new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 30

Yet another argument in favour of NP=CoNP

This article shows yet another proof of NP=CoNP$. In a previous article, we proved that NP=PSPACE and from it we can conclude that NP=CoNP immediately. The former proof shows how to obtain polynomial and, polynomial in time checkable Dag-like proofs for all purely implicational Minimal logic tautologies. From the fact that Minimal implicational logic is PSPACE-complete we get the proof that NP=PSPACE. This first proof of NP=CoNP uses Hudelmaier linear upper-bound on the height of Sequent Calculus minimal implicational logic proofs. In an addendum to the proof of NP=PSPACE, we observe that we do not need to use Hudelmaier upper-bound since any proof of non-hamiltonicity for any graph is linear upper-bounded. By the CoNP-completeness of non-hamiltonicity, we obtain NP=CoNP as a corollary of the first proof. In this article we show the third proof of CoNP=NP, also providing polynomial size and polynomial verifiable certificates that are Dags. They are generated from normal Natural Deduction proofs, linear height upper-bounded too, by removing redundancy, i.e., repeated parts. The existence of repeated parts is a consequence of the redundancy theorem for a family of super-polynomial proofs in the purely implicational Minimal logic. It is mandatory to read at least two previous articles to get the details of the proof presented here. The article that proves the redundancy theorem and the article that shows how to remove the repeated parts of a normal Natural Deduction proof to have a polynomial Dag certificate for minimal implicational logic tautologies.

  • 1 authors
·
Dec 28, 2020

Semantic MapNet: Building Allocentric Semantic Maps and Representations from Egocentric Views

We study the task of semantic mapping - specifically, an embodied agent (a robot or an egocentric AI assistant) is given a tour of a new environment and asked to build an allocentric top-down semantic map ("what is where?") from egocentric observations of an RGB-D camera with known pose (via localization sensors). Towards this goal, we present SemanticMapNet (SMNet), which consists of: (1) an Egocentric Visual Encoder that encodes each egocentric RGB-D frame, (2) a Feature Projector that projects egocentric features to appropriate locations on a floor-plan, (3) a Spatial Memory Tensor of size floor-plan length x width x feature-dims that learns to accumulate projected egocentric features, and (4) a Map Decoder that uses the memory tensor to produce semantic top-down maps. SMNet combines the strengths of (known) projective camera geometry and neural representation learning. On the task of semantic mapping in the Matterport3D dataset, SMNet significantly outperforms competitive baselines by 4.01-16.81% (absolute) on mean-IoU and 3.81-19.69% (absolute) on Boundary-F1 metrics. Moreover, we show how to use the neural episodic memories and spatio-semantic allocentric representations build by SMNet for subsequent tasks in the same space - navigating to objects seen during the tour("Find chair") or answering questions about the space ("How many chairs did you see in the house?"). Project page: https://vincentcartillier.github.io/smnet.html.

  • 6 authors
·
Oct 2, 2020

Hyperbolic Category Discovery

Generalized Category Discovery (GCD) is an intriguing open-world problem that has garnered increasing attention. Given a dataset that includes both labelled and unlabelled images, GCD aims to categorize all images in the unlabelled subset, regardless of whether they belong to known or unknown classes. In GCD, the common practice typically involves applying a spherical projection operator at the end of the self-supervised pretrained backbone, operating within Euclidean or spherical space. However, both of these spaces have been shown to be suboptimal for encoding samples that possesses hierarchical structures. In contrast, hyperbolic space exhibits exponential volume growth relative to radius, making it inherently strong at capturing the hierarchical structure of samples from both seen and unseen categories. Therefore, we propose to tackle the category discovery challenge in the hyperbolic space. We introduce HypCD, a simple Hyperbolic framework for learning hierarchy-aware representations and classifiers for generalized Category Discovery. HypCD first transforms the Euclidean embedding space of the backbone network into hyperbolic space, facilitating subsequent representation and classification learning by considering both hyperbolic distance and the angle between samples. This approach is particularly helpful for knowledge transfer from known to unknown categories in GCD. We thoroughly evaluate HypCD on public GCD benchmarks, by applying it to various baseline and state-of-the-art methods, consistently achieving significant improvements.

