- Finsler Metric Clustering in Weighted Projective Spaces This paper develops a hierarchical clustering algorithm for weighted projective spaces P_{q}, utilizing a Finsler metric d_F([z], [w]) and its rational analogue d_{F,Q}([z], [w]) to define distances that preserve the non-Euclidean geometry of these quotient manifolds. Defined via geodesic integrals of a scaling invariant Finsler norm weighted by the grades q = (q_0, q_1, dots, q_n), these metrics satisfy true metric properties including the triangle inequality, overcoming the limitations of the non-metric dissimilarity measure from prior work. 1 authors · May 7, 2025
- Ulrich bundles on double coverings of projective space Fixed a polarised variety X, we can ask if it admits Ulrich bundles and, in case, what is their minimal possible rank. In this thesis, after recalling general properties of Ulrich sheaves, we show that any finite covering of P^n that embeds as a divisor in a weighted projective space with weights (1^{n+1},m) admits Ulrich sheaves, by using matrix factorisations. Among these varieties, we focus on double coverings of with nge3. Through Hartshorne--Serre correspondence, which we review along the way, we prove that the general such X admits a rank 2 Ulrich sheaf if and only if n=3 and m=2,3,4, and characterise the zero loci of their sections. Moreover, we construct generically smooth components of the expected dimension of their moduli spaces, analyse the action of the natural involution on them and the restriction of those bundles to low degree hypersurfaces. For m=2,3, we verify the existence of slope-stable Ulrich bundles of all the possible ranks. 1 authors · Jul 12, 2025
1 Positive Geometries and Canonical Forms Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects--the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra--which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. In this paper we initiate an exploration of "positive geometries" and "canonical forms" as objects of study in their own right in a more general mathematical setting. We give a precise definition of positive geometries and canonical forms, introduce general methods for finding forms for more complicated positive geometries from simpler ones, and present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties. We also illustrate a number of strategies for computing canonical forms which yield interesting representations for the forms associated with wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex polytopes. 3 authors · Mar 13, 2017
- A new infinite family of maximum $h$-scattered $\mathbb{F}_q$-subspaces of $V(m(h+1),q^n)$ and associated MRD codes The exploration of linear subspaces, particularly scattered subspaces, has garnered considerable attention across diverse mathematical disciplines in recent years, notably within finite geometries and coding theory. Scattered subspaces play a pivotal role in analyzing various geometric structures such as blocking sets, two-intersection sets, complete arcs, caps in affine and projective spaces over finite fields and rank metric codes. This paper introduces a new infinite family of h-subspaces, along with their associated MRD codes. Additionally, it addresses the task of determining the generalized weights of these codes. Notably, we demonstrate that these MRD codes exhibit some larger generalized weights compared to those previously identified. 3 authors · May 15, 2024
- Diffusion Variational Autoencoders A standard Variational Autoencoder, with a Euclidean latent space, is structurally incapable of capturing topological properties of certain datasets. To remove topological obstructions, we introduce Diffusion Variational Autoencoders with arbitrary manifolds as a latent space. A Diffusion Variational Autoencoder uses transition kernels of Brownian motion on the manifold. In particular, it uses properties of the Brownian motion to implement the reparametrization trick and fast approximations to the KL divergence. We show that the Diffusion Variational Autoencoder is capable of capturing topological properties of synthetic datasets. Additionally, we train MNIST on spheres, tori, projective spaces, SO(3), and a torus embedded in R3. Although a natural dataset like MNIST does not have latent variables with a clear-cut topological structure, training it on a manifold can still highlight topological and geometrical properties. 3 authors · Jan 25, 2019
- Stable rationality of hypersurfaces in schön affine varieties In recent years, there has been a development in approaching rationality problems through the motivic methods (cf. [Kontsevich--Tschinkel'19], [Nicaise--Shinder'19], [Nicaise--Ottem'21]). This method requires the explicit construction of degeneration families of curves with favorable properties. While the specific construction is generally difficult, [Nicaise--Ottem'22] combines combinatorial methods to construct degeneration families of hypersurfaces in toric varieties and shows the non-stable rationality of a very general hypersurface in projective spaces. In this paper, we extend the result of [Nicaise--Ottem'22] not only for hypersurfaces in algebraic tori but also to those in sch\"{o}n affine varieties. In application, we show the irrationality of certain hypersurfaces in the complex Grassmannian variety Gr(2, n) using the motivic method, which coincides with the result obtained by the same author in the previous research. 1 authors · Feb 12, 2025
- Frechet Differentiability in Besov Spaces in the Optimal Control of Parabolic Free Boundary Problems We consider the inverse Stefan type free boundary problem, where information on the boundary heat flux and density of the sources are missing and must be found along with the temperature and the free boundary. We pursue optimal control framework where boundary heat flux, density of sources, and free boundary are components of the control vector. The optimality criteria consists of the minimization of the L_2-norm declinations of the temperature measurements at the final moment, phase transition temperature, and final position of the free boundary. We prove the Frechet differentiability in Besov spaces, and derive the formula for the Frechet differential under minimal regularity assumptions on the data. The result implies a necessary condition for optimal control and opens the way to the application of projective gradient methods in Besov spaces for the numerical solution of the inverse Stefan problem. 2 authors · Mar 31, 2016
- Curvature-Aware Optimization of Noisy Variational Quantum Circuits via Weighted Projective Line Geometry We develop a differential-geometric framework for variational quantum circuits in which noisy single- and multi-qubit parameter spaces are modeled by weighted projective lines (WPLs). Starting from the pure-state Bloch sphere CP1, we show that realistic hardware noise induces anisotropic contractions of the Bloch ball that can be represented by a pair of physically interpretable parameters (lambda_perp, lambda_parallel). These parameters determine a unique WPL metric g_WPL(a_over_b, b) whose scalar curvature is R = 2 / b^2, yielding a compact and channel-resolved geometric surrogate for the intrinsic information structure of noisy quantum circuits. We develop a tomography-to-geometry pipeline that extracts (lambda_perp, lambda_parallel) from hardware data and maps them to the WPL parameters (a_over_b, b, R). Experiments on IBM Quantum backends show that the resulting WPL geometries accurately capture anisotropic curvature deformation across calibration periods. Finally, we demonstrate that WPL-informed quantum natural gradients (WPL-QNG) provide stable optimization dynamics for noisy variational quantum eigensolvers and enable curvature-aware mitigation of barren plateaus. 3 authors · Nov 29, 2025
- Asymptotic Analysis of Stochastic Splitting Methods for Multivariate Monotone Inclusions We propose an abstract framework to establish the convergence of the iterates of stochastic versions of a broad range of monotone operator splitting methods in Hilbert spaces. This framework allows for the introduction of stochasticity at several levels: approximation of operators, selection of coordinates and operators in block-iterative implementations, and relaxation parameters. The proposed analysis involves a reduced inclusion model with two operators. At each iteration, stochastic approximations to points in the graphs of these two operators are used to form the update. The results are applied to derive the almost sure and L^2 convergence of stochastic versions of the proximal point algorithm, as well as of randomized block-iterative projective splitting methods for solving systems of coupled inclusions involving a mix of set-valued, cocoercive, and Lipschitzian monotone operators combined via various monotonicity-preserving operations. 2 authors · Dec 2, 2025
1 Geometry of Sample Spaces In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an n-sample in a space M can be considered as an element of the quotient space of M^n modulo the permutation group. The present paper takes this definition of sample space and the related concept of orbit types as a starting point for developing a geometric perspective on statistics. We aim at deriving a general mathematical setting for studying the behavior of empirical and population means in spaces ranging from smooth Riemannian manifolds to general stratified spaces. We fully describe the orbifold and path-metric structure of the sample space when M is a manifold or path-metric space, respectively. These results are non-trivial even when M is Euclidean. We show that the infinite sample space exists in a Gromov-Hausdorff type sense and coincides with the Wasserstein space of probability distributions on M. We exhibit Fr\'echet means and k-means as metric projections onto 1-skeleta or k-skeleta in Wasserstein space, and we define a new and more general notion of polymeans. This geometric characterization via metric projections applies equally to sample and population means, and we use it to establish asymptotic properties of polymeans such as consistency and asymptotic normality. 4 authors · Oct 15, 2020
- Volumes of Nullhomotopies in Nilpotent Spaces The Shadowing Principle of Manin has proved a valuable tool for addressing questions of quantitative topology raised by Gromov in the late 1900s. The principle informally provides a way for bounded algebraic maps between differential graded algebras to be translated into nearby genuine maps between their geometric realizations. We extend this principle to finite towers of principal K(G,n) fibrations, and in particular apply this construction to nilpotent spaces. As a specific application of the extended principle, we provide upper bounds on the asymptotic behavior of volumes of nullhomotopies of Lipschitz maps into nilpotent spaces. We further refine these bounds in the case when c = 1 to nearly meet those of the simply connected setting. We similarly refine these bounds in the event the target space is coformal, and demonstrate that the bounds in this setting are nearly sharp. 1 authors · Sep 30, 2025
- Einstein metrics on aligned homogeneous spaces with two factors Given two homogeneous spaces of the form G_1/K and G_2/K, where G_1 and G_2 are compact simple Lie groups, we study the existence problem for G_1xG_2-invariant Einstein metrics on the homogeneous space M=G_1xG_2/K. For the large subclass C of spaces having three pairwise inequivalent isotropy irreducible summands (12 infinite families and 70 sporadic examples), we obtain that existence is equivalent to the existence of a real root for certain quartic polynomial depending on the dimensions and two Killing constants, which allows a full classification and the possibility to weigh the existence and non-existence pieces of C. 2 authors · Aug 1, 2024
- Approximating the Convex Hull via Metric Space Magnitude Magnitude of a finite metric space and the related notion of magnitude functions on metric spaces is an active area of research in algebraic topology. Magnitude originally arose in the context of biology, where it represents the number of effective species in an environment; when applied to a one-parameter family of metric spaces tX with scale parameter t, the magnitude captures much of the underlying geometry of the space. Prior work has mostly focussed on properties of magnitude in a global sense; in this paper we restrict the sets to finite subsets of Euclidean space and investigate its individual components. We give an explicit formula for the corrected inclusion-exclusion principle, and define a quantity associated with each point, called the moment which gives an intrinsic ordering to the points. We exploit this in order to form an algorithm which approximates the convex hull. 3 authors · Aug 7, 2019
- On cusp holonomies in strictly convex projective geometry We give a complete characterization of the holonomies of strictly convex cusps and of round cusps in convex projective geometry. We build families of generalized cusps of non-maximal rank associated to each strictly convex or round cusp. We also extend Ballas-Cooper-Leitner's definition of generalized cusp to allow for virtually solvable fundamental group, and we produce the first such example with non-virtually nilpotent fundamental group. Along with a companion paper, this allows to build strictly convex cusps and generalized cusps whose fundamental group is any finitely generated virtually nilpotent group. This also has interesting consequences for the theory of relatively Anosov representations. 1 authors · Nov 28, 2025
