the knowledge of the previously learned ones. SoftNet jointly learns the model weights and adaptive non-binary soft masks at a base training session in which each mask consists of the major and minor subnetwork; the former aims to minimize catastrophic forgetting during training, and the latter aims to avoid overfitting to a few samples in each new training session. We provide comprehensive empirical validations demonstrating that our SoftNet effectively tackles the few-shot incremental learning problem by surpassing the performance of state-of-the-art baselines over benchmark datasets.
TacSL: A Library for Visuotactile Sensor Simulation and Learning
For both humans and robots, the sense of touch, known as tactile sensing, is critical for performing contact-rich manipulation tasks. Three key challenges in robotic tactile sensing are 1) interpreting sensor signals, 2) generating sensor signals in novel scenarios, and 3) learning sensor-based policies. For visuotactile sensors, interpretation has been facilitated by their close relationship with vision sensors (e.g., RGB cameras). However, generation is still difficult, as visuotactile sensors typically involve contact, deformation, illumination, and imaging, all of which are expensive to simulate; in turn, policy learning has been challenging, as simulation cannot be leveraged for large-scale data collection. We present TacSL (taxel), a library for GPU-based visuotactile sensor simulation and learning. TacSL can be used to simulate visuotactile images and extract contact-force distributions over 200times faster than the prior state-of-the-art, all within the widely-used Isaac Gym simulator. Furthermore, TacSL provides a learning toolkit containing multiple sensor models, contact-intensive training environments, and online/offline algorithms that can facilitate policy learning for sim-to-real applications. On the algorithmic side, we introduce a novel online reinforcement-learning algorithm called asymmetric actor-critic distillation (\sysName), designed to effectively and efficiently learn tactile-based policies in simulation that can transfer to the real world. Finally, we demonstrate the utility of our library and algorithms by evaluating the benefits of distillation and multimodal sensing for contact-rich manip ulation tasks, and most critically, performing sim-to-real transfer. Supplementary videos and results are at https://iakinola23.github.io/tacsl/.
Multi-Agent Inverse Q-Learning from Demonstrations
When reward functions are hand-designed, deep reinforcement learning algorithms often suffer from reward misspecification, causing them to learn suboptimal policies in terms of the intended task objectives. In the single-agent case, inverse reinforcement learning (IRL) techniques attempt to address this issue by inferring the reward function from expert demonstrations. However, in multi-agent problems, misalignment between the learned and true objectives is exacerbated due to increased environment non-stationarity and variance that scales with multiple agents. As such, in multi-agent general-sum games, multi-agent IRL algorithms have difficulty balancing cooperative and competitive objectives. To address these issues, we propose Multi-Agent Marginal Q-Learning from Demonstrations (MAMQL), a novel sample-efficient framework for multi-agent IRL. For each agent, MAMQL learns a critic marginalized over the other agents' policies, allowing for a well-motivated use of Boltzmann policies in the multi-agent context. We identify a connection between optimal marginalized critics and single-agent soft-Q IRL, allowing us to apply a direct, simple optimization criterion from the single-agent domain. Across our experiments on three different simulated domains, MAMQL significantly outperforms previous multi-agent methods in average reward, sample efficiency, and reward recovery by often more than 2-5x. We make our code available at https://sites.google.com/view/mamql .
SEAgent: Self-Evolving Computer Use Agent with Autonomous Learning from Experience
Repurposing large vision-language models (LVLMs) as computer use agents (CUAs) has led to substantial breakthroughs, primarily driven by human-labeled data. However, these models often struggle with novel and specialized software, particularly in scenarios lacking human annotations. To address this challenge, we propose SEAgent, an agentic self-evolving framework enabling CUAs to autonomously evolve through interactions with unfamiliar software. Specifically, SEAgent empowers computer-use agents to autonomously master novel software environments via experiential learning, where agents explore new software, learn through iterative trial-and-error, and progressively tackle auto-generated tasks organized from simple to complex. To achieve this goal, we design a World State Model for step-wise trajectory assessment, along with a Curriculum Generator that generates increasingly diverse and challenging tasks. The agent's policy is updated through experiential learning, comprised of adversarial imitation of failure actions and Group Relative Policy Optimization (GRPO) on successful ones. Furthermore, we introduce a specialist-to-generalist training strategy that integrates individual experiential insights from specialist agents, facilitating the development of a stronger generalist CUA capable of continuous autonomous evolution. This unified agent ultimately achieves performance surpassing ensembles of individual specialist agents on their specialized software. We validate the effectiveness of SEAgent across five novel software environments within OS-World. Our approach achieves a significant improvement of 23.2% in success rate, from 11.3% to 34.5%, over a competitive open-source CUA, i.e., UI-TARS.
Bootstrability in Line-Defect CFT with Improved Truncation Methods
We study the conformal bootstrap of 1D CFTs on the straight Maldacena-Wilson line in 4D {cal N}=4 super-Yang-Mills theory. We introduce an improved truncation scheme with an 'OPE tail' approximation and use it to reproduce the 'bootstrability' results of Cavagli\`a et al. for the OPE-coefficients squared of the first three unprotected operators. For example, for the first OPE-coefficient squared at 't Hooft coupling (4pi)^2, linear-functional methods with two sum rules from integrated correlators give the rigorous result 0.294014873 pm 4.88 cdot 10^{-8}, whereas our methods give with machine-precision computations 0.294014228 pm 6.77 cdot 10^{-7}. For our numerical searches, we benchmark the Reinforcement Learning Soft Actor-Critic algorithm against an Interior Point Method algorithm (IPOPT) and comment on the merits of each algorithm.
Improving Multi-Step Reasoning Abilities of Large Language Models with Direct Advantage Policy Optimization
The role of reinforcement learning (RL) in enhancing the reasoning of large language models (LLMs) is becoming increasingly significant. Despite the success of RL in many scenarios, there are still many challenges in improving the reasoning of LLMs. One challenge is the sparse reward, which makes optimization difficult for RL and necessitates a large amount of data samples. Another challenge stems from the inherent instability of RL, particularly when using Actor-Critic (AC) methods to derive optimal policies, which often leads to unstable training processes. To address these issues, we introduce Direct Advantage Policy Optimization (DAPO), an novel step-level offline RL algorithm. Unlike standard alignment that rely solely outcome rewards to optimize policies (such as DPO), DAPO employs a critic function to predict the reasoning accuracy at each step, thereby generating dense signals to refine the generation strategy. Additionally, the Actor and Critic components in DAPO are trained independently, avoiding the co-training instability observed in standard AC algorithms like PPO. We train DAPO on mathematical and code query datasets and then evaluate its performance on multiple benchmarks. Our results show that DAPO can effectively enhance the mathematical and code capabilities on both SFT models and RL models, demonstrating the effectiveness of DAPO.
Conservative State Value Estimation for Offline Reinforcement Learning
Offline reinforcement learning faces a significant challenge of value over-estimation due to the distributional drift between the dataset and the current learned policy, leading to learning failure in practice. The common approach is to incorporate a penalty term to reward or value estimation in the Bellman iterations. Meanwhile, to avoid extrapolation on out-of-distribution (OOD) states and actions, existing methods focus on conservative Q-function estimation. In this paper, we propose Conservative State Value Estimation (CSVE), a new approach that learns conservative V-function via directly imposing penalty on OOD states. Compared to prior work, CSVE allows more effective in-data policy optimization with conservative value guarantees. Further, we apply CSVE and develop a practical actor-critic algorithm in which the critic does the conservative value estimation by additionally sampling and penalizing the states around the dataset, and the actor applies advantage weighted updates extended with state exploration to improve the policy. We evaluate in classic continual control tasks of D4RL, showing that our method performs better than the conservative Q-function learning methods and is strongly competitive among recent SOTA methods.
