Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTGPR: Tree-Guided Policy Refinement for Robust Self-Debugging of LLMs
Iterative refinement has been a promising paradigm to enable large language models (LLMs) to resolve difficult reasoning and problem-solving tasks. One of the key challenges, however, is how to effectively search through the enormous search space of possible refinements. Existing methods typically fall back on predefined heuristics, which are troubled by the exploration-exploitation dilemma and cannot adapt based on past refinement outcomes. We introduce Tree-Guided Policy Refinement (TGPR), a novel framework that combines GRPO with a Thompson-Sampling-based tree search. TGPR explores both failed and successful refinement paths actively, with denser training trajectories and more adaptive policies. On HumanEval, MBPP, and APPS benchmarks, our method achieves up to +4.2 percentage points absolute improvement in pass@1 (on MBPP) and up to +12.51 percentage points absolute improvement in pass@10 (on APPS) compared to a competitive GRPO baseline. Apart from debugging code, TGPR focuses on a principled approach to combining learned policies with structured search methods, offering a general framework for enhancing iterative refinement and stateful reasoning in LLMs.
Evaluating Vision-Language Models as Evaluators in Path Planning
Despite their promise to perform complex reasoning, large language models (LLMs) have been shown to have limited effectiveness in end-to-end planning. This has inspired an intriguing question: if these models cannot plan well, can they still contribute to the planning framework as a helpful plan evaluator? In this work, we generalize this question to consider LLMs augmented with visual understanding, i.e., Vision-Language Models (VLMs). We introduce PathEval, a novel benchmark evaluating VLMs as plan evaluators in complex path-planning scenarios. Succeeding in the benchmark requires a VLM to be able to abstract traits of optimal paths from the scenario description, demonstrate precise low-level perception on each path, and integrate this information to decide the better path. Our analysis of state-of-the-art VLMs reveals that these models face significant challenges on the benchmark. We observe that the VLMs can precisely abstract given scenarios to identify the desired traits and exhibit mixed performance in integrating the provided information. Yet, their vision component presents a critical bottleneck, with models struggling to perceive low-level details about a path. Our experimental results show that this issue cannot be trivially addressed via end-to-end fine-tuning; rather, task-specific discriminative adaptation of these vision encoders is needed for these VLMs to become effective path evaluators.
R-Pred: Two-Stage Motion Prediction Via Tube-Query Attention-Based Trajectory Refinement
Predicting the future motion of dynamic agents is of paramount importance to ensuring safety and assessing risks in motion planning for autonomous robots. In this study, we propose a two-stage motion prediction method, called R-Pred, designed to effectively utilize both scene and interaction context using a cascade of the initial trajectory proposal and trajectory refinement networks. The initial trajectory proposal network produces M trajectory proposals corresponding to the M modes of the future trajectory distribution. The trajectory refinement network enhances each of the M proposals using 1) tube-query scene attention (TQSA) and 2) proposal-level interaction attention (PIA) mechanisms. TQSA uses tube-queries to aggregate local scene context features pooled from proximity around trajectory proposals of interest. PIA further enhances the trajectory proposals by modeling inter-agent interactions using a group of trajectory proposals selected by their distances from neighboring agents. Our experiments conducted on Argoverse and nuScenes datasets demonstrate that the proposed refinement network provides significant performance improvements compared to the single-stage baseline and that R-Pred achieves state-of-the-art performance in some categories of the benchmarks.
Situationally-aware Path Planning Exploiting 3D Scene Graphs
3D Scene Graphs integrate both metric and semantic information, yet their structure remains underutilized for improving path planning efficiency and interpretability. In this work, we present S-Path, a situationally-aware path planner that leverages the metric-semantic structure of indoor 3D Scene Graphs to significantly enhance planning efficiency. S-Path follows a two-stage process: it first performs a search over a semantic graph derived from the scene graph to yield a human-understandable high-level path. This also identifies relevant regions for planning, which later allows the decomposition of the problem into smaller, independent subproblems that can be solved in parallel. We also introduce a replanning mechanism that, in the event of an infeasible path, reuses information from previously solved subproblems to update semantic heuristics and prioritize reuse to further improve the efficiency of future planning attempts. Extensive experiments on both real-world and simulated environments show that S-Path achieves average reductions of 5.7x in planning time while maintaining comparable path optimality to classical sampling-based planners and surpassing them in complex scenarios, making it an efficient and interpretable path planner for environments represented by indoor 3D Scene Graphs.