- Action de groupe sur la compactification hybride Let X be an algebraic variety over C and G be an algebraic group acting on X whose action is closed. J. Poineau defined a compactification X^urcorner of X(C) by using hybrid Berkovich spaces. We will focus on the extension of the action of G on this compactification by characterising the set U subset X^urcorner where the action is well defined. We will also show that the quotient of U by the action of G is homeomorphic to (X/G)^urcorner, the compactification of (X/G)(C). We then apply these results to X = Rat_d, the space of rational maps and G = SL_2. It gives the results of C. Favre-C. Gong in a more general setting. Furthermore, we get a compactification of M_d = Rat_d/SL_2 where the boundary is made of orbits of non-archimedean rational maps. The results still holds if C is replaced by k a non-trivially valued field and complex analytic spaces by Berkovich spaces over k. 1 authors · Nov 28, 2025
1 Building Neural Networks on Matrix Manifolds: A Gyrovector Space Approach Matrix manifolds, such as manifolds of Symmetric Positive Definite (SPD) matrices and Grassmann manifolds, appear in many applications. Recently, by applying the theory of gyrogroups and gyrovector spaces that is a powerful framework for studying hyperbolic geometry, some works have attempted to build principled generalizations of Euclidean neural networks on matrix manifolds. However, due to the lack of many concepts in gyrovector spaces for the considered manifolds, e.g., the inner product and gyroangles, techniques and mathematical tools provided by these works are still limited compared to those developed for studying hyperbolic geometry. In this paper, we generalize some notions in gyrovector spaces for SPD and Grassmann manifolds, and propose new models and layers for building neural networks on these manifolds. We show the effectiveness of our approach in two applications, i.e., human action recognition and knowledge graph completion. 2 authors · May 8, 2023
1 Barycentric Subspace Analysis on Manifolds This paper investigates the generalization of Principal Component Analysis (PCA) to Riemannian manifolds. We first propose a new and general type of family of subspaces in manifolds that we call barycentric subspaces. They are implicitly defined as the locus of points which are weighted means of k+1 reference points. As this definition relies on points and not on tangent vectors, it can also be extended to geodesic spaces which are not Riemannian. For instance, in stratified spaces, it naturally allows principal subspaces that span several strata, which is impossible in previous generalizations of PCA. We show that barycentric subspaces locally define a submanifold of dimension k which generalizes geodesic subspaces.Second, we rephrase PCA in Euclidean spaces as an optimization on flags of linear subspaces (a hierarchy of properly embedded linear subspaces of increasing dimension). We show that the Euclidean PCA minimizes the Accumulated Unexplained Variances by all the subspaces of the flag (AUV). Barycentric subspaces are naturally nested, allowing the construction of hierarchically nested subspaces. Optimizing the AUV criterion to optimally approximate data points with flags of affine spans in Riemannian manifolds lead to a particularly appealing generalization of PCA on manifolds called Barycentric Subspaces Analysis (BSA). 1 authors · Jul 11, 2016
- On affine spaces of alternating matrices with constant rank Let F be a field, and n geq r>0 be integers, with r even. Denote by A_n(F) the space of all n-by-n alternating matrices with entries in F. We consider the problem of determining the greatest possible dimension for an affine subspace of A_n(F) in which every matrix has rank equal to r (or rank at least r). Recently Rubei has solved this problem over the field of real numbers. We extend her result to all fields with large enough cardinality. Provided that n geq r+3 and |F|geq minbigl(r-1,r{2}+2bigr), we also determine the affine subspaces of rank r matrices in A_n(F) that have the greatest possible dimension, and we point to difficulties for the corresponding problem in the case nleq r+2. 1 authors · Jul 19, 2023
- A Convenient Category for Higher-Order Probability Theory Higher-order probabilistic programming languages allow programmers to write sophisticated models in machine learning and statistics in a succinct and structured way, but step outside the standard measure-theoretic formalization of probability theory. Programs may use both higher-order functions and continuous distributions, or even define a probability distribution on functions. But standard probability theory does not handle higher-order functions well: the category of measurable spaces is not cartesian closed. Here we introduce quasi-Borel spaces. We show that these spaces: form a new formalization of probability theory replacing measurable spaces; form a cartesian closed category and so support higher-order functions; form a well-pointed category and so support good proof principles for equational reasoning; and support continuous probability distributions. We demonstrate the use of quasi-Borel spaces for higher-order functions and probability by: showing that a well-known construction of probability theory involving random functions gains a cleaner expression; and generalizing de Finetti's theorem, that is a crucial theorem in probability theory, to quasi-Borel spaces. 4 authors · Jan 10, 2017
- The generalized roof F(1,2,n): Hodge structures and derived categories We consider generalized homogeneous roofs, i.e. quotients of simply connected, semisimple Lie groups by a parabolic subgroup, which admit two projective bundle structures. Given a general hyperplane section on such a variety, we consider the zero loci of its pushforwards along the projective bundle structures and we discuss their properties at the level of Hodge structures. In the case of the flag variety F(1,2,n) with its projections to P^{n-1} and G(2, n), we construct a derived embedding of the relevant zero loci by methods based on the study of B-brane categories in the context of a gauged linear sigma model. 4 authors · Oct 20, 2021
- Open Gromov-Witten theory on Calabi-Yau three-folds I We propose a general theory of the Open Gromov-Witten invariant on Calabi-Yau three-folds. We introduce the moduli space of multi-curves and show how it leads to invariants. Our construction is based on an idea of Witten. In the special case that each connected component of the Lagrangian submanifold has the rational homology of a sphere we define rational numbers F_{g,h} for each genus g and h boundary components. 1 authors · Jul 29, 2009
- Determinantal ideals of secant varieties Using Hilbert schemes of points, we establish a number of results for a smooth projective variety X in a sufficiently ample embedding. If X is a curve or a surface, we show that the ideals of higher secant varieties are determinantally presented, and we prove the same for the first secant variety if X has arbitrary dimension. This completely settles a conjecture of Eisenbud-Koh-Stillman for curves and partially resolves a conjecture of Sidman-Smith in higher dimensions. If X is a curve or a surface we also prove that the corresponding embedding of the Hilbert scheme of points X^{[d]} into the Grassmannian is projectively normal. Finally, if X is an arbitrary projective scheme in a sufficiently ample embedding, then we demonstrate that its homogeneous ideal is generated by quadrics of rank three, confirming a conjecture of Han-Lee-Moon-Park. Along the way, we check that the Hilbert scheme of three points on a smooth variety is the blow-up of the symmetric product along the big diagonal. 2 authors · Oct 2, 2025
- New counterexamples to the birational Torelli theorem for Calabi--Yau manifolds We produce counterexamples to the birational Torelli theorem for Calabi-Yau manifolds in arbitrarily high dimension: this is done by exhibiting a series of non birational pairs of Calabi-Yau (n^2-1)-folds which, for n geq 2 even, admit an isometry between their middle cohomologies. These varieties also satisfy an mathbb L-equivalence relation in the Grothendieck ring of varieties, i.e. the difference of their classes annihilates a power of the class of the affine line. We state this last property for a broader class of Calabi-Yau pairs, namely all those which are realized as pushforwards of a general (1,1)-section on a homogeneous roof in the sense of Kanemitsu, along its two extremal contractions. 1 authors · Nov 7, 2022
- Cobordism and Concordance of Surfaces in 4-Manifolds We show that two properly embedded compact surfaces in an orientable 4-manifold are cobordant if and only if they are Z/2-homologous and either the 4-manifold has boundary or the surfaces have the same normal Euler number. If the 4-manifold is simply-connected and the surfaces are closed, non-orientable, and cobordant, we show that they are in fact concordant. This completes the classification of closed surfaces in simply-connected 4-manifolds up to concordance. Our methods give new constructions of cobordisms with prescribed boundaries, and completely determine when a given cobordism between the boundaries extends to a cobordism or concordance between the surfaces. We obtain our concordance results by extending Sunukjian's method of ambient surgery to the unoriented case using Pin^--structures. We also discuss conditions for an arbitrary codimension 2 properly embedded submanifold to admit an unoriented spanning manifold with prescribed boundary. All results hold in both the smooth and topological categories. 1 authors · Jan 29
- A Universal Space of Arithmetic Functions:The Banach--Hilbert Hybrid Space U We introduce a new functional space U designed to contain all classical arithmetic functions (Mobius, von Mangoldt, Euler phi, divisor functions, Dirichlet characters, etc.). The norm of U combines a Hilbert-type component, based on square summability of Dirichlet coefficients for every s > 1, with a Banach component controlling logarithmic averages of partial sums. We prove that U is a complete Banach space which embeds continuously all standard Hilbert spaces of Dirichlet series and allows natural actions of Dirichlet convolution and shift operators. This framework provides a unified analytic setting for classical and modern problems in multiplicative number theory. 1 authors · Sep 14, 2025
- Yet another argument in favour of NP=CoNP This article shows yet another proof of NP=CoNP$. In a previous article, we proved that NP=PSPACE and from it we can conclude that NP=CoNP immediately. The former proof shows how to obtain polynomial and, polynomial in time checkable Dag-like proofs for all purely implicational Minimal logic tautologies. From the fact that Minimal implicational logic is PSPACE-complete we get the proof that NP=PSPACE. This first proof of NP=CoNP uses Hudelmaier linear upper-bound on the height of Sequent Calculus minimal implicational logic proofs. In an addendum to the proof of NP=PSPACE, we observe that we do not need to use Hudelmaier upper-bound since any proof of non-hamiltonicity for any graph is linear upper-bounded. By the CoNP-completeness of non-hamiltonicity, we obtain NP=CoNP as a corollary of the first proof. In this article we show the third proof of CoNP=NP, also providing polynomial size and polynomial verifiable certificates that are Dags. They are generated from normal Natural Deduction proofs, linear height upper-bounded too, by removing redundancy, i.e., repeated parts. The existence of repeated parts is a consequence of the redundancy theorem for a family of super-polynomial proofs in the purely implicational Minimal logic. It is mandatory to read at least two previous articles to get the details of the proof presented here. The article that proves the redundancy theorem and the article that shows how to remove the repeated parts of a normal Natural Deduction proof to have a polynomial Dag certificate for minimal implicational logic tautologies. 1 authors · Dec 28, 2020
1 Flagfolds By interpreting the product of the Principal Component Analysis, that is the covariance matrix, as a sequence of nested subspaces naturally coming with weights according to the level of approximation they provide, we are able to embed all d--dimensional Grassmannians into a stratified space of covariance matrices. We observe that Grassmannians constitute the lowest dimensional skeleton of the stratification while it is possible to define a Riemaniann metric on the highest dimensional and dense stratum, such a metric being compatible with the global stratification. With such a Riemaniann metric at hand, it is possible to look for geodesics between two linear subspaces of different dimensions that do not go through higher dimensional linear subspaces as would euclidean geodesics. Building upon the proposed embedding of Grassmannians into the stratified space of covariance matrices, we generalize the concept of varifolds to what we call flagfolds in order to model multi-dimensional shapes. 2 authors · May 17, 2023