  • 3 authors
·
Apr 8, 2025

Denotational validation of higher-order Bayesian inference

We present a modular semantic account of Bayesian inference algorithms for probabilistic programming languages, as used in data science and machine learning. Sophisticated inference algorithms are often explained in terms of composition of smaller parts. However, neither their theoretical justification nor their implementation reflects this modularity. We show how to conceptualise and analyse such inference algorithms as manipulating intermediate representations of probabilistic programs using higher-order functions and inductive types, and their denotational semantics. Semantic accounts of continuous distributions use measurable spaces. However, our use of higher-order functions presents a substantial technical difficulty: it is impossible to define a measurable space structure over the collection of measurable functions between arbitrary measurable spaces that is compatible with standard operations on those functions, such as function application. We overcome this difficulty using quasi-Borel spaces, a recently proposed mathematical structure that supports both function spaces and continuous distributions. We define a class of semantic structures for representing probabilistic programs, and semantic validity criteria for transformations of these representations in terms of distribution preservation. We develop a collection of building blocks for composing representations. We use these building blocks to validate common inference algorithms such as Sequential Monte Carlo and Markov Chain Monte Carlo. To emphasize the connection between the semantic manipulation and its traditional measure theoretic origins, we use Kock's synthetic measure theory. We demonstrate its usefulness by proving a quasi-Borel counterpart to the Metropolis-Hastings-Green theorem.

  • 10 authors
·
Nov 8, 2017

Lie Group Decompositions for Equivariant Neural Networks

Invariance and equivariance to geometrical transformations have proven to be very useful inductive biases when training (convolutional) neural network models, especially in the low-data regime. Much work has focused on the case where the symmetry group employed is compact or abelian, or both. Recent work has explored enlarging the class of transformations used to the case of Lie groups, principally through the use of their Lie algebra, as well as the group exponential and logarithm maps. The applicability of such methods to larger transformation groups is limited by the fact that depending on the group of interest G, the exponential map may not be surjective. Further limitations are encountered when G is neither compact nor abelian. Using the structure and geometry of Lie groups and their homogeneous spaces, we present a framework by which it is possible to work with such groups primarily focusing on the Lie groups G = GL^{+}(n, R) and G = SL(n, R), as well as their representation as affine transformations R^{n} rtimes G. Invariant integration as well as a global parametrization is realized by decomposing the `larger` groups into subgroups and submanifolds which can be handled individually. Under this framework, we show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations. We evaluate the robustness and out-of-distribution generalisation capability of our model on the standard affine-invariant benchmark classification task, where we outperform all previous equivariant models as well as all Capsule Network proposals.

  • 2 authors
·
Oct 17, 2023

Model-Based and Sample-Efficient AI-Assisted Math Discovery in Sphere Packing

Sphere packing, Hilbert's eighteenth problem, asks for the densest arrangement of congruent spheres in n-dimensional Euclidean space. Although relevant to areas such as cryptography, crystallography, and medical imaging, the problem remains unresolved: beyond a few special dimensions, neither optimal packings nor tight upper bounds are known. Even a major breakthrough in dimension n=8, later recognised with a Fields Medal, underscores its difficulty. A leading technique for upper bounds, the three-point method, reduces the problem to solving large, high-precision semidefinite programs (SDPs). Because each candidate SDP may take days to evaluate, standard data-intensive AI approaches are infeasible. We address this challenge by formulating SDP construction as a sequential decision process, the SDP game, in which a policy assembles SDP formulations from a set of admissible components. Using a sample-efficient model-based framework that combines Bayesian optimisation with Monte Carlo Tree Search, we obtain new state-of-the-art upper bounds in dimensions 4-16, showing that model-based search can advance computational progress in longstanding geometric problems. Together, these results demonstrate that sample-efficient, model-based search can make tangible progress on mathematically rigid, evaluation limited problems, pointing towards a complementary direction for AI-assisted discovery beyond large-scale LLM-driven exploration.

  • 6 authors
·
Dec 4, 2025 2

SpaceBlender: Creating Context-Rich Collaborative Spaces Through Generative 3D Scene Blending

There is increased interest in using generative AI to create 3D spaces for Virtual Reality (VR) applications. However, today's models produce artificial environments, falling short of supporting collaborative tasks that benefit from incorporating the user's physical context. To generate environments that support VR telepresence, we introduce SpaceBlender, a novel pipeline that utilizes generative AI techniques to blend users' physical surroundings into unified virtual spaces. This pipeline transforms user-provided 2D images into context-rich 3D environments through an iterative process consisting of depth estimation, mesh alignment, and diffusion-based space completion guided by geometric priors and adaptive text prompts. In a preliminary within-subjects study, where 20 participants performed a collaborative VR affinity diagramming task in pairs, we compared SpaceBlender with a generic virtual environment and a state-of-the-art scene generation framework, evaluating its ability to create virtual spaces suitable for collaboration. Participants appreciated the enhanced familiarity and context provided by SpaceBlender but also noted complexities in the generative environments that could detract from task focus. Drawing on participant feedback, we propose directions for improving the pipeline and discuss the value and design of blended spaces for different scenarios.