Multi-Agent Actor-Critic with Harmonic Annealing Pruning for Dynamic Spectrum Access Systems
Multi-Agent Deep Reinforcement Learning (MADRL) has emerged as a powerful tool for optimizing decentralized decision-making systems in complex settings, such as Dynamic Spectrum Access (DSA). However, deploying deep learning models on resource-constrained edge devices remains challenging due to their high computational cost. To address this challenge, in this paper, we present a novel sparse recurrent MARL framework integrating gradual neural network pruning into the independent actor global critic paradigm. Additionally, we introduce a harmonic annealing sparsity scheduler, which achieves comparable, and in certain cases superior, performance to standard linear and polynomial pruning schedulers at large sparsities. Our experimental investigation demonstrates that the proposed DSA framework can discover superior policies, under diverse training conditions, outperforming conventional DSA, MADRL baselines, and state-of-the-art pruning techniques.
MARS: A Multi-Agent Framework Incorporating Socratic Guidance for Automated Prompt Optimization
The basic question-answering format of large language models involves inputting a prompt and receiving a response, and the quality of the prompt directly impacts the effectiveness of the response. Automated Prompt Optimization (APO) aims to break free from the cognitive biases of manually designed prompts and explores a broader design space for prompts. However, existing APO methods suffer from limited flexibility of fixed templates and inefficient search in prompt spaces as key issues. To this end, we propose a Multi-Agent framework Incorporating Socratic guidance (MARS), which utilizes multi-agent fusion technology for automatic planning, with gradual continuous optimization and evaluation. Specifically, MARS comprises seven agents, each with distinct functionalities, which autonomously use the Planner to devise an optimization path that ensures flexibility. Additionally, it employs a Teacher-Critic-Student Socratic dialogue pattern to iteratively optimize the prompts while conducting effective search. We conduct extensive experiments on various datasets to validate the effectiveness of our method, and perform additional analytical experiments to assess the model's advancement as well as the interpretability.
MAP-Elites with Descriptor-Conditioned Gradients and Archive Distillation into a Single Policy
Quality-Diversity algorithms, such as MAP-Elites, are a branch of Evolutionary Computation generating collections of diverse and high-performing solutions, that have been successfully applied to a variety of domains and particularly in evolutionary robotics. However, MAP-Elites performs a divergent search based on random mutations originating from Genetic Algorithms, and thus, is limited to evolving populations of low-dimensional solutions. PGA-MAP-Elites overcomes this limitation by integrating a gradient-based variation operator inspired by Deep Reinforcement Learning which enables the evolution of large neural networks. Although high-performing in many environments, PGA-MAP-Elites fails on several tasks where the convergent search of the gradient-based operator does not direct mutations towards archive-improving solutions. In this work, we present two contributions: (1) we enhance the Policy Gradient variation operator with a descriptor-conditioned critic that improves the archive across the entire descriptor space, (2) we exploit the actor-critic training to learn a descriptor-conditioned policy at no additional cost, distilling the knowledge of the archive into one single versatile policy that can execute the entire range of behaviors contained in the archive. Our algorithm, DCG-MAP-Elites improves the QD score over PGA-MAP-Elites by 82% on average, on a set of challenging locomotion tasks.
SoftGPT: Learn Goal-oriented Soft Object Manipulation Skills by Generative Pre-trained Heterogeneous Graph Transformer
Soft object manipulation tasks in domestic scenes pose a significant challenge for existing robotic skill learning techniques due to their complex dynamics and variable shape characteristics. Since learning new manipulation skills from human demonstration is an effective way for robot applications, developing prior knowledge of the representation and dynamics of soft objects is necessary. In this regard, we propose a pre-trained soft object manipulation skill learning model, namely SoftGPT, that is trained using large amounts of exploration data, consisting of a three-dimensional heterogeneous graph representation and a GPT-based dynamics model. For each downstream task, a goal-oriented policy agent is trained to predict the subsequent actions, and SoftGPT generates the consequences of these actions. Integrating these two approaches establishes a thinking process in the robot's mind that provides rollout for facilitating policy learning. Our results demonstrate that leveraging prior knowledge through this thinking process can efficiently learn various soft object manipulation skills, with the potential for direct learning from human demonstrations.
SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning
Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simplicity bias, guiding models toward simple and generalizable solutions. However, in deep RL, designing and scaling up networks have been less explored. Motivated by this opportunity, we present SimBa, an architecture designed to scale up parameters in deep RL by injecting a simplicity bias. SimBa consists of three components: (i) an observation normalization layer that standardizes inputs with running statistics, (ii) a residual feedforward block to provide a linear pathway from the input to output, and (iii) a layer normalization to control feature magnitudes. By scaling up parameters with SimBa, the sample efficiency of various deep RL algorithms-including off-policy, on-policy, and unsupervised methods-is consistently improved. Moreover, solely by integrating SimBa architecture into SAC, it matches or surpasses state-of-the-art deep RL methods with high computational efficiency across DMC, MyoSuite, and HumanoidBench. These results demonstrate SimBa's broad applicability and effectiveness across diverse RL algorithms and environments.
Generalization in Reinforcement Learning by Soft Data Augmentation
Extensive efforts have been made to improve the generalization ability of Reinforcement Learning (RL) methods via domain randomization and data augmentation. However, as more factors of variation are introduced during training, optimization becomes increasingly challenging, and empirically may result in lower sample efficiency and unstable training. Instead of learning policies directly from augmented data, we propose SOft Data Augmentation (SODA), a method that decouples augmentation from policy learning. Specifically, SODA imposes a soft constraint on the encoder that aims to maximize the mutual information between latent representations of augmented and non-augmented data, while the RL optimization process uses strictly non-augmented data. Empirical evaluations are performed on diverse tasks from DeepMind Control suite as well as a robotic manipulation task, and we find SODA to significantly advance sample efficiency, generalization, and stability in training over state-of-the-art vision-based RL methods.
Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning
Vision-language models~(VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.
DRLC: Reinforcement Learning with Dense Rewards from LLM Critic
Reinforcement learning (RL) can align language models with non-differentiable reward signals, such as human preferences. However, a major challenge arises from the sparsity of these reward signals - typically, there is only one reward for the entire generation. This sparsity of rewards can lead to inefficient and unstable learning. In this paper, we introduce a novel framework leveraging the critique ability of LLMs to produce dense rewards throughout the learning process. Our approach incorporates a critic language model alongside the policy model. This critic is prompted with the task description, question, policy model's output, and environment's reward signal as input, and provides token or span-level dense rewards that reflect the quality of each segment of the output. We assess our approach on three text generation tasks: sentiment control, language model detoxification, and summarization. Experimental results show that incorporating artificial dense rewards in training yields consistent performance gains over the PPO baseline with holistic rewards. Furthermore, in a setting where the same model serves as both policy and critic, we demonstrate that "self-critique" rewards also boost learning efficiency.
Adversarial Imitation Learning via Boosting
Adversarial imitation learning (AIL) has stood out as a dominant framework across various imitation learning (IL) applications, with Discriminator Actor Critic (DAC) (Kostrikov et al.,, 2019) demonstrating the effectiveness of off-policy learning algorithms in improving sample efficiency and scalability to higher-dimensional observations. Despite DAC's empirical success, the original AIL objective is on-policy and DAC's ad-hoc application of off-policy training does not guarantee successful imitation (Kostrikov et al., 2019; 2020). Follow-up work such as ValueDICE (Kostrikov et al., 2020) tackles this issue by deriving a fully off-policy AIL objective. Instead in this work, we develop a novel and principled AIL algorithm via the framework of boosting. Like boosting, our new algorithm, AILBoost, maintains an ensemble of properly weighted weak learners (i.e., policies) and trains a discriminator that witnesses the maximum discrepancy between the distributions of the ensemble and the expert policy. We maintain a weighted replay buffer to represent the state-action distribution induced by the ensemble, allowing us to train discriminators using the entire data collected so far. In the weighted replay buffer, the contribution of the data from older policies are properly discounted with the weight computed based on the boosting framework. Empirically, we evaluate our algorithm on both controller state-based and pixel-based environments from the DeepMind Control Suite. AILBoost outperforms DAC on both types of environments, demonstrating the benefit of properly weighting replay buffer data for off-policy training. On state-based environments, DAC outperforms ValueDICE and IQ-Learn (Gary et al., 2021), achieving competitive performance with as little as one expert trajectory.
