11 Measuring Physical-World Privacy Awareness of Large Language Models: An Evaluation Benchmark The deployment of Large Language Models (LLMs) in embodied agents creates an urgent need to measure their privacy awareness in the physical world. Existing evaluation methods, however, are confined to natural language based scenarios. To bridge this gap, we introduce EAPrivacy, a comprehensive evaluation benchmark designed to quantify the physical-world privacy awareness of LLM-powered agents. EAPrivacy utilizes procedurally generated scenarios across four tiers to test an agent's ability to handle sensitive objects, adapt to changing environments, balance task execution with privacy constraints, and resolve conflicts with social norms. Our measurements reveal a critical deficit in current models. The top-performing model, Gemini 2.5 Pro, achieved only 59\% accuracy in scenarios involving changing physical environments. Furthermore, when a task was accompanied by a privacy request, models prioritized completion over the constraint in up to 86\% of cases. In high-stakes situations pitting privacy against critical social norms, leading models like GPT-4o and Claude-3.5-haiku disregarded the social norm over 15\% of the time. These findings, demonstrated by our benchmark, underscore a fundamental misalignment in LLMs regarding physically grounded privacy and establish the need for more robust, physically-aware alignment. Codes and datasets will be available at https://github.com/Graph-COM/EAPrivacy. Graph Computation and Machine Learning (GCOM) Group · Sep 27, 2025 1
- All for One, and One for All: UrbanSyn Dataset, the third Musketeer of Synthetic Driving Scenes We introduce UrbanSyn, a photorealistic dataset acquired through semi-procedurally generated synthetic urban driving scenarios. Developed using high-quality geometry and materials, UrbanSyn provides pixel-level ground truth, including depth, semantic segmentation, and instance segmentation with object bounding boxes and occlusion degree. It complements GTAV and Synscapes datasets to form what we coin as the 'Three Musketeers'. We demonstrate the value of the Three Musketeers in unsupervised domain adaptation for image semantic segmentation. Results on real-world datasets, Cityscapes, Mapillary Vistas, and BDD100K, establish new benchmarks, largely attributed to UrbanSyn. We make UrbanSyn openly and freely accessible (www.urbansyn.org). 8 authors · Dec 19, 2023
- WeatherDG: LLM-assisted Diffusion Model for Procedural Weather Generation in Domain-Generalized Semantic Segmentation In this work, we propose a novel approach, namely WeatherDG, that can generate realistic, weather-diverse, and driving-screen images based on the cooperation of two foundation models, i.e, Stable Diffusion (SD) and Large Language Model (LLM). Specifically, we first fine-tune the SD with source data, aligning the content and layout of generated samples with real-world driving scenarios. Then, we propose a procedural prompt generation method based on LLM, which can enrich scenario descriptions and help SD automatically generate more diverse, detailed images. In addition, we introduce a balanced generation strategy, which encourages the SD to generate high-quality objects of tailed classes under various weather conditions, such as riders and motorcycles. This segmentation-model-agnostic method can improve the generalization ability of existing models by additionally adapting them with the generated synthetic data. Experiments on three challenging datasets show that our method can significantly improve the segmentation performance of different state-of-the-art models on target domains. Notably, in the setting of ''Cityscapes to ACDC'', our method improves the baseline HRDA by 13.9% in mIoU. 4 authors · Oct 15, 2024