- Semantic MapNet: Building Allocentric Semantic Maps and Representations from Egocentric Views We study the task of semantic mapping - specifically, an embodied agent (a robot or an egocentric AI assistant) is given a tour of a new environment and asked to build an allocentric top-down semantic map ("what is where?") from egocentric observations of an RGB-D camera with known pose (via localization sensors). Towards this goal, we present SemanticMapNet (SMNet), which consists of: (1) an Egocentric Visual Encoder that encodes each egocentric RGB-D frame, (2) a Feature Projector that projects egocentric features to appropriate locations on a floor-plan, (3) a Spatial Memory Tensor of size floor-plan length x width x feature-dims that learns to accumulate projected egocentric features, and (4) a Map Decoder that uses the memory tensor to produce semantic top-down maps. SMNet combines the strengths of (known) projective camera geometry and neural representation learning. On the task of semantic mapping in the Matterport3D dataset, SMNet significantly outperforms competitive baselines by 4.01-16.81% (absolute) on mean-IoU and 3.81-19.69% (absolute) on Boundary-F1 metrics. Moreover, we show how to use the neural episodic memories and spatio-semantic allocentric representations build by SMNet for subsequent tasks in the same space - navigating to objects seen during the tour("Find chair") or answering questions about the space ("How many chairs did you see in the house?"). Project page: https://vincentcartillier.github.io/smnet.html. 6 authors · Oct 2, 2020
- The Numerical Stability of Hyperbolic Representation Learning Given the exponential growth of the volume of the ball w.r.t. its radius, the hyperbolic space is capable of embedding trees with arbitrarily small distortion and hence has received wide attention for representing hierarchical datasets. However, this exponential growth property comes at a price of numerical instability such that training hyperbolic learning models will sometimes lead to catastrophic NaN problems, encountering unrepresentable values in floating point arithmetic. In this work, we carefully analyze the limitation of two popular models for the hyperbolic space, namely, the Poincar\'e ball and the Lorentz model. We first show that, under the 64 bit arithmetic system, the Poincar\'e ball has a relatively larger capacity than the Lorentz model for correctly representing points. Then, we theoretically validate the superiority of the Lorentz model over the Poincar\'e ball from the perspective of optimization. Given the numerical limitations of both models, we identify one Euclidean parametrization of the hyperbolic space which can alleviate these limitations. We further extend this Euclidean parametrization to hyperbolic hyperplanes and exhibits its ability in improving the performance of hyperbolic SVM. 4 authors · Oct 31, 2022
- Extension of p-compact operators in Banach spaces We analyze various consequences in relation to the extension of operators T:Xto Y that are p-compact, as well as the extension of operators T:Xto Y whose adjoints T^*:Y^*to X^* are p-compact. In most cases, we discuss these extension properties when the underlying spaces, either domain or codomain, are P_lambda spaces. We also answer if these extensions are almost norm-preserving in such circumstances where the extension T of a T exists. It is observed that an operator can often be extended to a larger domain when the codomain is appropriately extended as well. Specific assumptions might enable us to obtain an extension of an operator that maintains the same range. Necessary and sufficient conditions are derived for a Banach space to be L_1-predual. 2 authors · Nov 2, 2025
- A Probability Monad as the Colimit of Spaces of Finite Samples We define and study a probability monad on the category of complete metric spaces and short maps. It assigns to each space the space of Radon probability measures on it with finite first moment, equipped with the Kantorovich-Wasserstein distance. This monad is analogous to the Giry monad on the category of Polish spaces, and it extends a construction due to van Breugel for compact and for 1-bounded complete metric spaces. We prove that this Kantorovich monad arises from a colimit construction on finite power-like constructions, which formalizes the intuition that probability measures are limits of finite samples. The proof relies on a criterion for when an ordinary left Kan extension of lax monoidal functors is a monoidal Kan extension. The colimit characterization allows the development of integration theory and the treatment of measures on spaces of measures, without measure theory. We also show that the category of algebras of the Kantorovich monad is equivalent to the category of closed convex subsets of Banach spaces with short affine maps as morphisms. 2 authors · Dec 14, 2017
- Who Said Neural Networks Aren't Linear? Neural networks are famously nonlinear. However, linearity is defined relative to a pair of vector spaces, f:XtoY. Is it possible to identify a pair of non-standard vector spaces for which a conventionally nonlinear function is, in fact, linear? This paper introduces a method that makes such vector spaces explicit by construction. We find that if we sandwich a linear operator A between two invertible neural networks, f(x)=g_y^{-1}(A g_x(x)), then the corresponding vector spaces X and Y are induced by newly defined addition and scaling actions derived from g_x and g_y. We term this kind of architecture a Linearizer. This framework makes the entire arsenal of linear algebra, including SVD, pseudo-inverse, orthogonal projection and more, applicable to nonlinear mappings. Furthermore, we show that the composition of two Linearizers that share a neural network is also a Linearizer. We leverage this property and demonstrate that training diffusion models using our architecture makes the hundreds of sampling steps collapse into a single step. We further utilize our framework to enforce idempotency (i.e. f(f(x))=f(x)) on networks leading to a globally projective generative model and to demonstrate modular style transfer. 3 authors · Oct 9, 2025
2 All Weight Systems for Calabi-Yau Fourfolds from Reflexive Polyhedra For any given dimension d, all reflexive d-polytopes can be found (in principle) as subpolytopes of a number of maximal polyhedra that are defined in terms of (d+1)-tuples of integers (weights), or combinations of k-tuples of weights with k<d+1. We present the results of a complete classification of sextuples of weights pertaining to the construction of all reflexive polytopes in five dimensions. We find 322 383 760 930 such weight systems. 185 269 499 015 of them give rise directly to reflexive polytopes and thereby to mirror pairs of Calabi-Yau fourfolds. These lead to 532 600 483 distinct sets of Hodge numbers. 2 authors · Aug 7, 2018
- Complements of finite unions of convex sets Finite unions of convex sets are a central object of study in discrete and computational geometry. In this paper we initiate a systematic study of complements of such unions -- i.e., sets of the form S=R^d setminus (cup_{i=1}^n K_i), where K_i are convex sets. In the first part of the paper we study isolated points in S, whose number is related to the Betti numbers of cup_{i=1}^n K_i and to its non-convexity properties. We obtain upper bounds on the number of such points, which are sharp for n=3 and significantly improve previous bounds of Lawrence and Morris (2009) for all n ll 2^d{d}. In the second part of the paper we study coverings of S by well-behaved sets. We show that S can be covered by at most g(d,n) flats of different dimensions, in such a way that each x in S is covered by a flat whose dimension equals the `local dimension' of S in the neighborhood of x. Furthermore, we determine the structure of a minimum cover that satisfies this property. Then, we study quantitative aspects of this minimum cover and obtain sharp upper bounds on its size in various settings. 2 authors · Aug 26, 2025
4 Group Representational Position Encoding We present GRAPE (Group RepresentAtional Position Encoding), a unified framework for positional encoding based on group actions. GRAPE brings together two families of mechanisms: (i) multiplicative rotations (Multiplicative GRAPE) in SO(d) and (ii) additive logit biases (Additive GRAPE) arising from unipotent actions in the general linear group GL. In Multiplicative GRAPE, a position n in Z (or t in R) acts as G(n)=exp(n,ω,L) with a rank-2 skew generator L in R^{d times d}, yielding a relative, compositional, norm-preserving map with a closed-form matrix exponential. RoPE is recovered exactly when the d/2 planes are the canonical coordinate pairs with log-uniform spectrum. Learned commuting subspaces and compact non-commuting mixtures strictly extend this geometry to capture cross-subspace feature coupling at O(d) and O(r d) cost per head, respectively. In Additive GRAPE, additive logits arise as rank-1 (or low-rank) unipotent actions, recovering ALiBi and the Forgetting Transformer (FoX) as exact special cases while preserving an exact relative law and streaming cacheability. Altogether, GRAPE supplies a principled design space for positional geometry in long-context models, subsuming RoPE and ALiBi as special cases. Project Page: https://github.com/model-architectures/GRAPE. math-ai · Dec 8, 2025 2
- Practical applications of metric space magnitude and weighting vectors Metric space magnitude, an active subject of research in algebraic topology, originally arose in the context of biology, where it was used to represent the effective number of distinct species in an environment. In a more general setting, the magnitude of a metric space is a real number that aims to quantify the effective number of distinct points in the space. The contribution of each point to a metric space's global magnitude, which is encoded by the {\em weighting vector}, captures much of the underlying geometry of the original metric space. Surprisingly, when the metric space is Euclidean, the weighting vector also serves as an effective tool for boundary detection. This allows the weighting vector to serve as the foundation of novel algorithms for classic machine learning tasks such as classification, outlier detection and active learning. We demonstrate, using experiments and comparisons on classic benchmark datasets, the promise of the proposed magnitude and weighting vector-based approaches. 4 authors · Jun 24, 2020
- Probability, valuations, hyperspace: Three monads on Top and the support as a morphism We consider three monads on Top, the category of topological spaces, which formalize topological aspects of probability and possibility in categorical terms. The first one is the Hoare hyperspace monad H, which assigns to every space its space of closed subsets equipped with the lower Vietoris topology. The second is the monad V of continuous valuations, also known as the extended probabilistic powerdomain. We construct both monads in a unified way in terms of double dualization. This reveals a close analogy between them, and allows us to prove that the operation of taking the support of a continuous valuation is a morphism of monads from V to H. In particular, this implies that every H-algebra (topological complete semilattice) is also a V-algebra. Third, we show that V can be restricted to a submonad of tau-smooth probability measures on Top. By composing these two morphisms of monads, we obtain that taking the support of a tau-smooth probability measure is also a morphism of monads. 3 authors · Oct 8, 2019
- Divisibility by p for Markoff-like Surfaces We study orbits in a family of Markoff-like surfaces with extra off-diagonal terms over prime fields F_p. It is shown that, for a typical surface of this form, every non-trivial orbit has size divisible by p. This extends a theorem of W.Y. Chen from the Markoff surface itself to others in this family. The proof closely follows and elaborates on a recent argument of D.E. Martin. We expect that there is just one orbit generically. For some special parameters, we prove that there are at least two or four orbits. Cayley's cubic surface plays a role in parametrising the exceptional cases and dictating the number of solutions mod p. 3 authors · Sep 2, 2025
1 Unveiling the Latent Space Geometry of Push-Forward Generative Models Many deep generative models are defined as a push-forward of a Gaussian measure by a continuous generator, such as Generative Adversarial Networks (GANs) or Variational Auto-Encoders (VAEs). This work explores the latent space of such deep generative models. A key issue with these models is their tendency to output samples outside of the support of the target distribution when learning disconnected distributions. We investigate the relationship between the performance of these models and the geometry of their latent space. Building on recent developments in geometric measure theory, we prove a sufficient condition for optimality in the case where the dimension of the latent space is larger than the number of modes. Through experiments on GANs, we demonstrate the validity of our theoretical results and gain new insights into the latent space geometry of these models. Additionally, we propose a truncation method that enforces a simplicial cluster structure in the latent space and improves the performance of GANs. 4 authors · Jul 21, 2022