Overcoming Slow Decision Frequencies in Continuous Control: Model-Based Sequence Reinforcement Learning for Model-Free Control
Reinforcement learning (RL) is rapidly reaching and surpassing human-level control capabilities. However, state-of-the-art RL algorithms often require timesteps and reaction times significantly faster than human capabilities, which is impractical in real-world settings and typically necessitates specialized hardware. Such speeds are difficult to achieve in the real world and often requires specialized hardware. We introduce Sequence Reinforcement Learning (SRL), an RL algorithm designed to produce a sequence of actions for a given input state, enabling effective control at lower decision frequencies. SRL addresses the challenges of learning action sequences by employing both a model and an actor-critic architecture operating at different temporal scales. We propose a "temporal recall" mechanism, where the critic uses the model to estimate intermediate states between primitive actions, providing a learning signal for each individual action within the sequence. Once training is complete, the actor can generate action sequences independently of the model, achieving model-free control at a slower frequency. We evaluate SRL on a suite of continuous control tasks, demonstrating that it achieves performance comparable to state-of-the-art algorithms while significantly reducing actor sample complexity. To better assess performance across varying decision frequencies, we introduce the Frequency-Averaged Score (FAS) metric. Our results show that SRL significantly outperforms traditional RL algorithms in terms of FAS, making it particularly suitable for applications requiring variable decision frequencies. Additionally, we compare SRL with model-based online planning, showing that SRL achieves superior FAS while leveraging the same model during training that online planners use for planning.
LLaVA-Critic: Learning to Evaluate Multimodal Models
We introduce LLaVA-Critic, the first open-source large multimodal model (LMM) designed as a generalist evaluator to assess performance across a wide range of multimodal tasks. LLaVA-Critic is trained using a high-quality critic instruction-following dataset that incorporates diverse evaluation criteria and scenarios. Our experiments demonstrate the model's effectiveness in two key areas: (1) LMM-as-a-Judge, where LLaVA-Critic provides reliable evaluation scores, performing on par with or surpassing GPT models on multiple evaluation benchmarks; and (2) Preference Learning, where it generates reward signals for preference learning, enhancing model alignment capabilities. This work underscores the potential of open-source LMMs in self-critique and evaluation, setting the stage for future research into scalable, superhuman alignment feedback mechanisms for LMMs.
Risk-sensitive Reinforcement Learning Based on Convex Scoring Functions
We propose a reinforcement learning (RL) framework under a broad class of risk objectives, characterized by convex scoring functions. This class covers many common risk measures, such as variance, Expected Shortfall, entropic Value-at-Risk, and mean-risk utility. To resolve the time-inconsistency issue, we consider an augmented state space and an auxiliary variable and recast the problem as a two-state optimization problem. We propose a customized Actor-Critic algorithm and establish some theoretical approximation guarantees. A key theoretical contribution is that our results do not require the Markov decision process to be continuous. Additionally, we propose an auxiliary variable sampling method inspired by the alternating minimization algorithm, which is convergent under certain conditions. We validate our approach in simulation experiments with a financial application in statistical arbitrage trading, demonstrating the effectiveness of the algorithm.
DRED: Zero-Shot Transfer in Reinforcement Learning via Data-Regularised Environment Design
Autonomous agents trained using deep reinforcement learning (RL) often lack the ability to successfully generalise to new environments, even when these environments share characteristics with the ones they have encountered during training. In this work, we investigate how the sampling of individual environment instances, or levels, affects the zero-shot generalisation (ZSG) ability of RL agents. We discover that, for deep actor-critic architectures sharing their base layers, prioritising levels according to their value loss minimises the mutual information between the agent's internal representation and the set of training levels in the generated training data. This provides a novel theoretical justification for the regularisation achieved by certain adaptive sampling strategies. We then turn our attention to unsupervised environment design (UED) methods, which assume control over level generation. We find that existing UED methods can significantly shift the training distribution, which translates to low ZSG performance. To prevent both overfitting and distributional shift, we introduce data-regularised environment design (DRED). DRED generates levels using a generative model trained to approximate the ground truth distribution of an initial set of level parameters. Through its grounding, DRED achieves significant improvements in ZSG over adaptive level sampling strategies and UED methods. Our code and experimental data are available at https://github.com/uoe-agents/dred.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.
Addressing Function Approximation Error in Actor-Critic Methods
In value-based reinforcement learning methods such as deep Q-learning, function approximation errors are known to lead to overestimated value estimates and suboptimal policies. We show that this problem persists in an actor-critic setting and propose novel mechanisms to minimize its effects on both the actor and the critic. Our algorithm builds on Double Q-learning, by taking the minimum value between a pair of critics to limit overestimation. We draw the connection between target networks and overestimation bias, and suggest delaying policy updates to reduce per-update error and further improve performance. We evaluate our method on the suite of OpenAI gym tasks, outperforming the state of the art in every environment tested.
Game On: Towards Language Models as RL Experimenters
We propose an agent architecture that automates parts of the common reinforcement learning experiment workflow, to enable automated mastery of control domains for embodied agents. To do so, it leverages a VLM to perform some of the capabilities normally required of a human experimenter, including the monitoring and analysis of experiment progress, the proposition of new tasks based on past successes and failures of the agent, decomposing tasks into a sequence of subtasks (skills), and retrieval of the skill to execute - enabling our system to build automated curricula for learning. We believe this is one of the first proposals for a system that leverages a VLM throughout the full experiment cycle of reinforcement learning. We provide a first prototype of this system, and examine the feasibility of current models and techniques for the desired level of automation. For this, we use a standard Gemini model, without additional fine-tuning, to provide a curriculum of skills to a language-conditioned Actor-Critic algorithm, in order to steer data collection so as to aid learning new skills. Data collected in this way is shown to be useful for learning and iteratively improving control policies in a robotics domain. Additional examination of the ability of the system to build a growing library of skills, and to judge the progress of the training of those skills, also shows promising results, suggesting that the proposed architecture provides a potential recipe for fully automated mastery of tasks and domains for embodied agents.
Learning from Suboptimal Data in Continuous Control via Auto-Regressive Soft Q-Network
Reinforcement learning (RL) for continuous control often requires large amounts of online interaction data. Value-based RL methods can mitigate this burden by offering relatively high sample efficiency. Some studies further enhance sample efficiency by incorporating offline demonstration data to "kick-start" training, achieving promising results in continuous control. However, they typically compute the Q-function independently for each action dimension, neglecting interdependencies and making it harder to identify optimal actions when learning from suboptimal data, such as non-expert demonstration and online-collected data during the training process. To address these issues, we propose Auto-Regressive Soft Q-learning (ARSQ), a value-based RL algorithm that models Q-values in a coarse-to-fine, auto-regressive manner. First, ARSQ decomposes the continuous action space into discrete spaces in a coarse-to-fine hierarchy, enhancing sample efficiency for fine-grained continuous control tasks. Next, it auto-regressively predicts dimensional action advantages within each decision step, enabling more effective decision-making in continuous control tasks. We evaluate ARSQ on two continuous control benchmarks, RLBench and D4RL, integrating demonstration data into online training. On D4RL, which includes non-expert demonstrations, ARSQ achieves an average 1.62times performance improvement over SOTA value-based baseline. On RLBench, which incorporates expert demonstrations, ARSQ surpasses various baselines, demonstrating its effectiveness in learning from suboptimal online-collected data. Project page is at https://sites.google.com/view/ar-soft-q
Offline Data Enhanced On-Policy Policy Gradient with Provable Guarantees
Hybrid RL is the setting where an RL agent has access to both offline data and online data by interacting with the real-world environment. In this work, we propose a new hybrid RL algorithm that combines an on-policy actor-critic method with offline data. On-policy methods such as policy gradient and natural policy gradient (NPG) have shown to be more robust to model misspecification, though sometimes it may not be as sample efficient as methods that rely on off-policy learning. On the other hand, offline methods that depend on off-policy training often require strong assumptions in theory and are less stable to train in practice. Our new approach integrates a procedure of off-policy training on the offline data into an on-policy NPG framework. We show that our approach, in theory, can obtain a best-of-both-worlds type of result -- it achieves the state-of-art theoretical guarantees of offline RL when offline RL-specific assumptions hold, while at the same time maintaining the theoretical guarantees of on-policy NPG regardless of the offline RL assumptions' validity. Experimentally, in challenging rich-observation environments, we show that our approach outperforms a state-of-the-art hybrid RL baseline which only relies on off-policy policy optimization, demonstrating the empirical benefit of combining on-policy and off-policy learning. Our code is publicly available at https://github.com/YifeiZhou02/HNPG.