  • 5 authors
·
Sep 20, 2024 2

Vietoris--Rips Shadow for Euclidean Graph Reconstruction

The shadow of an abstract simplicial complex K with vertices in R^N is a subset of R^N defined as the union of the convex hulls of simplices of K. The Vietoris--Rips complex of a metric space (S,d) at scale β is an abstract simplicial complex whose each k-simplex corresponds to (k+1) points of S within diameter β. In case Ssubsetmathbb R^2 and d(a,b)=|a-b| the standard Euclidean metric, the natural shadow projection of the Vietoris--Rips complex is already proved by Chambers et al. to induce isomorphisms on π_0 and π_1. We extend the result beyond the standard Euclidean distance on Ssubsetmathbb R^N to a family of path-based metrics, d^varepsilon_{S}. From the pairwise Euclidean distances of points in S, we introduce a family (parametrized by varepsilon) of path-based Vietoris--Rips complexes R^varepsilon_β(S) for a scale β>0. If SsubsetR^2 is Hausdorff-close to a planar Euclidean graph G, we provide quantitative bounds on scales β,varepsilon for the shadow projection map of the Vietoris--Rips complex of (S,d^varepsilon_S) at scale β to induce π_1-isomorphism. This paper first studies the homotopy-type recovery of Gsubsetmathbb R^N using the abstract Vietoris--Rips complex of a Hausdorff-close sample S under the d^varepsilon_S metric. Then, our result on the π_1-isomorphism induced by the shadow projection lends itself to providing also a geometrically close embedding for the reconstruction. Based on the length of the shortest loop and large-scale distortion of the embedding of G, we quantify the choice of a suitable sample density varepsilon and a scale β at which the shadow of R^varepsilon_β(S) is homotopy-equivalent and Hausdorff-close to G.

  • 3 authors
·
Jun 2, 2025

Fast, Expressive SE(n) Equivariant Networks through Weight-Sharing in Position-Orientation Space

Based on the theory of homogeneous spaces we derive geometrically optimal edge attributes to be used within the flexible message-passing framework. We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs that should be treated equally. We define equivalence classes of point-pairs that are identical up to a transformation in the group and derive attributes that uniquely identify these classes. Weight sharing is then obtained by conditioning message functions on these attributes. As an application of the theory, we develop an efficient equivariant group convolutional network for processing 3D point clouds. The theory of homogeneous spaces tells us how to do group convolutions with feature maps over the homogeneous space of positions R^3, position and orientations R^3 {times} S^2, and the group SE(3) itself. Among these, R^3 {times} S^2 is an optimal choice due to the ability to represent directional information, which R^3 methods cannot, and it significantly enhances computational efficiency compared to indexing features on the full SE(3) group. We support this claim with state-of-the-art results -- in accuracy and speed -- on five different benchmarks in 2D and 3D, including interatomic potential energy prediction, trajectory forecasting in N-body systems, and generating molecules via equivariant diffusion models.

  • 5 authors
·
Oct 4, 2023

Measuring the Intrinsic Dimension of Objective Landscapes

Many recently trained neural networks employ large numbers of parameters to achieve good performance. One may intuitively use the number of parameters required as a rough gauge of the difficulty of a problem. But how accurate are such notions? How many parameters are really needed? In this paper we attempt to answer this question by training networks not in their native parameter space, but instead in a smaller, randomly oriented subspace. We slowly increase the dimension of this subspace, note at which dimension solutions first appear, and define this to be the intrinsic dimension of the objective landscape. The approach is simple to implement, computationally tractable, and produces several suggestive conclusions. Many problems have smaller intrinsic dimensions than one might suspect, and the intrinsic dimension for a given dataset varies little across a family of models with vastly different sizes. This latter result has the profound implication that once a parameter space is large enough to solve a problem, extra parameters serve directly to increase the dimensionality of the solution manifold. Intrinsic dimension allows some quantitative comparison of problem difficulty across supervised, reinforcement, and other types of learning where we conclude, for example, that solving the inverted pendulum problem is 100 times easier than classifying digits from MNIST, and playing Atari Pong from pixels is about as hard as classifying CIFAR-10. In addition to providing new cartography of the objective landscapes wandered by parameterized models, the method is a simple technique for constructively obtaining an upper bound on the minimum description length of a solution. A byproduct of this construction is a simple approach for compressing networks, in some cases by more than 100 times.

  • 4 authors
·
Apr 24, 2018

Weighted least-squares approximation with determinantal point processes and generalized volume sampling

We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.