- On resolvability, connectedness and pseudocompactness We prove that: I. If L is a T_1 space, |L|>1 and d(L) leq kappa geq omega, then there is a submaximal dense subspace X of L^{2^kappa} such that |X|=Delta(X)=kappa; II. If cleqkappa=kappa^omega<lambda and 2^kappa=2^lambda, then there is a Tychonoff pseudocompact globally and locally connected space X such that |X|=Delta(X)=lambda and X is not kappa^+-resolvable; III. If omega_1leqkappa<lambda and 2^kappa=2^lambda, then there is a regular space X such that |X|=Delta(X)=lambda, all continuous real-valued functions on X are constant (so X is pseudocompact and connected) and X is not kappa^+-resolvable. 1 authors · Aug 2, 2023
- Knowledge Graph Embedding: A Survey from the Perspective of Representation Spaces Knowledge graph embedding (KGE) is an increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties. 4 authors · Nov 7, 2022
- Infinite products and zero-one laws in categorical probability Markov categories are a recent category-theoretic approach to the foundations of probability and statistics. Here we develop this approach further by treating infinite products and the Kolmogorov extension theorem. This is relevant for all aspects of probability theory in which infinitely many random variables appear at a time. These infinite tensor products bigotimes_{i in J} X_i come in two versions: a weaker but more general one for families of objects (X_i)_{i in J} in semicartesian symmetric monoidal categories, and a stronger but more specific one for families of objects in Markov categories. As a first application, we state and prove versions of the zero-one laws of Kolmogorov and Hewitt-Savage for Markov categories. This gives general versions of these results which can be instantiated not only in measure-theoretic probability, where they specialize to the standard ones in the setting of standard Borel spaces, but also in other contexts. 2 authors · Dec 5, 2019
- Shadow Cones: A Generalized Framework for Partial Order Embeddings Hyperbolic space has proven to be well-suited for capturing hierarchical relations in data, such as trees and directed acyclic graphs. Prior work introduced the concept of entailment cones, which uses partial orders defined by nested cones in the Poincar\'e ball to model hierarchies. Here, we introduce the ``shadow cones" framework, a physics-inspired entailment cone construction. Specifically, we model partial orders as subset relations between shadows formed by a light source and opaque objects in hyperbolic space. The shadow cones framework generalizes entailment cones to a broad class of formulations and hyperbolic space models beyond the Poincar\'e ball. This results in clear advantages over existing constructions: for example, shadow cones possess better optimization properties over constructions limited to the Poincar\'e ball. Our experiments on datasets of various sizes and hierarchical structures show that shadow cones consistently and significantly outperform existing entailment cone constructions. These results indicate that shadow cones are an effective way to model partial orders in hyperbolic space, offering physically intuitive and novel insights about the nature of such structures. 4 authors · May 24, 2023
1 A geometric framework for asymptotic inference of principal subspaces in PCA In this article, we develop an asymptotic method for constructing confidence regions for the set of all linear subspaces arising from PCA, from which we derive hypothesis tests on this set. Our method is based on the geometry of Riemannian manifolds with which some sets of linear subspaces are endowed. 2 authors · Sep 5, 2022
- Hyperbolic Category Discovery Generalized Category Discovery (GCD) is an intriguing open-world problem that has garnered increasing attention. Given a dataset that includes both labelled and unlabelled images, GCD aims to categorize all images in the unlabelled subset, regardless of whether they belong to known or unknown classes. In GCD, the common practice typically involves applying a spherical projection operator at the end of the self-supervised pretrained backbone, operating within Euclidean or spherical space. However, both of these spaces have been shown to be suboptimal for encoding samples that possesses hierarchical structures. In contrast, hyperbolic space exhibits exponential volume growth relative to radius, making it inherently strong at capturing the hierarchical structure of samples from both seen and unseen categories. Therefore, we propose to tackle the category discovery challenge in the hyperbolic space. We introduce HypCD, a simple Hyperbolic framework for learning hierarchy-aware representations and classifiers for generalized Category Discovery. HypCD first transforms the Euclidean embedding space of the backbone network into hyperbolic space, facilitating subsequent representation and classification learning by considering both hyperbolic distance and the angle between samples. This approach is particularly helpful for knowledge transfer from known to unknown categories in GCD. We thoroughly evaluate HypCD on public GCD benchmarks, by applying it to various baseline and state-of-the-art methods, consistently achieving significant improvements. 3 authors · Apr 8, 2025
- Properties of several metric spaces of fuzzy sets This paper discusses the properties the spaces of fuzzy sets in a metric space equipped with the endograph metric and the sendograph metric, respectively. We first give some relations among the endograph metric, the sendograph metric and the Gamma-convergence, and then investigate the level characterizations of the endograph metric and the Gamma-convergence. By using the above results, we give some relations among the endograph metric, the sendograph metric, the supremum metric and the d_p^* metric, pgeq 1. On the basis of the above results, we present the characterizations of total boundedness, relative compactness and compactness in the space of fuzzy sets whose alpha-cuts are compact when alpha>0 equipped with the endograph metric, and in the space of compact support fuzzy sets equipped with the sendograph metric, respectively. Furthermore, we give completions of these metric spaces, respectively. 1 authors · Apr 7, 2023
- Extrinsic systole of Seifert surfaces and distortion of knots In 1983, Gromov introduced the notion of distortion of a knot, and asked if there are knots with arbitrarily large distortion. In 2011, Pardon proved that the distortion of T_{p,q} is at least min{p,q} up to a constant factor. We prove that the distortion of T_{p, p+1}# K is at least p up to a constant, independent of K. We also prove that any embedding of a minimal genus Seifert surface for T_{p,p+1}# K in R^3 has small extrinsic systole, in the sense that it contains a non-contractible loop with small R^3-diameter relative to the length of the knot. These results are related to combinatorial properties of the monodromy map associated to torus knots. 1 authors · Oct 1, 2025
- Bayesian machine learning via category theory From the Bayesian perspective, the category of conditional probabilities (a variant of the Kleisli category of the Giry monad, whose objects are measurable spaces and arrows are Markov kernels) gives a nice framework for conceptualization and analysis of many aspects of machine learning. Using categorical methods, we construct models for parametric and nonparametric Bayesian reasoning on function spaces, thus providing a basis for the supervised learning problem. In particular, stochastic processes are arrows to these function spaces which serve as prior probabilities. The resulting inference maps can often be analytically constructed in this symmetric monoidal weakly closed category. We also show how to view general stochastic processes using functor categories and demonstrate the Kalman filter as an archetype for the hidden Markov model. 2 authors · Dec 5, 2013
- From Rays to Projections: Better Inputs for Feed-Forward View Synthesis Feed-forward view synthesis models predict a novel view in a single pass with minimal 3D inductive bias. Existing works encode cameras as Plücker ray maps, which tie predictions to the arbitrary world coordinate gauge and make them sensitive to small camera transformations, thereby undermining geometric consistency. In this paper, we ask what inputs best condition a model for robust and consistent view synthesis. We propose projective conditioning, which replaces raw camera parameters with a target-view projective cue that provides a stable 2D input. This reframes the task from a brittle geometric regression problem in ray space to a well-conditioned target-view image-to-image translation problem. Additionally, we introduce a masked autoencoding pretraining strategy tailored to this cue, enabling the use of large-scale uncalibrated data for pretraining. Our method shows improved fidelity and stronger cross-view consistency compared to ray-conditioned baselines on our view-consistency benchmark. It also achieves state-of-the-art quality on standard novel view synthesis benchmarks. 4 authors · Jan 8
- Denotational validation of higher-order Bayesian inference We present a modular semantic account of Bayesian inference algorithms for probabilistic programming languages, as used in data science and machine learning. Sophisticated inference algorithms are often explained in terms of composition of smaller parts. However, neither their theoretical justification nor their implementation reflects this modularity. We show how to conceptualise and analyse such inference algorithms as manipulating intermediate representations of probabilistic programs using higher-order functions and inductive types, and their denotational semantics. Semantic accounts of continuous distributions use measurable spaces. However, our use of higher-order functions presents a substantial technical difficulty: it is impossible to define a measurable space structure over the collection of measurable functions between arbitrary measurable spaces that is compatible with standard operations on those functions, such as function application. We overcome this difficulty using quasi-Borel spaces, a recently proposed mathematical structure that supports both function spaces and continuous distributions. We define a class of semantic structures for representing probabilistic programs, and semantic validity criteria for transformations of these representations in terms of distribution preservation. We develop a collection of building blocks for composing representations. We use these building blocks to validate common inference algorithms such as Sequential Monte Carlo and Markov Chain Monte Carlo. To emphasize the connection between the semantic manipulation and its traditional measure theoretic origins, we use Kock's synthetic measure theory. We demonstrate its usefulness by proving a quasi-Borel counterpart to the Metropolis-Hastings-Green theorem. 10 authors · Nov 8, 2017
1 Principal subbundles for dimension reduction In this paper we demonstrate how sub-Riemannian geometry can be used for manifold learning and surface reconstruction by combining local linear approximations of a point cloud to obtain lower dimensional bundles. Local approximations obtained by local PCAs are collected into a rank k tangent subbundle on R^d, k<d, which we call a principal subbundle. This determines a sub-Riemannian metric on R^d. We show that sub-Riemannian geodesics with respect to this metric can successfully be applied to a number of important problems, such as: explicit construction of an approximating submanifold M, construction of a representation of the point-cloud in R^k, and computation of distances between observations, taking the learned geometry into account. The reconstruction is guaranteed to equal the true submanifold in the limit case where tangent spaces are estimated exactly. Via simulations, we show that the framework is robust when applied to noisy data. Furthermore, the framework generalizes to observations on an a priori known Riemannian manifold. 5 authors · Jul 6, 2023
- Fractional divergence-measure fields, Leibniz rule and Gauss-Green formula Given alphain(0,1] and pin[1,+infty], we define the space DM^{alpha,p}(mathbb R^n) of L^p vector fields whose alpha-divergence is a finite Radon measure, extending the theory of divergence-measure vector fields to the distributional fractional setting. Our main results concern the absolute continuity properties of the alpha-divergence-measure with respect to the Hausdorff measure and fractional analogues of the Leibniz rule and the Gauss-Green formula. The sharpness of our results is discussed via some explicit examples. 2 authors · Mar 1, 2023