FantasyTalking2: Timestep-Layer Adaptive Preference Optimization for Audio-Driven Portrait Animation
Recent advances in audio-driven portrait animation have demonstrated impressive capabilities. However, existing methods struggle to align with fine-grained human preferences across multiple dimensions, such as motion naturalness, lip-sync accuracy, and visual quality. This is due to the difficulty of optimizing among competing preference objectives, which often conflict with one another, and the scarcity of large-scale, high-quality datasets with multidimensional preference annotations. To address these, we first introduce Talking-Critic, a multimodal reward model that learns human-aligned reward functions to quantify how well generated videos satisfy multidimensional expectations. Leveraging this model, we curate Talking-NSQ, a large-scale multidimensional human preference dataset containing 410K preference pairs. Finally, we propose Timestep-Layer adaptive multi-expert Preference Optimization (TLPO), a novel framework for aligning diffusion-based portrait animation models with fine-grained, multidimensional preferences. TLPO decouples preferences into specialized expert modules, which are then fused across timesteps and network layers, enabling comprehensive, fine-grained enhancement across all dimensions without mutual interference. Experiments demonstrate that Talking-Critic significantly outperforms existing methods in aligning with human preference ratings. Meanwhile, TLPO achieves substantial improvements over baseline models in lip-sync accuracy, motion naturalness, and visual quality, exhibiting superior performance in both qualitative and quantitative evaluations. Ours project page: https://fantasy-amap.github.io/fantasy-talking2/
ADPO: Anchored Direct Preference Optimization
Direct Preference Optimization (DPO) has emerged as a simple alternative to reinforcement learning from human feedback (RLHF) for aligning language models, but its reliance on hard pairwise labels makes it brittle under noise; our experiments show performance degrading by up to 93 percent in noisy settings. We introduce Anchored Direct Preference Optimization (ADPO), a unified framework that addresses this fragility through reference anchoring. By minimizing KL(q || softmax((l - l_ref) / tau_anc)), where l_ref are reference policy log probabilities, ADPO provides three key advantages: (1) it unifies major learning paradigms, including supervised fine-tuning, knowledge distillation, maximum-entropy reinforcement learning, and DPO, as special cases through different choices of target distribution q, anchor policy pi_ref, and temperature tau_anc; (2) it induces an implicit trust region governed by the softmax Fisher metric with curvature scaling as 1 / tau_anc^2, providing geometric regularization absent in standard methods; and (3) it enables flexible anchor strategies tailored to different learning contexts. Empirically, ADPO consistently outperforms standard DPO by 12 to 93 percent across twelve noisy scenarios, with listwise variants achieving top performance in eleven of twelve cases. In offline distillation, ADPO reduces student-teacher KL by 4 to 49 times while achieving superior returns (for example, 279.3 vs -309.0 for knowledge distillation on HalfCheetah). We further uncover a task-dependent tradeoff: dynamic anchors excel at online exploration in noisy environments (plus 5 to 11 percent), while fixed anchors enable stable offline distillation. Our work establishes anchoring as a general principle for robust policy optimization, with clear practical guidance for anchor selection across diverse learning scenarios.
Unlocking the Essence of Beauty: Advanced Aesthetic Reasoning with Relative-Absolute Policy Optimization
Multimodal large language models (MLLMs) are well suited to image aesthetic assessment, as they can capture high-level aesthetic features leveraging their cross-modal understanding capacity. However, the scarcity of multimodal aesthetic reasoning data and the inherently subjective nature of aesthetic judgment make it difficult for MLLMs to generate accurate aesthetic judgments with interpretable rationales. To this end, we propose Aes-R1, a comprehensive aesthetic reasoning framework with reinforcement learning (RL). Concretely, Aes-R1 integrates a pipeline, AesCoT, to construct and filter high-quality chain-of-thought aesthetic reasoning data used for cold-start. After teaching the model to generate structured explanations prior to scoring, we then employ the Relative-Absolute Policy Optimization (RAPO), a novel RL algorithm that jointly optimizes absolute score regression and relative ranking order, improving both per-image accuracy and cross-image preference judgments. Aes-R1 enables MLLMs to generate grounded explanations alongside faithful scores, thereby enhancing aesthetic scoring and reasoning in a unified framework. Extensive experiments demonstrate that Aes-R1 improves the backbone's average PLCC/SRCC by 47.9%/34.8%, surpassing state-of-the-art baselines of similar size. More ablation studies validate Aes-R1's robust generalization under limited supervision and in out-of-distribution scenarios.
HuMo: Human-Centric Video Generation via Collaborative Multi-Modal Conditioning
Human-Centric Video Generation (HCVG) methods seek to synthesize human videos from multimodal inputs, including text, image, and audio. Existing methods struggle to effectively coordinate these heterogeneous modalities due to two challenges: the scarcity of training data with paired triplet conditions and the difficulty of collaborating the sub-tasks of subject preservation and audio-visual sync with multimodal inputs. In this work, we present HuMo, a unified HCVG framework for collaborative multimodal control. For the first challenge, we construct a high-quality dataset with diverse and paired text, reference images, and audio. For the second challenge, we propose a two-stage progressive multimodal training paradigm with task-specific strategies. For the subject preservation task, to maintain the prompt following and visual generation abilities of the foundation model, we adopt the minimal-invasive image injection strategy. For the audio-visual sync task, besides the commonly adopted audio cross-attention layer, we propose a focus-by-predicting strategy that implicitly guides the model to associate audio with facial regions. For joint learning of controllabilities across multimodal inputs, building on previously acquired capabilities, we progressively incorporate the audio-visual sync task. During inference, for flexible and fine-grained multimodal control, we design a time-adaptive Classifier-Free Guidance strategy that dynamically adjusts guidance weights across denoising steps. Extensive experimental results demonstrate that HuMo surpasses specialized state-of-the-art methods in sub-tasks, establishing a unified framework for collaborative multimodal-conditioned HCVG. Project Page: https://phantom-video.github.io/HuMo.
Off-Policy Average Reward Actor-Critic with Deterministic Policy Search
The average reward criterion is relatively less studied as most existing works in the Reinforcement Learning literature consider the discounted reward criterion. There are few recent works that present on-policy average reward actor-critic algorithms, but average reward off-policy actor-critic is relatively less explored. In this work, we present both on-policy and off-policy deterministic policy gradient theorems for the average reward performance criterion. Using these theorems, we also present an Average Reward Off-Policy Deep Deterministic Policy Gradient (ARO-DDPG) Algorithm. We first show asymptotic convergence analysis using the ODE-based method. Subsequently, we provide a finite time analysis of the resulting stochastic approximation scheme with linear function approximator and obtain an epsilon-optimal stationary policy with a sample complexity of Omega(epsilon^{-2.5}). We compare the average reward performance of our proposed ARO-DDPG algorithm and observe better empirical performance compared to state-of-the-art on-policy average reward actor-critic algorithms over MuJoCo-based environments.