  • 2 authors
·
Dec 21, 2023

Reliable Unlearning Harmful Information in LLMs with Metamorphosis Representation Projection

While Large Language Models (LLMs) have demonstrated impressive performance in various domains and tasks, concerns about their safety are becoming increasingly severe. In particular, since models may store unsafe knowledge internally, machine unlearning has emerged as a representative paradigm to ensure model safety. Existing approaches employ various training techniques, such as gradient ascent and negative preference optimization, in attempts to eliminate the influence of undesired data on target models. However, these methods merely suppress the activation of undesired data through parametric training without completely eradicating its informational traces within the model. This fundamental limitation makes it difficult to achieve effective continuous unlearning, rendering these methods vulnerable to relearning attacks. To overcome these challenges, we propose a Metamorphosis Representation Projection (MRP) approach that pioneers the application of irreversible projection properties to machine unlearning. By implementing projective transformations in the hidden state space of specific network layers, our method effectively eliminates harmful information while preserving useful knowledge. Experimental results demonstrate that our approach enables effective continuous unlearning and successfully defends against relearning attacks, achieving state-of-the-art performance in unlearning effectiveness while preserving natural performance. Our code is available in https://github.com/ChengcanWu/MRP.

  • 5 authors
·
Aug 21, 2025

Clustering based Point Cloud Representation Learning for 3D Analysis

Point cloud analysis (such as 3D segmentation and detection) is a challenging task, because of not only the irregular geometries of many millions of unordered points, but also the great variations caused by depth, viewpoint, occlusion, etc. Current studies put much focus on the adaption of neural networks to the complex geometries of point clouds, but are blind to a fundamental question: how to learn an appropriate point embedding space that is aware of both discriminative semantics and challenging variations? As a response, we propose a clustering based supervised learning scheme for point cloud analysis. Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space for automatically discovering subclass patterns which are latent yet representative across scenes. The mined patterns are, in turn, used to repaint the embedding space, so as to respect the underlying distribution of the entire training dataset and improve the robustness to the variations. Our algorithm is principled and readily pluggable to modern point cloud segmentation networks during training, without extra overhead during testing. With various 3D network architectures (i.e., voxel-based, point-based, Transformer-based, automatically searched), our algorithm shows notable improvements on famous point cloud segmentation datasets (i.e.,2.0-2.6% on single-scan and 2.0-2.2% multi-scan of SemanticKITTI, 1.8-1.9% on S3DIS, in terms of mIoU). Our algorithm also demonstrates utility in 3D detection, showing 2.0-3.4% mAP gains on KITTI.

  • 5 authors
·
Jul 26, 2023

Understanding and Improving Hyperbolic Deep Reinforcement Learning

The performance of reinforcement learning (RL) agents depends critically on the quality of the underlying feature representations. Hyperbolic feature spaces are well-suited for this purpose, as they naturally capture hierarchical and relational structure often present in complex RL environments. However, leveraging these spaces commonly faces optimization challenges due to the nonstationarity of RL. In this work, we identify key factors that determine the success and failure of training hyperbolic deep RL agents. By analyzing the gradients of core operations in the Poincaré Ball and Hyperboloid models of hyperbolic geometry, we show that large-norm embeddings destabilize gradient-based training, leading to trust-region violations in proximal policy optimization (PPO). Based on these insights, we introduce Hyper++, a new hyperbolic PPO agent that consists of three components: (i) stable critic training through a categorical value loss instead of regression; (ii) feature regularization guaranteeing bounded norms while avoiding the curse of dimensionality from clipping; and (iii) using a more optimization-friendly formulation of hyperbolic network layers. In experiments on ProcGen, we show that Hyper++ guarantees stable learning, outperforms prior hyperbolic agents, and reduces wall-clock time by approximately 30%. On Atari-5 with Double DQN, Hyper++ strongly outperforms Euclidean and hyperbolic baselines. We release our code at https://github.com/Probabilistic-and-Interactive-ML/hyper-rl .

univie University of Vienna
·
Dec 16, 2025 2

One scalar is all you need -- absolute depth estimation using monocular self-supervision

Self-supervised monocular depth estimators can be trained or fine-tuned on new scenes using only images and no ground-truth depth data, achieving good accuracy. However, these estimators suffer from the inherent ambiguity of the depth scale, significantly limiting their applicability. In this work, we present a method for transferring the depth-scale from existing source datasets collected with ground-truth depths to depth estimators that are trained using self-supervision on a newly collected target dataset consisting of images only, solving a significant limiting factor. We show that self-supervision based on projective geometry results in predicted depths that are linearly correlated with their ground-truth depths. Moreover, the linearity of this relationship also holds when jointly training on images from two different (real or synthetic) source and target domains. We utilize this observed property and model the relationship between the ground-truth and the predicted up-to-scale depths of images from the source domain using a single global scalar. Then, we scale the predicted up-to-scale depths of images from the target domain using the estimated global scaling factor, performing depth-scale transfer between the two domains. This suggested method was evaluated on the target KITTI and DDAD datasets, while using other real or synthetic source datasets, that have a larger field-of-view, other image style or structural content. Our approach achieves competitive accuracy on KITTI, even without using the specially tailored vKITTI or vKITTI2 datasets, and higher accuracy on DDAD, when using both real or synthetic source datasets.

  • 5 authors
·
Mar 14, 2023