- On the Orthogonal Projections For any {rm E}-rigid presentation e, we construct an orthogonal projection functor to {rm rep}(e^perp) left adjoint to the natural embedding. We establish a bijection between presentations in {rm rep}(e^perp) and presentations compatible with e. For quivers with potentials, we show that {rm rep}(e^perp) forms a module category of another quiver with potential. We derive mutation formulas for the delta-vectors of positive and negative complements and the dimension vectors of simple modules in {rm rep}(e^perp), enabling an algorithm to find the projected quiver with potential. Additionally, we introduce a modified projection for quivers with potentials that preserves general presentations. For applications to cluster algebras, we establish a connection to the stabilization functors. 1 authors · Oct 1, 2025
- Lie Group Decompositions for Equivariant Neural Networks Invariance and equivariance to geometrical transformations have proven to be very useful inductive biases when training (convolutional) neural network models, especially in the low-data regime. Much work has focused on the case where the symmetry group employed is compact or abelian, or both. Recent work has explored enlarging the class of transformations used to the case of Lie groups, principally through the use of their Lie algebra, as well as the group exponential and logarithm maps. The applicability of such methods to larger transformation groups is limited by the fact that depending on the group of interest G, the exponential map may not be surjective. Further limitations are encountered when G is neither compact nor abelian. Using the structure and geometry of Lie groups and their homogeneous spaces, we present a framework by which it is possible to work with such groups primarily focusing on the Lie groups G = GL^{+}(n, R) and G = SL(n, R), as well as their representation as affine transformations R^{n} rtimes G. Invariant integration as well as a global parametrization is realized by decomposing the `larger` groups into subgroups and submanifolds which can be handled individually. Under this framework, we show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations. We evaluate the robustness and out-of-distribution generalisation capability of our model on the standard affine-invariant benchmark classification task, where we outperform all previous equivariant models as well as all Capsule Network proposals. 2 authors · Oct 17, 2023
- A link between covering and coefficient theorems for holomorphic functions Recently the author presented a new approach to solving the coefficient problems for various classes of holomorphic functions f(z) = sumlimits_0^infty c_n z^n, not necessarily univalent. This approach is based on lifting the given polynomial coefficient functionals J(f) = J(c_{m_1}, dots, c_{m_s}), 2 < c_{m_1} < dots < c_{m_s} < infty, onto the Bers fiber space over universal Teichmuller space and applying the analytic and geometric features of Teichm\"{u}ller spaces, especially the Bers isomorphism theorem for Teichmuller spaces of punctured Riemann surfaces. In this paper, we extend this approach to more general classes of functions. In particular, this provides a strengthening of de Branges' theorem solving the Bieberbach conjecture. 1 authors · Apr 1, 2025
1 Beyond Fully-Connected Layers with Quaternions: Parameterization of Hypercomplex Multiplications with 1/n Parameters Recent works have demonstrated reasonable success of representation learning in hypercomplex space. Specifically, "fully-connected layers with Quaternions" (4D hypercomplex numbers), which replace real-valued matrix multiplications in fully-connected layers with Hamilton products of Quaternions, both enjoy parameter savings with only 1/4 learnable parameters and achieve comparable performance in various applications. However, one key caveat is that hypercomplex space only exists at very few predefined dimensions (4D, 8D, and 16D). This restricts the flexibility of models that leverage hypercomplex multiplications. To this end, we propose parameterizing hypercomplex multiplications, allowing models to learn multiplication rules from data regardless of whether such rules are predefined. As a result, our method not only subsumes the Hamilton product, but also learns to operate on any arbitrary nD hypercomplex space, providing more architectural flexibility using arbitrarily 1/n learnable parameters compared with the fully-connected layer counterpart. Experiments of applications to the LSTM and Transformer models on natural language inference, machine translation, text style transfer, and subject verb agreement demonstrate architectural flexibility and effectiveness of the proposed approach. 7 authors · Feb 17, 2021
- Calabi-Yau fibrations, simple K-equivalence and mutations A homogeneous roof is a rational homogeneous variety of Picard rank 2 and index r equipped with two different mathbb P^{r-1}-bundle structures. We consider bundles of homogeneous roofs over a smooth projective variety, formulating a relative version of the duality of Calabi--Yau pairs associated to roofs of projective bundles. We discuss how derived equivalence of such pairs can lift to Calabi--Yau fibrations, extending a result of Bridgeland and Maciocia to higher-dimensional cases. We formulate an approach to prove that the DK-conjecture holds for a class of simple K-equivalent maps arising from bundles of roofs. As an example, we propose a pair of eight-dimensional Calabi--Yau varieties fibered in dual Calabi--Yau threefolds, related by a GLSM phase transition, and we prove derived equivalence with the methods above. 1 authors · Jun 11, 2020
12 StereoSpace: Depth-Free Synthesis of Stereo Geometry via End-to-End Diffusion in a Canonical Space We introduce StereoSpace, a diffusion-based framework for monocular-to-stereo synthesis that models geometry purely through viewpoint conditioning, without explicit depth or warping. A canonical rectified space and the conditioning guide the generator to infer correspondences and fill disocclusions end-to-end. To ensure fair and leakage-free evaluation, we introduce an end-to-end protocol that excludes any ground truth or proxy geometry estimates at test time. The protocol emphasizes metrics reflecting downstream relevance: iSQoE for perceptual comfort and MEt3R for geometric consistency. StereoSpace surpasses other methods from the warp & inpaint, latent-warping, and warped-conditioning categories, achieving sharp parallax and strong robustness on layered and non-Lambertian scenes. This establishes viewpoint-conditioned diffusion as a scalable, depth-free solution for stereo generation. Photogrammetry and Remote Sensing Lab of ETH Zurich · Dec 11, 2025 2
- Weighting vectors for machine learning: numerical harmonic analysis applied to boundary detection Metric space magnitude, an active field of research in algebraic topology, is a scalar quantity that summarizes the effective number of distinct points that live in a general metric space. The {\em weighting vector} is a closely-related concept that captures, in a nontrivial way, much of the underlying geometry of the original metric space. Recent work has demonstrated that when the metric space is Euclidean, the weighting vector serves as an effective tool for boundary detection. We recast this result and show the weighting vector may be viewed as a solution to a kernelized SVM. As one consequence, we apply this new insight to the task of outlier detection, and we demonstrate performance that is competitive or exceeds performance of state-of-the-art techniques on benchmark data sets. Under mild assumptions, we show the weighting vector, which has computational cost of matrix inversion, can be efficiently approximated in linear time. We show how nearest neighbor methods can approximate solutions to the minimization problems defined by SVMs. 5 authors · Jun 1, 2021
- Do Not Escape From the Manifold: Discovering the Local Coordinates on the Latent Space of GANs The discovery of the disentanglement properties of the latent space in GANs motivated a lot of research to find the semantically meaningful directions on it. In this paper, we suggest that the disentanglement property is closely related to the geometry of the latent space. In this regard, we propose an unsupervised method for finding the semantic-factorizing directions on the intermediate latent space of GANs based on the local geometry. Intuitively, our proposed method, called Local Basis, finds the principal variation of the latent space in the neighborhood of the base latent variable. Experimental results show that the local principal variation corresponds to the semantic factorization and traversing along it provides strong robustness to image traversal. Moreover, we suggest an explanation for the limited success in finding the global traversal directions in the latent space, especially W-space of StyleGAN2. We show that W-space is warped globally by comparing the local geometry, discovered from Local Basis, through the metric on Grassmannian Manifold. The global warpage implies that the latent space is not well-aligned globally and therefore the global traversal directions are bound to show limited success on it. 6 authors · Jun 13, 2021
- Bimonoidal Structure of Probability Monads We give a conceptual treatment of the notion of joints, marginals, and independence in the setting of categorical probability. This is achieved by endowing the usual probability monads (like the Giry monad) with a monoidal and an opmonoidal structure, mutually compatible (i.e. a bimonoidal structure). If the underlying monoidal category is cartesian monoidal, a bimonoidal structure is given uniquely by a commutative strength. However, if the underlying monoidal category is not cartesian monoidal, a strength is not enough to guarantee all the desired properties of joints and marginals. A bimonoidal structure is then the correct requirement for the more general case. We explain the theory and the operational interpretation, with the help of the graphical calculus for monoidal categories. We give a definition of stochastic independence based on the bimonoidal structure, compatible with the intuition and with other approaches in the literature for cartesian monoidal categories. We then show as an example that the Kantorovich monad on the category of complete metric spaces is a bimonoidal monad for a non-cartesian monoidal structure. 2 authors · Apr 10, 2018
- Joint 2D-3D-Semantic Data for Indoor Scene Understanding We present a dataset of large-scale indoor spaces that provides a variety of mutually registered modalities from 2D, 2.5D and 3D domains, with instance-level semantic and geometric annotations. The dataset covers over 6,000m2 and contains over 70,000 RGB images, along with the corresponding depths, surface normals, semantic annotations, global XYZ images (all in forms of both regular and 360{\deg} equirectangular images) as well as camera information. It also includes registered raw and semantically annotated 3D meshes and point clouds. The dataset enables development of joint and cross-modal learning models and potentially unsupervised approaches utilizing the regularities present in large-scale indoor spaces. The dataset is available here: http://3Dsemantics.stanford.edu/ 4 authors · Feb 3, 2017
- Chordal Averaging on Flag Manifolds and Its Applications This paper presents a new, provably-convergent algorithm for computing the flag-mean and flag-median of a set of points on a flag manifold under the chordal metric. The flag manifold is a mathematical space consisting of flags, which are sequences of nested subspaces of a vector space that increase in dimension. The flag manifold is a superset of a wide range of known matrix spaces, including Stiefel and Grassmanians, making it a general object that is useful in a wide variety computer vision problems. To tackle the challenge of computing first order flag statistics, we first transform the problem into one that involves auxiliary variables constrained to the Stiefel manifold. The Stiefel manifold is a space of orthogonal frames, and leveraging the numerical stability and efficiency of Stiefel-manifold optimization enables us to compute the flag-mean effectively. Through a series of experiments, we show the competence of our method in Grassmann and rotation averaging, as well as principal component analysis. We release our source code under https://github.com/nmank/FlagAveraging. 2 authors · Mar 23, 2023