Talk Less, Call Right: Enhancing Role-Play LLM Agents with Automatic Prompt Optimization and Role Prompting
This report investigates approaches for prompting a tool-augmented large language model (LLM) to act as a role-playing dialogue agent in the API track of the Commonsense Persona-grounded Dialogue Challenge (CPDC) 2025. In this setting, dialogue agents often produce overly long in-character responses (over-speaking) while failing to use tools effectively according to the persona (under-acting), such as generating function calls that do not exist or making unnecessary tool calls before answering. We explore four prompting approaches to address these issues: 1) basic role prompting, 2) human-crafted role prompting, 3) automatic prompt optimization (APO), and 4) rule-based role prompting. The rule-based role prompting (RRP) approach achieved the best performance through two novel techniques--character-card/scene-contract design and strict enforcement of function calling--which led to an overall score of 0.571, improving on the zero-shot baseline score of 0.519. These findings demonstrate that RRP design can substantially improve the effectiveness and reliability of role-playing dialogue agents compared with more elaborate methods such as APO. To support future efforts in developing persona prompts, we are open-sourcing all of our best-performing prompts and the APO tool. Source code is available at https://github.com/scb-10x/apo.
Reinforcement Learning for Machine Learning Engineering Agents
Existing agents for solving tasks such as ML engineering rely on prompting powerful language models. As a result, these agents do not improve with more experience. In this paper, we show that agents backed by weaker models that improve via reinforcement learning (RL) can outperform agents backed by much larger, but static models. We identify two major challenges with RL in this setting. First, actions can take a variable amount of time (e.g., executing code for different solutions), which leads to asynchronous policy gradient updates that favor faster but suboptimal solutions. To tackle variable-duration actions, we propose duration-aware gradient updates in a distributed asynchronous RL framework to amplify high-cost but high-reward actions. Second, using only test split performance as a reward provides limited feedback. A program that is nearly correct is treated the same as one that fails entirely. To address this, we propose environment instrumentation to offer partial credit, distinguishing almost-correct programs from those that fail early (e.g., during data loading). Environment instrumentation uses a separate static language model to insert print statement to an existing program to log the agent's experimental progress, from which partial credit can be extracted as reward signals for learning. Our experimental results on MLEBench suggest that performing gradient updates on a much smaller model (Qwen2.5-3B) trained with RL outperforms prompting a much larger model (Claude-3.5-Sonnet) with agent scaffolds, by an average of 22% across 12 Kaggle tasks.
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
In this work we aim to solve a large collection of tasks using a single reinforcement learning agent with a single set of parameters. A key challenge is to handle the increased amount of data and extended training time. We have developed a new distributed agent IMPALA (Importance Weighted Actor-Learner Architecture) that not only uses resources more efficiently in single-machine training but also scales to thousands of machines without sacrificing data efficiency or resource utilisation. We achieve stable learning at high throughput by combining decoupled acting and learning with a novel off-policy correction method called V-trace. We demonstrate the effectiveness of IMPALA for multi-task reinforcement learning on DMLab-30 (a set of 30 tasks from the DeepMind Lab environment (Beattie et al., 2016)) and Atari-57 (all available Atari games in Arcade Learning Environment (Bellemare et al., 2013a)). Our results show that IMPALA is able to achieve better performance than previous agents with less data, and crucially exhibits positive transfer between tasks as a result of its multi-task approach.
SLIM: Skill Learning with Multiple Critics
Self-supervised skill learning aims to acquire useful behaviors that leverage the underlying dynamics of the environment. Latent variable models, based on mutual information maximization, have been successful in this task but still struggle in the context of robotic manipulation. As it requires impacting a possibly large set of degrees of freedom composing the environment, mutual information maximization fails alone in producing useful and safe manipulation behaviors. Furthermore, tackling this by augmenting skill discovery rewards with additional rewards through a naive combination might fail to produce desired behaviors. To address this limitation, we introduce SLIM, a multi-critic learning approach for skill discovery with a particular focus on robotic manipulation. Our main insight is that utilizing multiple critics in an actor-critic framework to gracefully combine multiple reward functions leads to a significant improvement in latent-variable skill discovery for robotic manipulation while overcoming possible interference occurring among rewards which hinders convergence to useful skills. Furthermore, in the context of tabletop manipulation, we demonstrate the applicability of our novel skill discovery approach to acquire safe and efficient motor primitives in a hierarchical reinforcement learning fashion and leverage them through planning, significantly surpassing baseline approaches for skill discovery.
APO: Enhancing Reasoning Ability of MLLMs via Asymmetric Policy Optimization
Multimodal Large Language Models (MLLMs) are powerful at integrating diverse data, but they often struggle with complex reasoning. While Reinforcement learning (RL) can boost reasoning in LLMs, applying it to MLLMs is tricky. Common issues include a drop in performance on general tasks and the generation of overly detailed or "overthinking" reasoning. Our work investigates how the KL penalty and overthinking affect RL training in MLLMs. We propose Asymmetric Policy Optimization (APO) to address these issues, which divides the sampled responses into positive and negative groups. For positive samples, Difficulty-Adaptive Divergence Shaping (DADS) is introduced to dynamically adjust the KL divergence weight based on their difficulty. This method prevents policy entropy from dropping sharply, improves training stability, utilizes samples better, and preserves the model's existing knowledge. For negative samples, Suboptimal Trajectory Complexity Regularization (STCR) is proposed to penalize overly long responses. This helps mitigate overthinking and encourages more concise reasoning while preserving the model's explorative capacity. We apply our method to Qwen2.5-VL-3B, creating View-R1-3B. View-R1-3B significantly enhances reasoning capabilities, showing an average 7\% gain over the base model and outperforming larger MLLMs (7-11B) on various reasoning benchmarks. Importantly, unlike other reasoning-tuned MLLMs that often degrade on general tasks, View-R1-3B maintains consistent improvement, demonstrating superior generalization. These results highlight the effectiveness and broad applicability of our DADS and STCR techniques for advancing complex multimodal reasoning in MLLMs. The code will be made available at https://github.com/Indolent-Kawhi/View-R1.
An Interactive Agent Foundation Model
The development of artificial intelligence systems is transitioning from creating static, task-specific models to dynamic, agent-based systems capable of performing well in a wide range of applications. We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents across a wide range of domains, datasets, and tasks. Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction, enabling a versatile and adaptable AI framework. We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare. Our model demonstrates its ability to generate meaningful and contextually relevant outputs in each area. The strength of our approach lies in its generality, leveraging a variety of data sources such as robotics sequences, gameplay data, large-scale video datasets, and textual information for effective multimodal and multi-task learning. Our approach provides a promising avenue for developing generalist, action-taking, multimodal systems.
Look where you look! Saliency-guided Q-networks for generalization in visual Reinforcement Learning
Deep reinforcement learning policies, despite their outstanding efficiency in simulated visual control tasks, have shown disappointing ability to generalize across disturbances in the input training images. Changes in image statistics or distracting background elements are pitfalls that prevent generalization and real-world applicability of such control policies. We elaborate on the intuition that a good visual policy should be able to identify which pixels are important for its decision, and preserve this identification of important sources of information across images. This implies that training of a policy with small generalization gap should focus on such important pixels and ignore the others. This leads to the introduction of saliency-guided Q-networks (SGQN), a generic method for visual reinforcement learning, that is compatible with any value function learning method. SGQN vastly improves the generalization capability of Soft Actor-Critic agents and outperforms existing stateof-the-art methods on the Deepmind Control Generalization benchmark, setting a new reference in terms of training efficiency, generalization gap, and policy interpretability.
MAPS: A Multi-Agent Framework Based on Big Seven Personality and Socratic Guidance for Multimodal Scientific Problem Solving
Multimodal scientific problems (MSPs) involve complex issues that require the integration of multiple modalities, such as text and diagrams, presenting a significant challenge in artificial intelligence. While progress has been made in addressing traditional scientific problems, MSPs still face two primary issues: the challenge of multi-modal comprehensive reasoning in scientific problem-solving and the lack of reflective and rethinking capabilities. To address these issues, we introduce a Multi-Agent framework based on the Big Seven Personality and Socratic guidance (MAPS). This framework employs seven distinct agents that leverage feedback mechanisms and the Socratic method to guide the resolution of MSPs. To tackle the first issue, we propose a progressive four-agent solving strategy, where each agent focuses on a specific stage of the problem-solving process. For the second issue, we introduce a Critic agent, inspired by Socratic questioning, which prompts critical thinking and stimulates autonomous learning. We conduct extensive experiments on the EMMA, Olympiad, and MathVista datasets, achieving promising results that outperform the current SOTA model by 15.84% across all tasks. Meanwhile, the additional analytical experiments also verify the model's progress as well as generalization ability.