12 Model-Based and Sample-Efficient AI-Assisted Math Discovery in Sphere Packing Sphere packing, Hilbert's eighteenth problem, asks for the densest arrangement of congruent spheres in n-dimensional Euclidean space. Although relevant to areas such as cryptography, crystallography, and medical imaging, the problem remains unresolved: beyond a few special dimensions, neither optimal packings nor tight upper bounds are known. Even a major breakthrough in dimension n=8, later recognised with a Fields Medal, underscores its difficulty. A leading technique for upper bounds, the three-point method, reduces the problem to solving large, high-precision semidefinite programs (SDPs). Because each candidate SDP may take days to evaluate, standard data-intensive AI approaches are infeasible. We address this challenge by formulating SDP construction as a sequential decision process, the SDP game, in which a policy assembles SDP formulations from a set of admissible components. Using a sample-efficient model-based framework that combines Bayesian optimisation with Monte Carlo Tree Search, we obtain new state-of-the-art upper bounds in dimensions 4-16, showing that model-based search can advance computational progress in longstanding geometric problems. Together, these results demonstrate that sample-efficient, model-based search can make tangible progress on mathematically rigid, evaluation limited problems, pointing towards a complementary direction for AI-assisted discovery beyond large-scale LLM-driven exploration. 6 authors · Dec 4, 2025 2
- Operational Latent Spaces We investigate the construction of latent spaces through self-supervised learning to support semantically meaningful operations. Analogous to operational amplifiers, these "operational latent spaces" (OpLaS) not only demonstrate semantic structure such as clustering but also support common transformational operations with inherent semantic meaning. Some operational latent spaces are found to have arisen "unintentionally" in the progress toward some (other) self-supervised learning objective, in which unintended but still useful properties are discovered among the relationships of points in the space. Other spaces may be constructed "intentionally" by developers stipulating certain kinds of clustering or transformations intended to produce the desired structure. We focus on the intentional creation of operational latent spaces via self-supervised learning, including the introduction of rotation operators via a novel "FiLMR" layer, which can be used to enable ring-like symmetries found in some musical constructions. 2 authors · Jun 4, 2024
6 SpaceBlender: Creating Context-Rich Collaborative Spaces Through Generative 3D Scene Blending There is increased interest in using generative AI to create 3D spaces for Virtual Reality (VR) applications. However, today's models produce artificial environments, falling short of supporting collaborative tasks that benefit from incorporating the user's physical context. To generate environments that support VR telepresence, we introduce SpaceBlender, a novel pipeline that utilizes generative AI techniques to blend users' physical surroundings into unified virtual spaces. This pipeline transforms user-provided 2D images into context-rich 3D environments through an iterative process consisting of depth estimation, mesh alignment, and diffusion-based space completion guided by geometric priors and adaptive text prompts. In a preliminary within-subjects study, where 20 participants performed a collaborative VR affinity diagramming task in pairs, we compared SpaceBlender with a generic virtual environment and a state-of-the-art scene generation framework, evaluating its ability to create virtual spaces suitable for collaboration. Participants appreciated the enhanced familiarity and context provided by SpaceBlender but also noted complexities in the generative environments that could detract from task focus. Drawing on participant feedback, we propose directions for improving the pipeline and discuss the value and design of blended spaces for different scenarios. 5 authors · Sep 20, 2024 2
- Optimal Embeddings of Posets in Hypercubes Given a finite poset mathcal P, the hypercube-height, denoted by h^*(mathcal P), is defined to be the largest h such that, for any natural number n, the subsets of [n] of size less than h do not contain an induced copy of mathcal P. The hypercube-width, denoted by w^*(mathcal P), is the smallest w such that the subsets of [w] of size at most h^*(mathcal P) contain an induced copy of mathcal P. In other words, h^*(mathcal P) asks how `low' can a poset be embedded, and w^*(mathcal P) asks for the first hypercube in which such an `optimal' embedding occurs. These notions were introduced by Bastide, Groenland, Ivan and Johnston in connection to upper bounds for the poset saturation numbers. While it is not hard to see that h^*(mathcal P)leq |mathcal P|-1 (and this bound can be tight), the hypercube-width has proved to be much more elusive. It was shown by the authors mentioned above that w^*(mathcal P)leq|mathcal P|^2/4, but they conjectured that in fact w^*(mathcal P)leq |mathcal P| for any finite poset mathcal P. In this paper we prove this conjecture. The proof uses Hall's theorem for bipartite graphs as a precision tool for modifing an existing copy of our poset. 3 authors · Sep 30, 2025
- Concrete Sentence Spaces for Compositional Distributional Models of Meaning Coecke, Sadrzadeh, and Clark (arXiv:1003.4394v1 [cs.CL]) developed a compositional model of meaning for distributional semantics, in which each word in a sentence has a meaning vector and the distributional meaning of the sentence is a function of the tensor products of the word vectors. Abstractly speaking, this function is the morphism corresponding to the grammatical structure of the sentence in the category of finite dimensional vector spaces. In this paper, we provide a concrete method for implementing this linear meaning map, by constructing a corpus-based vector space for the type of sentence. Our construction method is based on structured vector spaces whereby meaning vectors of all sentences, regardless of their grammatical structure, live in the same vector space. Our proposed sentence space is the tensor product of two noun spaces, in which the basis vectors are pairs of words each augmented with a grammatical role. This enables us to compare meanings of sentences by simply taking the inner product of their vectors. 5 authors · Dec 31, 2010
- Brauer's Group Equivariant Neural Networks We provide a full characterisation of all of the possible group equivariant neural networks whose layers are some tensor power of R^{n} for three symmetry groups that are missing from the machine learning literature: O(n), the orthogonal group; SO(n), the special orthogonal group; and Sp(n), the symplectic group. In particular, we find a spanning set of matrices for the learnable, linear, equivariant layer functions between such tensor power spaces in the standard basis of R^{n} when the group is O(n) or SO(n), and in the symplectic basis of R^{n} when the group is Sp(n). 1 authors · Dec 16, 2022
- Vietoris--Rips Shadow for Euclidean Graph Reconstruction The shadow of an abstract simplicial complex K with vertices in R^N is a subset of R^N defined as the union of the convex hulls of simplices of K. The Vietoris--Rips complex of a metric space (S,d) at scale β is an abstract simplicial complex whose each k-simplex corresponds to (k+1) points of S within diameter β. In case Ssubsetmathbb R^2 and d(a,b)=|a-b| the standard Euclidean metric, the natural shadow projection of the Vietoris--Rips complex is already proved by Chambers et al. to induce isomorphisms on π_0 and π_1. We extend the result beyond the standard Euclidean distance on Ssubsetmathbb R^N to a family of path-based metrics, d^varepsilon_{S}. From the pairwise Euclidean distances of points in S, we introduce a family (parametrized by varepsilon) of path-based Vietoris--Rips complexes R^varepsilon_β(S) for a scale β>0. If SsubsetR^2 is Hausdorff-close to a planar Euclidean graph G, we provide quantitative bounds on scales β,varepsilon for the shadow projection map of the Vietoris--Rips complex of (S,d^varepsilon_S) at scale β to induce π_1-isomorphism. This paper first studies the homotopy-type recovery of Gsubsetmathbb R^N using the abstract Vietoris--Rips complex of a Hausdorff-close sample S under the d^varepsilon_S metric. Then, our result on the π_1-isomorphism induced by the shadow projection lends itself to providing also a geometrically close embedding for the reconstruction. Based on the length of the shortest loop and large-scale distortion of the embedding of G, we quantify the choice of a suitable sample density varepsilon and a scale β at which the shadow of R^varepsilon_β(S) is homotopy-equivalent and Hausdorff-close to G. 3 authors · Jun 2, 2025
- The P^3 dataset: Pixels, Points and Polygons for Multimodal Building Vectorization We present the P^3 dataset, a large-scale multimodal benchmark for building vectorization, constructed from aerial LiDAR point clouds, high-resolution aerial imagery, and vectorized 2D building outlines, collected across three continents. The dataset contains over 10 billion LiDAR points with decimeter-level accuracy and RGB images at a ground sampling distance of 25 centimeter. While many existing datasets primarily focus on the image modality, P^3 offers a complementary perspective by also incorporating dense 3D information. We demonstrate that LiDAR point clouds serve as a robust modality for predicting building polygons, both in hybrid and end-to-end learning frameworks. Moreover, fusing aerial LiDAR and imagery further improves accuracy and geometric quality of predicted polygons. The P^3 dataset is publicly available, along with code and pretrained weights of three state-of-the-art models for building polygon prediction at https://github.com/raphaelsulzer/PixelsPointsPolygons . 4 authors · May 21, 2025
1 Geometry on the Wasserstein space over a compact Riemannian manifold We will revisit the intrinsic differential geometry of the Wasserstein space over a Riemannian manifold, due to a series of papers by Otto, Villani, Lott, Ambrosio, Gigli, Savar\'e and so on. 2 authors · Apr 2, 2021
- Combining relatively hyperbolic groups over a complex of groups Given a complex of groups G(Y) = (G_sigma, psi_a, g_{a,b}) where all G_sigma are relatively hyperbolic, the psi_a are inclusions of full relatively quasiconvex subgroups, and the universal cover X is CAT(0) and delta--hyperbolic, we show pi_1(G(Y)) is relatively hyperbolic. The proof extends the work of Dahmani and Martin by constructing a model for the Bowditch boundary of pi_1(G(Y)). We prove the model is a compact metrizable space on which G acts as a geometrically finite convergence group, and a theorem of Yaman then implies the result. More generally, this model shows how any suitable action of a relatively hyperbolic group on a simply connected cell complex encodes a decomposition of the Bowditch boundary into the boundary of the cell complex and the boundaries of cell stabilizers. We hope this decomposition will be helpful in answering topological questions about Bowditch boundaries. 1 authors · Oct 2, 2025
1 The Linear Representation Hypothesis and the Geometry of Large Language Models Informally, the 'linear representation hypothesis' is the idea that high-level concepts are represented linearly as directions in some representation space. In this paper, we address two closely related questions: What does "linear representation" actually mean? And, how do we make sense of geometric notions (e.g., cosine similarity or projection) in the representation space? To answer these, we use the language of counterfactuals to give two formalizations of "linear representation", one in the output (word) representation space, and one in the input (sentence) space. We then prove these connect to linear probing and model steering, respectively. To make sense of geometric notions, we use the formalization to identify a particular (non-Euclidean) inner product that respects language structure in a sense we make precise. Using this causal inner product, we show how to unify all notions of linear representation. In particular, this allows the construction of probes and steering vectors using counterfactual pairs. Experiments with LLaMA-2 demonstrate the existence of linear representations of concepts, the connection to interpretation and control, and the fundamental role of the choice of inner product. 3 authors · Nov 6, 2023
- Fullness of the Kuznetsov-Polishchuk exceptional collection for the spinor tenfold Kuznetsov and Polishchuk provided a general algorithm to construct exceptional collections of maximal length for homogeneous varieties of type A,B,C,D. We consider the case of the spinor tenfold and we prove that the corresponding collection is full, i.e. it generates the whole derived category of coherent sheaves. As a step of the proof, we construct some resolutions of homogeneous vector bundles which might be of independent interest. 2 authors · Jun 19, 2023
- Locally resolvable BIBDs and generalized quadrangles with ovoids In this note we establish a 1-to-1 correspondence between the class of generalized quadrangles with ovoids and the class of balanced incomplete block designs that posses a non-triangular local resolution system and have the appropriate parameters. We present a non-triangular local resolution system for a difference family BIBD construction of Sprott. 1 authors · Aug 1, 2024
- Regularity of shadows and the geometry of the singular set associated to a Monge-Ampere equation Illuminating the surface of a convex body with parallel beams of light in a given direction generates a shadow region. We prove sharp regularity results for the boundary of this shadow in every direction of illumination. Moreover, techniques are developed for investigating the regularity of the region generated by orthogonally projecting a convex set onto another. As an application we study the geometry and Hausdorff dimension of the singular set corresponding to a Monge-Ampere equation. 2 authors · Nov 22, 2013