CDE: Curiosity-Driven Exploration for Efficient Reinforcement Learning in Large Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) is a powerful paradigm for enhancing the reasoning ability of Large Language Models (LLMs). Yet current RLVR methods often explore poorly, leading to premature convergence and entropy collapse. To address this challenge, we introduce Curiosity-Driven Exploration (CDE), a framework that leverages the model's own intrinsic sense of curiosity to guide exploration. We formalize curiosity with signals from both the actor and the critic: for the actor, we use perplexity over its generated response, and for the critic, we use the variance of value estimates from a multi-head architecture. Both signals serve as an exploration bonus within the RLVR framework to guide the model. Our theoretical analysis shows that the actor-wise bonus inherently penalizes overconfident errors and promotes diversity among correct responses; moreover, we connect the critic-wise bonus to the well-established count-based exploration bonus in RL. Empirically, our method achieves an approximate +3 point improvement over standard RLVR using GRPO/PPO on AIME benchmarks. Further analysis identifies a calibration collapse mechanism within RLVR, shedding light on common LLM failure modes.
Enhancing Vision-Language Model Training with Reinforcement Learning in Synthetic Worlds for Real-World Success
Interactive multimodal agents must convert raw visual observations into coherent sequences of language-conditioned actions -- a capability that current vision-language models (VLMs) still lack. Earlier reinforcement-learning (RL) efforts could, in principle, endow VLMs with such skills, but they have seldom tested whether the learned behaviours generalize beyond their training simulators, and they depend either on brittle hyperparameter tuning or on dense-reward environments with low state variability. We introduce Vision-Language Decoupled Actor-Critic (VL-DAC), a lightweight, hyperparameter-free RL algorithm. VL-DAC applies PPO updates to action tokens while learning value only at the environment-step level: an arrangement, to our knowledge, not previously explored for large VLMs or LLMs. This simple decoupling removes unstable weighting terms and yields faster, more reliable convergence. Training a single VLM with VL-DAC in one inexpensive simulator at a time (MiniWorld, Gym-Cards, ALFWorld, or WebShop) already produces policies that generalize widely: +50\% relative on BALROG (game-centric agentic control), +5\% relative on the hardest part of VSI-Bench (spatial planning), and +2\% on VisualWebBench (web navigation), all without degrading general image understanding accuracy. These results provide the first evidence that a simple RL algorithm can train VLMs entirely in cheap synthetic worlds while delivering measurable gains on real-image agentic, spatial-reasoning, and web-navigation benchmarks.
Learning More with Less: A Dynamic Dual-Level Down-Sampling Framework for Efficient Policy Optimization
Critic-free methods like GRPO reduce memory demands by estimating advantages from multiple rollouts but tend to converge slowly, as critical learning signals are diluted by an abundance of uninformative samples and tokens. To tackle this challenge, we propose the Dynamic Dual-Level Down-Sampling (D^3S) framework that prioritizes the most informative samples and tokens across groups to improve the efficient of policy optimization. D^3S operates along two levels: (1) the sample-level, which selects a subset of rollouts to maximize advantage variance (Var(A)). We theoretically proven that this selection is positively correlated with the upper bound of the policy gradient norms, yielding higher policy gradients. (2) the token-level, which prioritizes tokens with a high product of advantage magnitude and policy entropy (|A_{i,t}|times H_{i,t}), focusing updates on tokens where the policy is both uncertain and impactful. Moreover, to prevent overfitting to high-signal data, D^3S employs a dynamic down-sampling schedule inspired by curriculum learning. This schedule starts with aggressive down-sampling to accelerate early learning and gradually relaxes to promote robust generalization. Extensive experiments on Qwen2.5 and Llama3.1 demonstrate that integrating D^3S into advanced RL algorithms achieves state-of-the-art performance and generalization while requiring fewer samples and tokens across diverse reasoning benchmarks. Our code is added in the supplementary materials and will be made publicly available.
SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks
Large language model (LLM) agents need to perform multi-turn interactions in real-world tasks. However, existing multi-turn RL algorithms for optimizing LLM agents fail to perform effective credit assignment over multiple turns while leveraging the generalization capabilities of LLMs and it remains unclear how to develop such algorithms. To study this, we first introduce a new benchmark, ColBench, where an LLM agent interacts with a human collaborator over multiple turns to solve realistic tasks in backend programming and frontend design. Building on this benchmark, we propose a novel RL algorithm, SWEET-RL (RL with Step-WisE Evaluation from Training-time information), that uses a carefully designed optimization objective to train a critic model with access to additional training-time information. The critic provides step-level rewards for improving the policy model. Our experiments demonstrate that SWEET-RL achieves a 6% absolute improvement in success and win rates on ColBench compared to other state-of-the-art multi-turn RL algorithms, enabling Llama-3.1-8B to match or exceed the performance of GPT4-o in realistic collaborative content creation.
VISTA: A Test-Time Self-Improving Video Generation Agent
Despite rapid advances in text-to-video synthesis, generated video quality remains critically dependent on precise user prompts. Existing test-time optimization methods, successful in other domains, struggle with the multi-faceted nature of video. In this work, we introduce VISTA (Video Iterative Self-improvemenT Agent), a novel multi-agent system that autonomously improves video generation through refining prompts in an iterative loop. VISTA first decomposes a user idea into a structured temporal plan. After generation, the best video is identified through a robust pairwise tournament. This winning video is then critiqued by a trio of specialized agents focusing on visual, audio, and contextual fidelity. Finally, a reasoning agent synthesizes this feedback to introspectively rewrite and enhance the prompt for the next generation cycle. Experiments on single- and multi-scene video generation scenarios show that while prior methods yield inconsistent gains, VISTA consistently improves video quality and alignment with user intent, achieving up to 60% pairwise win rate against state-of-the-art baselines. Human evaluators concur, preferring VISTA outputs in 66.4% of comparisons.
Don't flatten, tokenize! Unlocking the key to SoftMoE's efficacy in deep RL
The use of deep neural networks in reinforcement learning (RL) often suffers from performance degradation as model size increases. While soft mixtures of experts (SoftMoEs) have recently shown promise in mitigating this issue for online RL, the reasons behind their effectiveness remain largely unknown. In this work we provide an in-depth analysis identifying the key factors driving this performance gain. We discover the surprising result that tokenizing the encoder output, rather than the use of multiple experts, is what is behind the efficacy of SoftMoEs. Indeed, we demonstrate that even with an appropriately scaled single expert, we are able to maintain the performance gains, largely thanks to tokenization.
Video2Roleplay: A Multimodal Dataset and Framework for Video-Guided Role-playing Agents
Role-playing agents (RPAs) have attracted growing interest for their ability to simulate immersive and interactive characters. However, existing approaches primarily focus on static role profiles, overlooking the dynamic perceptual abilities inherent to humans. To bridge this gap, we introduce the concept of dynamic role profiles by incorporating video modality into RPAs. To support this, we construct Role-playing-Video60k, a large-scale, high-quality dataset comprising 60k videos and 700k corresponding dialogues. Based on this dataset, we develop a comprehensive RPA framework that combines adaptive temporal sampling with both dynamic and static role profile representations. Specifically, the dynamic profile is created by adaptively sampling video frames and feeding them to the LLM in temporal order, while the static profile consists of (1) character dialogues from training videos during fine-tuning, and (2) a summary context from the input video during inference. This joint integration enables RPAs to generate greater responses. Furthermore, we propose a robust evaluation method covering eight metrics. Experimental results demonstrate the effectiveness of our framework, highlighting the importance of dynamic role profiles in developing RPAs.