- Fast, Expressive SE(n) Equivariant Networks through Weight-Sharing in Position-Orientation Space Based on the theory of homogeneous spaces we derive geometrically optimal edge attributes to be used within the flexible message-passing framework. We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs that should be treated equally. We define equivalence classes of point-pairs that are identical up to a transformation in the group and derive attributes that uniquely identify these classes. Weight sharing is then obtained by conditioning message functions on these attributes. As an application of the theory, we develop an efficient equivariant group convolutional network for processing 3D point clouds. The theory of homogeneous spaces tells us how to do group convolutions with feature maps over the homogeneous space of positions R^3, position and orientations R^3 {times} S^2, and the group SE(3) itself. Among these, R^3 {times} S^2 is an optimal choice due to the ability to represent directional information, which R^3 methods cannot, and it significantly enhances computational efficiency compared to indexing features on the full SE(3) group. We support this claim with state-of-the-art results -- in accuracy and speed -- on five different benchmarks in 2D and 3D, including interatomic potential energy prediction, trajectory forecasting in N-body systems, and generating molecules via equivariant diffusion models. 5 authors · Oct 4, 2023
- Density estimation using Real NVP Unsupervised learning of probabilistic models is a central yet challenging problem in machine learning. Specifically, designing models with tractable learning, sampling, inference and evaluation is crucial in solving this task. We extend the space of such models using real-valued non-volume preserving (real NVP) transformations, a set of powerful invertible and learnable transformations, resulting in an unsupervised learning algorithm with exact log-likelihood computation, exact sampling, exact inference of latent variables, and an interpretable latent space. We demonstrate its ability to model natural images on four datasets through sampling, log-likelihood evaluation and latent variable manipulations. 3 authors · May 27, 2016
1 Representation Tradeoffs for Hyperbolic Embeddings Hyperbolic embeddings offer excellent quality with few dimensions when embedding hierarchical data structures like synonym or type hierarchies. Given a tree, we give a combinatorial construction that embeds the tree in hyperbolic space with arbitrarily low distortion without using optimization. On WordNet, our combinatorial embedding obtains a mean-average-precision of 0.989 with only two dimensions, while Nickel et al.'s recent construction obtains 0.87 using 200 dimensions. We provide upper and lower bounds that allow us to characterize the precision-dimensionality tradeoff inherent in any hyperbolic embedding. To embed general metric spaces, we propose a hyperbolic generalization of multidimensional scaling (h-MDS). We show how to perform exact recovery of hyperbolic points from distances, provide a perturbation analysis, and give a recovery result that allows us to reduce dimensionality. The h-MDS approach offers consistently low distortion even with few dimensions across several datasets. Finally, we extract lessons from the algorithms and theory above to design a PyTorch-based implementation that can handle incomplete information and is scalable. 4 authors · Apr 9, 2018
- Measuring the Intrinsic Dimension of Objective Landscapes Many recently trained neural networks employ large numbers of parameters to achieve good performance. One may intuitively use the number of parameters required as a rough gauge of the difficulty of a problem. But how accurate are such notions? How many parameters are really needed? In this paper we attempt to answer this question by training networks not in their native parameter space, but instead in a smaller, randomly oriented subspace. We slowly increase the dimension of this subspace, note at which dimension solutions first appear, and define this to be the intrinsic dimension of the objective landscape. The approach is simple to implement, computationally tractable, and produces several suggestive conclusions. Many problems have smaller intrinsic dimensions than one might suspect, and the intrinsic dimension for a given dataset varies little across a family of models with vastly different sizes. This latter result has the profound implication that once a parameter space is large enough to solve a problem, extra parameters serve directly to increase the dimensionality of the solution manifold. Intrinsic dimension allows some quantitative comparison of problem difficulty across supervised, reinforcement, and other types of learning where we conclude, for example, that solving the inverted pendulum problem is 100 times easier than classifying digits from MNIST, and playing Atari Pong from pixels is about as hard as classifying CIFAR-10. In addition to providing new cartography of the objective landscapes wandered by parameterized models, the method is a simple technique for constructively obtaining an upper bound on the minimum description length of a solution. A byproduct of this construction is a simple approach for compressing networks, in some cases by more than 100 times. 4 authors · Apr 24, 2018
- Lambert W-function and Gauss class number one conjecture We study fixed points of a function arising in a representation theory of the Drinfeld modules by the bounded linear operators on a Hilbert space. We prove that such points correspond to number fields of the class number one. As an application, one gets a solution to the Gauss conjecture for the real quadratic fields of class number one. 1 authors · Dec 1, 2025
- A Concept-Centric Approach to Multi-Modality Learning In an effort to create a more efficient AI system, we introduce a new multi-modality learning framework that leverages a modality-agnostic concept space possessing abstract knowledge and a set of modality-specific projection models tailored to process distinct modality inputs and map them onto the concept space. Decoupled from specific modalities and their associated projection models, the concept space focuses on learning abstract knowledge that is universally applicable across modalities. Subsequently, the knowledge embedded into the concept space streamlines the learning processes of modality-specific projection models. We evaluate our framework on two popular tasks: Image-Text Matching and Visual Question Answering. Our framework achieves performance on par with benchmark models while demonstrating more efficient learning curves. 2 authors · Dec 18, 2024
- Learners' Languages In "Backprop as functor", the authors show that the fundamental elements of deep learning -- gradient descent and backpropagation -- can be conceptualized as a strong monoidal functor Para(Euc)toLearn from the category of parameterized Euclidean spaces to that of learners, a category developed explicitly to capture parameter update and backpropagation. It was soon realized that there is an isomorphism LearncongPara(Slens), where Slens is the symmetric monoidal category of simple lenses as used in functional programming. In this note, we observe that Slens is a full subcategory of Poly, the category of polynomial functors in one variable, via the functor Amapsto Ay^A. Using the fact that (Poly,otimes) is monoidal closed, we show that a map Ato B in Para(Slens) has a natural interpretation in terms of dynamical systems (more precisely, generalized Moore machines) whose interface is the internal-hom type [Ay^A,By^B]. Finally, we review the fact that the category p-Coalg of dynamical systems on any p in Poly forms a topos, and consider the logical propositions that can be stated in its internal language. We give gradient descent as an example, and we conclude by discussing some directions for future work. 1 authors · Mar 1, 2021
2 Geometric Algebra Transformers Problems involving geometric data arise in a variety of fields, including computer vision, robotics, chemistry, and physics. Such data can take numerous forms, such as points, direction vectors, planes, or transformations, but to date there is no single architecture that can be applied to such a wide variety of geometric types while respecting their symmetries. In this paper we introduce the Geometric Algebra Transformer (GATr), a general-purpose architecture for geometric data. GATr represents inputs, outputs, and hidden states in the projective geometric algebra, which offers an efficient 16-dimensional vector space representation of common geometric objects as well as operators acting on them. GATr is equivariant with respect to E(3), the symmetry group of 3D Euclidean space. As a transformer, GATr is scalable, expressive, and versatile. In experiments with n-body modeling and robotic planning, GATr shows strong improvements over non-geometric baselines. 4 authors · May 28, 2023
- Geometric Algebra Attention Networks for Small Point Clouds Much of the success of deep learning is drawn from building architectures that properly respect underlying symmetry and structure in the data on which they operate - a set of considerations that have been united under the banner of geometric deep learning. Often problems in the physical sciences deal with relatively small sets of points in two- or three-dimensional space wherein translation, rotation, and permutation equivariance are important or even vital for models to be useful in practice. In this work, we present rotation- and permutation-equivariant architectures for deep learning on these small point clouds, composed of a set of products of terms from the geometric algebra and reductions over those products using an attention mechanism. The geometric algebra provides valuable mathematical structure by which to combine vector, scalar, and other types of geometric inputs in a systematic way to account for rotation invariance or covariance, while attention yields a powerful way to impose permutation equivariance. We demonstrate the usefulness of these architectures by training models to solve sample problems relevant to physics, chemistry, and biology. 1 authors · Oct 5, 2021
- Multi-View Azimuth Stereo via Tangent Space Consistency We present a method for 3D reconstruction only using calibrated multi-view surface azimuth maps. Our method, multi-view azimuth stereo, is effective for textureless or specular surfaces, which are difficult for conventional multi-view stereo methods. We introduce the concept of tangent space consistency: Multi-view azimuth observations of a surface point should be lifted to the same tangent space. Leveraging this consistency, we recover the shape by optimizing a neural implicit surface representation. Our method harnesses the robust azimuth estimation capabilities of photometric stereo methods or polarization imaging while bypassing potentially complex zenith angle estimation. Experiments using azimuth maps from various sources validate the accurate shape recovery with our method, even without zenith angles. 4 authors · Mar 29, 2023
- Weighted least-squares approximation with determinantal point processes and generalized volume sampling We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies. 2 authors · Dec 21, 2023
- Leggett-Garg inequalities cannot be violated in quantum measurements Leggett and Garg derived inequalities that probe the boundaries of classical and quantum physics by putting limits on the properties that classical objects can have. Historically, it has been suggested that Leggett-Garg inequalities are easily violated by quantum systems undergoing sequences of strong measurements, casting doubt on whether quantum mechanics correctly describes macroscopic objects. Here I show that Leggett-Garg inequalities cannot be violated by any projective measurement. The perceived violation of the inequalities found previously can be traced back to an inappropriate assumption of non-invasive measurability. Surprisingly, weak projective measurements cannot violate the Leggett-Garg inequalities either because even though the quantum system itself is not fully projected via weak measurements, the measurement devices are. 1 authors · Aug 7, 2019
- A strictly monotone measure on tame sets that corresponds to a numerosity Adapting standard methods from geometric measure theory, we provide an example of a polynomial-valued measure mu on tame sets in R^d which satisfies many desirable properties. Among these is strict monotonicity: the measure of a proper subset is strictly less than the measure of the whole set. Using techniques from non-standard analysis, we display that the domain of mu can be extended to all subsets of R^d (up to equivalence modulo infinitesimals). The resulting extension is a numerosity function that encodes the i-dimensional Hausdorff measure for all iin N, as well as the i-th intrinsic volume functions. 1 authors · Aug 23, 2020