AnnaAgent: Dynamic Evolution Agent System with Multi-Session Memory for Realistic Seeker Simulation
Constrained by the cost and ethical concerns of involving real seekers in AI-driven mental health, researchers develop LLM-based conversational agents (CAs) with tailored configurations, such as profiles, symptoms, and scenarios, to simulate seekers. While these efforts advance AI in mental health, achieving more realistic seeker simulation remains hindered by two key challenges: dynamic evolution and multi-session memory. Seekers' mental states often fluctuate during counseling, which typically spans multiple sessions. To address this, we propose AnnaAgent, an emotional and cognitive dynamic agent system equipped with tertiary memory. AnnaAgent incorporates an emotion modulator and a complaint elicitor trained on real counseling dialogues, enabling dynamic control of the simulator's configurations. Additionally, its tertiary memory mechanism effectively integrates short-term and long-term memory across sessions. Evaluation results, both automated and manual, demonstrate that AnnaAgent achieves more realistic seeker simulation in psychological counseling compared to existing baselines. The ethically reviewed and screened code can be found on https://github.com/sci-m-wang/AnnaAgent.
Agent-R: Training Language Model Agents to Reflect via Iterative Self-Training
Large Language Models (LLMs) agents are increasingly pivotal for addressing complex tasks in interactive environments. Existing work mainly focuses on enhancing performance through behavior cloning from stronger experts, yet such approaches often falter in real-world applications, mainly due to the inability to recover from errors. However, step-level critique data is difficult and expensive to collect. Automating and dynamically constructing self-critique datasets is thus crucial to empowering models with intelligent agent capabilities. In this work, we propose an iterative self-training framework, Agent-R, that enables language Agent to Reflect on the fly. Unlike traditional methods that reward or penalize actions based on correctness, Agent-R leverages MCTS to construct training data that recover correct trajectories from erroneous ones. A key challenge of agent reflection lies in the necessity for timely revision rather than waiting until the end of a rollout. To address this, we introduce a model-guided critique construction mechanism: the actor model identifies the first error step (within its current capability) in a failed trajectory. Starting from it, we splice it with the adjacent correct path, which shares the same parent node in the tree. This strategy enables the model to learn reflection based on its current policy, therefore yielding better learning efficiency. To further explore the scalability of this self-improvement paradigm, we investigate iterative refinement of both error correction capabilities and dataset construction. Our findings demonstrate that Agent-R continuously improves the model's ability to recover from errors and enables timely error correction. Experiments on three interactive environments show that Agent-R effectively equips agents to correct erroneous actions while avoiding loops, achieving superior performance compared to baseline methods (+5.59%).
Unlocking the Potential of Difficulty Prior in RL-based Multimodal Reasoning
In this work, we investigate how explicitly modeling problem's difficulty prior information shapes the effectiveness of reinforcement learning based fine-tuning for multimodal reasoning. Our exploration mainly comprises of following three perspective: First, through offline data curation, we analyze the U-shaped difficulty distribution of two given datasets using the base model by multi-round sampling, and then filter out prompts that are either too simple or extremely difficult to provide meaningful gradients and perform subsequent two-stage training. Second, we implement an online advantage differentiation, computing group-wise empirical accuracy as a difficulty proxy to adaptively reweight advantages estimation, providing stronger learning signals for more challenging problems. Finally, we introduce difficulty hints as explicit prompts for more complex samples in the second training stage, encouraging the model to calibrate its reasoning depth and perform reflective validation checks. Our comprehensive approach demonstrates significant performances across various multi-modal mathematical reasoning benchmarks with only 2K+0.6K two-stage training data.
Reinforcing Video Reasoning with Focused Thinking
Recent advancements in reinforcement learning, particularly through Group Relative Policy Optimization (GRPO), have significantly improved multimodal large language models for complex reasoning tasks. However, two critical limitations persist: 1) they often produce unfocused, verbose reasoning chains that obscure salient spatiotemporal cues and 2) binary rewarding fails to account for partially correct answers, resulting in high reward variance and inefficient learning. In this paper, we propose TW-GRPO, a novel framework that enhances visual reasoning with focused thinking and dense reward granularity. Specifically, we employs a token weighting mechanism that prioritizes tokens with high informational density (estimated by intra-group variance), suppressing redundant tokens like generic reasoning prefixes. Furthermore, we reformulate RL training by shifting from single-choice to multi-choice QA tasks, where soft rewards enable finer-grained gradient estimation by distinguishing partial correctness. Additionally, we propose question-answer inversion, a data augmentation strategy to generate diverse multi-choice samples from existing benchmarks. Experiments demonstrate state-of-the-art performance on several video reasoning and general understanding benchmarks. Notably, TW-GRPO achieves 50.4\% accuracy on CLEVRER (18.8\% improvement over Video-R1) and 65.8\% on MMVU. Our codes are available at https://github.com/longmalongma/TW-GRPO.
A Multi-Agent Conversational Recommender System
Due to strong capabilities in conducting fluent, multi-turn conversations with users, Large Language Models (LLMs) have the potential to further improve the performance of Conversational Recommender System (CRS). Unlike the aimless chit-chat that LLM excels at, CRS has a clear target. So it is imperative to control the dialogue flow in the LLM to successfully recommend appropriate items to the users. Furthermore, user feedback in CRS can assist the system in better modeling user preferences, which has been ignored by existing studies. However, simply prompting LLM to conduct conversational recommendation cannot address the above two key challenges. In this paper, we propose Multi-Agent Conversational Recommender System (MACRS) which contains two essential modules. First, we design a multi-agent act planning framework, which can control the dialogue flow based on four LLM-based agents. This cooperative multi-agent framework will generate various candidate responses based on different dialogue acts and then choose the most appropriate response as the system response, which can help MACRS plan suitable dialogue acts. Second, we propose a user feedback-aware reflection mechanism which leverages user feedback to reason errors made in previous turns to adjust the dialogue act planning, and higher-level user information from implicit semantics. We conduct extensive experiments based on user simulator to demonstrate the effectiveness of MACRS in recommendation and user preferences collection. Experimental results illustrate that MACRS demonstrates an improvement in user interaction experience compared to directly using LLMs.
ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL
A broad use case of large language models (LLMs) is in goal-directed decision-making tasks (or "agent" tasks), where an LLM needs to not just generate completions for a given prompt, but rather make intelligent decisions over a multi-turn interaction to accomplish a task (e.g., when interacting with the web, using tools, or providing customer support). Reinforcement learning (RL) provides a general paradigm to address such agent tasks, but current RL methods for LLMs largely focus on optimizing single-turn rewards. By construction, most single-turn RL methods cannot endow LLMs with the ability to intelligently seek information over multiple turns, perform credit assignment, or reason about their past actions -- all of which are critical in agent tasks. This raises the question: how can we design effective and efficient multi-turn RL algorithms for LLMs? In this paper, we develop a framework for building multi-turn RL algorithms for fine-tuning LLMs, that preserves the flexibility of existing single-turn RL methods for LLMs (e.g., proximal policy optimization), while accommodating multiple turns, long horizons, and delayed rewards effectively. To do this, our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel: a high-level off-policy value-based RL algorithm to aggregate reward over utterances, and a low-level RL algorithm that utilizes this high-level value function to train a token policy within each utterance or turn. Our hierarchical framework, Actor-Critic Framework with a Hierarchical Structure (ArCHer), can also give rise to other RL methods. Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks, attaining a sample efficiency of about 100x over existing methods, while also improving with larger model capacity (upto the 7 billion scale that we tested on).
DoMo-AC: Doubly Multi-step Off-policy Actor-Critic Algorithm
Multi-step learning applies lookahead over multiple time steps and has proved valuable in policy evaluation settings. However, in the optimal control case, the impact of multi-step learning has been relatively limited despite a number of prior efforts. Fundamentally, this might be because multi-step policy improvements require operations that cannot be approximated by stochastic samples, hence hindering the widespread adoption of such methods in practice. To address such limitations, we introduce doubly multi-step off-policy VI (DoMo-VI), a novel oracle algorithm that combines multi-step policy improvements and policy evaluations. DoMo-VI enjoys guaranteed convergence speed-up to the optimal policy and is applicable in general off-policy learning settings. We then propose doubly multi-step off-policy actor-critic (DoMo-AC), a practical instantiation of the DoMo-VI algorithm. DoMo-AC introduces a bias-variance trade-off that ensures improved policy gradient estimates. When combined with the IMPALA architecture, DoMo-AC has showed improvements over the baseline algorithm on Atari-57 game benchmarks.