- Morse theory and Seiberg-Witten moduli spaces of 3-dimensional cobordisms, I Motivated by a variant of Atiyah-Floer conjecture proposed in L2 and its potential generalizations, we study in this article and its sequel as a first step properties of moduli spaces of Seiberg-Witten equations on a 3-dimensional cobordism with cylindrical ends (CCE) \(Y\), perturbed by closed 2-forms of the form \(r*d\ff+w\), where \(r\geq 1\), where \(\ff\) is a harmonic Morse function with certain linear growth at the ends of \(Y\), and \(w\) is a certain closed 2-form. 1 authors · Dec 29, 2024
- Reliable Unlearning Harmful Information in LLMs with Metamorphosis Representation Projection While Large Language Models (LLMs) have demonstrated impressive performance in various domains and tasks, concerns about their safety are becoming increasingly severe. In particular, since models may store unsafe knowledge internally, machine unlearning has emerged as a representative paradigm to ensure model safety. Existing approaches employ various training techniques, such as gradient ascent and negative preference optimization, in attempts to eliminate the influence of undesired data on target models. However, these methods merely suppress the activation of undesired data through parametric training without completely eradicating its informational traces within the model. This fundamental limitation makes it difficult to achieve effective continuous unlearning, rendering these methods vulnerable to relearning attacks. To overcome these challenges, we propose a Metamorphosis Representation Projection (MRP) approach that pioneers the application of irreversible projection properties to machine unlearning. By implementing projective transformations in the hidden state space of specific network layers, our method effectively eliminates harmful information while preserving useful knowledge. Experimental results demonstrate that our approach enables effective continuous unlearning and successfully defends against relearning attacks, achieving state-of-the-art performance in unlearning effectiveness while preserving natural performance. Our code is available in https://github.com/ChengcanWu/MRP. 5 authors · Aug 21, 2025
- Clustering based Point Cloud Representation Learning for 3D Analysis Point cloud analysis (such as 3D segmentation and detection) is a challenging task, because of not only the irregular geometries of many millions of unordered points, but also the great variations caused by depth, viewpoint, occlusion, etc. Current studies put much focus on the adaption of neural networks to the complex geometries of point clouds, but are blind to a fundamental question: how to learn an appropriate point embedding space that is aware of both discriminative semantics and challenging variations? As a response, we propose a clustering based supervised learning scheme for point cloud analysis. Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space for automatically discovering subclass patterns which are latent yet representative across scenes. The mined patterns are, in turn, used to repaint the embedding space, so as to respect the underlying distribution of the entire training dataset and improve the robustness to the variations. Our algorithm is principled and readily pluggable to modern point cloud segmentation networks during training, without extra overhead during testing. With various 3D network architectures (i.e., voxel-based, point-based, Transformer-based, automatically searched), our algorithm shows notable improvements on famous point cloud segmentation datasets (i.e.,2.0-2.6% on single-scan and 2.0-2.2% multi-scan of SemanticKITTI, 1.8-1.9% on S3DIS, in terms of mIoU). Our algorithm also demonstrates utility in 3D detection, showing 2.0-3.4% mAP gains on KITTI. 5 authors · Jul 26, 2023
- Planar site percolation on semi-transitive graphs Semi-transitive graphs, defined in hps98 as examples where ``uniform percolation" holds whenever p>p_c, are a large class of graphs more general than quasi-transitive graphs. Let G be a semi-transitive graph with one end which can be properly embedded into the plane with uniformly bounded face degree for finite faces and minimal vertex degree at least 7. We show that p_u^{site}(G) +p_c^{site}(G_*)=1, where G_* denotes the matching graph of G. This fulfils and extends an observation of Sykes and Essam in 1964 (SE64) to semi-transitive graphs. 1 authors · Apr 3, 2023
- 3D Scene Graph: A Structure for Unified Semantics, 3D Space, and Camera A comprehensive semantic understanding of a scene is important for many applications - but in what space should diverse semantic information (e.g., objects, scene categories, material types, texture, etc.) be grounded and what should be its structure? Aspiring to have one unified structure that hosts diverse types of semantics, we follow the Scene Graph paradigm in 3D, generating a 3D Scene Graph. Given a 3D mesh and registered panoramic images, we construct a graph that spans the entire building and includes semantics on objects (e.g., class, material, and other attributes), rooms (e.g., scene category, volume, etc.) and cameras (e.g., location, etc.), as well as the relationships among these entities. However, this process is prohibitively labor heavy if done manually. To alleviate this we devise a semi-automatic framework that employs existing detection methods and enhances them using two main constraints: I. framing of query images sampled on panoramas to maximize the performance of 2D detectors, and II. multi-view consistency enforcement across 2D detections that originate in different camera locations. 7 authors · Oct 6, 2019 1
- An extended Kodaira Spencer functional This note is about an extension of the Kodaira-Spencer functional to Calabi-Yau manifolds of any dimension. 1 authors · Jun 16, 2021
- Complexity of Block Coordinate Descent with Proximal Regularization and Applications to Wasserstein CP-dictionary Learning We consider the block coordinate descent methods of Gauss-Seidel type with proximal regularization (BCD-PR), which is a classical method of minimizing general nonconvex objectives under constraints that has a wide range of practical applications. We theoretically establish the worst-case complexity bound for this algorithm. Namely, we show that for general nonconvex smooth objectives with block-wise constraints, the classical BCD-PR algorithm converges to an epsilon-stationary point within O(1/epsilon) iterations. Under a mild condition, this result still holds even if the algorithm is executed inexactly in each step. As an application, we propose a provable and efficient algorithm for `Wasserstein CP-dictionary learning', which seeks a set of elementary probability distributions that can well-approximate a given set of d-dimensional joint probability distributions. Our algorithm is a version of BCD-PR that operates in the dual space, where the primal problem is regularized both entropically and proximally. 2 authors · Jun 4, 2023
6 Understanding and Improving Hyperbolic Deep Reinforcement Learning The performance of reinforcement learning (RL) agents depends critically on the quality of the underlying feature representations. Hyperbolic feature spaces are well-suited for this purpose, as they naturally capture hierarchical and relational structure often present in complex RL environments. However, leveraging these spaces commonly faces optimization challenges due to the nonstationarity of RL. In this work, we identify key factors that determine the success and failure of training hyperbolic deep RL agents. By analyzing the gradients of core operations in the Poincaré Ball and Hyperboloid models of hyperbolic geometry, we show that large-norm embeddings destabilize gradient-based training, leading to trust-region violations in proximal policy optimization (PPO). Based on these insights, we introduce Hyper++, a new hyperbolic PPO agent that consists of three components: (i) stable critic training through a categorical value loss instead of regression; (ii) feature regularization guaranteeing bounded norms while avoiding the curse of dimensionality from clipping; and (iii) using a more optimization-friendly formulation of hyperbolic network layers. In experiments on ProcGen, we show that Hyper++ guarantees stable learning, outperforms prior hyperbolic agents, and reduces wall-clock time by approximately 30%. On Atari-5 with Double DQN, Hyper++ strongly outperforms Euclidean and hyperbolic baselines. We release our code at https://github.com/Probabilistic-and-Interactive-ML/hyper-rl . University of Vienna · Dec 16, 2025 2
- One scalar is all you need -- absolute depth estimation using monocular self-supervision Self-supervised monocular depth estimators can be trained or fine-tuned on new scenes using only images and no ground-truth depth data, achieving good accuracy. However, these estimators suffer from the inherent ambiguity of the depth scale, significantly limiting their applicability. In this work, we present a method for transferring the depth-scale from existing source datasets collected with ground-truth depths to depth estimators that are trained using self-supervision on a newly collected target dataset consisting of images only, solving a significant limiting factor. We show that self-supervision based on projective geometry results in predicted depths that are linearly correlated with their ground-truth depths. Moreover, the linearity of this relationship also holds when jointly training on images from two different (real or synthetic) source and target domains. We utilize this observed property and model the relationship between the ground-truth and the predicted up-to-scale depths of images from the source domain using a single global scalar. Then, we scale the predicted up-to-scale depths of images from the target domain using the estimated global scaling factor, performing depth-scale transfer between the two domains. This suggested method was evaluated on the target KITTI and DDAD datasets, while using other real or synthetic source datasets, that have a larger field-of-view, other image style or structural content. Our approach achieves competitive accuracy on KITTI, even without using the specially tailored vKITTI or vKITTI2 datasets, and higher accuracy on DDAD, when using both real or synthetic source datasets. 5 authors · Mar 14, 2023
- RoomPlanner: Explicit Layout Planner for Easier LLM-Driven 3D Room Generation In this paper, we propose RoomPlanner, the first fully automatic 3D room generation framework for painlessly creating realistic indoor scenes with only short text as input. Without any manual layout design or panoramic image guidance, our framework can generate explicit layout criteria for rational spatial placement. We begin by introducing a hierarchical structure of language-driven agent planners that can automatically parse short and ambiguous prompts into detailed scene descriptions. These descriptions include raw spatial and semantic attributes for each object and the background, which are then used to initialize 3D point clouds. To position objects within bounded environments, we implement two arrangement constraints that iteratively optimize spatial arrangements, ensuring a collision-free and accessible layout solution. In the final rendering stage, we propose a novel AnyReach Sampling strategy for camera trajectory, along with the Interval Timestep Flow Sampling (ITFS) strategy, to efficiently optimize the coarse 3D Gaussian scene representation. These approaches help reduce the total generation time to under 30 minutes. Extensive experiments demonstrate that our method can produce geometrically rational 3D indoor scenes, surpassing prior approaches in both rendering speed and visual quality while preserving editability. The code will be available soon. 5 authors · Nov 21, 2025
3 SceneCraft: Layout-Guided 3D Scene Generation The creation of complex 3D scenes tailored to user specifications has been a tedious and challenging task with traditional 3D modeling tools. Although some pioneering methods have achieved automatic text-to-3D generation, they are generally limited to small-scale scenes with restricted control over the shape and texture. We introduce SceneCraft, a novel method for generating detailed indoor scenes that adhere to textual descriptions and spatial layout preferences provided by users. Central to our method is a rendering-based technique, which converts 3D semantic layouts into multi-view 2D proxy maps. Furthermore, we design a semantic and depth conditioned diffusion model to generate multi-view images, which are used to learn a neural radiance field (NeRF) as the final scene representation. Without the constraints of panorama image generation, we surpass previous methods in supporting complicated indoor space generation beyond a single room, even as complicated as a whole multi-bedroom apartment with irregular shapes and layouts. Through experimental analysis, we demonstrate that our method significantly outperforms existing approaches in complex indoor scene generation with diverse textures, consistent geometry, and realistic visual quality. Code and more results are available at: https://orangesodahub.github.io/SceneCraft 4 authors · Oct 11, 2024 1