Consistency Models as a Rich and Efficient Policy Class for Reinforcement Learning
Score-based generative models like the diffusion model have been testified to be effective in modeling multi-modal data from image generation to reinforcement learning (RL). However, the inference process of diffusion model can be slow, which hinders its usage in RL with iterative sampling. We propose to apply the consistency model as an efficient yet expressive policy representation, namely consistency policy, with an actor-critic style algorithm for three typical RL settings: offline, offline-to-online and online. For offline RL, we demonstrate the expressiveness of generative models as policies from multi-modal data. For offline-to-online RL, the consistency policy is shown to be more computational efficient than diffusion policy, with a comparable performance. For online RL, the consistency policy demonstrates significant speedup and even higher average performances than the diffusion policy.
Dialogue as Discovery: Navigating Human Intent Through Principled Inquiry
A fundamental bottleneck in human-AI collaboration is the "intention expression gap," the difficulty for humans to effectively convey complex, high-dimensional thoughts to AI. This challenge often traps users in inefficient trial-and-error loops and is exacerbated by the diverse expertise levels of users. We reframe this problem from passive instruction following to a Socratic collaboration paradigm, proposing an agent that actively probes for information to resolve its uncertainty about user intent. we name the proposed agent Nous, trained to acquire proficiency in this inquiry policy. The core mechanism of Nous is a training framework grounded in the first principles of information theory. Within this framework, we define the information gain from dialogue as an intrinsic reward signal, which is fundamentally equivalent to the reduction of Shannon entropy over a structured task space. This reward design enables us to avoid reliance on costly human preference annotations or external reward models. To validate our framework, we develop an automated simulation pipeline to generate a large-scale, preference-based dataset for the challenging task of scientific diagram generation. Comprehensive experiments, including ablations, subjective and objective evaluations, and tests across user expertise levels, demonstrate the effectiveness of our proposed framework. Nous achieves leading efficiency and output quality, while remaining robust to varying user expertise. Moreover, its design is domain-agnostic, and we show evidence of generalization beyond diagram generation. Experimental results prove that our work offers a principled, scalable, and adaptive paradigm for resolving uncertainty about user intent in complex human-AI collaboration.
Critic-Guided Decoding for Controlled Text Generation
Steering language generation towards objectives or away from undesired content has been a long-standing goal in utilizing language models (LM). Recent work has demonstrated reinforcement learning and weighted decoding as effective approaches to achieve a higher level of language control and quality with pros and cons. In this work, we propose a novel critic decoding method for controlled language generation (CriticControl) that combines the strengths of reinforcement learning and weighted decoding. Specifically, we adopt the actor-critic framework to train an LM-steering critic from non-differentiable reward models. And similar to weighted decoding, our method freezes the language model and manipulates the output token distribution using called critic, improving training efficiency and stability. Evaluation of our method on three controlled generation tasks, namely topic control, sentiment control, and detoxification, shows that our approach generates more coherent and well-controlled texts than previous methods. In addition, CriticControl demonstrates superior generalization ability in zero-shot settings. Human evaluation studies also corroborate our findings.
STeCa: Step-level Trajectory Calibration for LLM Agent Learning
Large language model (LLM)-based agents have shown promise in tackling complex tasks by interacting dynamically with the environment. Existing work primarily focuses on behavior cloning from expert demonstrations or preference learning through exploratory trajectory sampling. However, these methods often struggle to address long-horizon tasks, where suboptimal actions accumulate step by step, causing agents to deviate from correct task trajectories. To address this, we highlight the importance of timely calibration and the need to automatically construct calibration trajectories for training agents. We propose Step-Level Trajectory Calibration (STeCa), a novel framework for LLM agent learning. Specifically, STeCa identifies suboptimal actions through a step-level reward comparison during exploration. It constructs calibrated trajectories using LLM-driven reflection, enabling agents to learn from improved decision-making processes. We finally leverage these calibrated trajectories with successful trajectories for reinforced training. Extensive experiments demonstrate that STeCa significantly outperforms existing methods. Further analysis highlights that timely calibration enables agents to complete tasks with greater robustness. Our code and data are available at https://github.com/WangHanLinHenry/STeCa.
MMCTAgent: Multi-modal Critical Thinking Agent Framework for Complex Visual Reasoning
Recent advancements in Multi-modal Large Language Models (MLLMs) have significantly improved their performance in tasks combining vision and language. However, challenges persist in detailed multi-modal understanding, comprehension of complex tasks, and reasoning over multi-modal information. This paper introduces MMCTAgent, a novel multi-modal critical thinking agent framework designed to address the inherent limitations of current MLLMs in complex visual reasoning tasks. Inspired by human cognitive processes and critical thinking, MMCTAgent iteratively analyzes multi-modal information, decomposes queries, plans strategies, and dynamically evolves its reasoning. Additionally, MMCTAgent incorporates critical thinking elements such as verification of final answers and self-reflection through a novel approach that defines a vision-based critic and identifies task-specific evaluation criteria, thereby enhancing its decision-making abilities. Through rigorous evaluations across various image and video understanding benchmarks, we demonstrate that MMCTAgent (with and without the critic) outperforms both foundational MLLMs and other tool-augmented pipelines.
OpenWebVoyager: Building Multimodal Web Agents via Iterative Real-World Exploration, Feedback and Optimization
The rapid development of large language and multimodal models has sparked significant interest in using proprietary models, such as GPT-4o, to develop autonomous agents capable of handling real-world scenarios like web navigation. Although recent open-source efforts have tried to equip agents with the ability to explore environments and continuously improve over time, they are building text-only agents in synthetic environments where the reward signals are clearly defined. Such agents struggle to generalize to realistic settings that require multimodal perception abilities and lack ground-truth signals. In this paper, we introduce an open-source framework designed to facilitate the development of multimodal web agent that can autonomously conduct real-world exploration and improve itself. We first train the base model with imitation learning to gain the basic abilities. We then let the agent explore the open web and collect feedback on its trajectories. After that, it further improves its policy by learning from well-performing trajectories judged by another general-purpose model. This exploration-feedback-optimization cycle can continue for several iterations. Experimental results show that our web agent successfully improves itself after each iteration, demonstrating strong performance across multiple test sets.
COPO: Consistency-Aware Policy Optimization
Reinforcement learning has significantly enhanced the reasoning capabilities of Large Language Models (LLMs) in complex problem-solving tasks. Recently, the introduction of DeepSeek R1 has inspired a surge of interest in leveraging rule-based rewards as a low-cost alternative for computing advantage functions and guiding policy optimization. However, a common challenge observed across many replication and extension efforts is that when multiple sampled responses under a single prompt converge to identical outcomes, whether correct or incorrect, the group-based advantage degenerates to zero. This leads to vanishing gradients and renders the corresponding samples ineffective for learning, ultimately limiting training efficiency and downstream performance. To address this issue, we propose a consistency-aware policy optimization framework that introduces a structured global reward based on outcome consistency, the global loss based on it ensures that, even when model outputs show high intra-group consistency, the training process still receives meaningful learning signals, which encourages the generation of correct and self-consistent reasoning paths from a global perspective. Furthermore, we incorporate an entropy-based soft blending mechanism that adaptively balances local advantage estimation with global optimization, enabling dynamic transitions between exploration and convergence throughout training. Our method introduces several key innovations in both reward design and optimization strategy. We validate its effectiveness through substantial performance gains on multiple mathematical reasoning benchmarks, highlighting the proposed framework's robustness and general applicability. Code of this work has been released at https://github.com/hijih/copo-code.git.