Prediction-Driven Motion Planning: Route Integration Strategies in Attention-Based Prediction Models
Combining motion prediction and motion planning offers a promising framework for enhancing interactions between automated vehicles and other traffic participants. However, this introduces challenges in conditioning predictions on navigation goals and ensuring stable, kinematically feasible trajectories. Addressing the former challenge, this paper investigates the extension of attention-based motion prediction models with navigation information. By integrating the ego vehicle's intended route and goal pose into the model architecture, we bridge the gap between multi-agent motion prediction and goal-based motion planning. We propose and evaluate several architectural navigation integration strategies to our model on the nuPlan dataset. Our results demonstrate the potential of prediction-driven motion planning, highlighting how navigation information can enhance both prediction and planning tasks. Our implementation is at: https://github.com/KIT-MRT/future-motion.
Planning with Sketch-Guided Verification for Physics-Aware Video Generation
Recent video generation approaches increasingly rely on planning intermediate control signals such as object trajectories to improve temporal coherence and motion fidelity. However, these methods mostly employ single-shot plans that are typically limited to simple motions, or iterative refinement which requires multiple calls to the video generator, incuring high computational cost. To overcome these limitations, we propose SketchVerify, a training-free, sketch-verification-based planning framework that improves motion planning quality with more dynamically coherent trajectories (i.e., physically plausible and instruction-consistent motions) prior to full video generation by introducing a test-time sampling and verification loop. Given a prompt and a reference image, our method predicts multiple candidate motion plans and ranks them using a vision-language verifier that jointly evaluates semantic alignment with the instruction and physical plausibility. To efficiently score candidate motion plans, we render each trajectory as a lightweight video sketch by compositing objects over a static background, which bypasses the need for expensive, repeated diffusion-based synthesis while achieving comparable performance. We iteratively refine the motion plan until a satisfactory one is identified, which is then passed to the trajectory-conditioned generator for final synthesis. Experiments on WorldModelBench and PhyWorldBench demonstrate that our method significantly improves motion quality, physical realism, and long-term consistency compared to competitive baselines while being substantially more efficient. Our ablation study further shows that scaling up the number of trajectory candidates consistently enhances overall performance.
WorldForge: Unlocking Emergent 3D/4D Generation in Video Diffusion Model via Training-Free Guidance
Recent video diffusion models demonstrate strong potential in spatial intelligence tasks due to their rich latent world priors. However, this potential is hindered by their limited controllability and geometric inconsistency, creating a gap between their strong priors and their practical use in 3D/4D tasks. As a result, current approaches often rely on retraining or fine-tuning, which risks degrading pretrained knowledge and incurs high computational costs. To address this, we propose WorldForge, a training-free, inference-time framework composed of three tightly coupled modules. Intra-Step Recursive Refinement introduces a recursive refinement mechanism during inference, which repeatedly optimizes network predictions within each denoising step to enable precise trajectory injection. Flow-Gated Latent Fusion leverages optical flow similarity to decouple motion from appearance in the latent space and selectively inject trajectory guidance into motion-related channels. Dual-Path Self-Corrective Guidance compares guided and unguided denoising paths to adaptively correct trajectory drift caused by noisy or misaligned structural signals. Together, these components inject fine-grained, trajectory-aligned guidance without training, achieving both accurate motion control and photorealistic content generation. Extensive experiments across diverse benchmarks validate our method's superiority in realism, trajectory consistency, and visual fidelity. This work introduces a novel plug-and-play paradigm for controllable video synthesis, offering a new perspective on leveraging generative priors for spatial intelligence.
SemanticFormer: Holistic and Semantic Traffic Scene Representation for Trajectory Prediction using Knowledge Graphs
Trajectory prediction in autonomous driving relies on accurate representation of all relevant contexts of the driving scene, including traffic participants, road topology, traffic signs, as well as their semantic relations to each other. Despite increased attention to this issue, most approaches in trajectory prediction do not consider all of these factors sufficiently. We present SemanticFormer, an approach for predicting multimodal trajectories by reasoning over a semantic traffic scene graph using a hybrid approach. It utilizes high-level information in the form of meta-paths, i.e. trajectories on which an agent is allowed to drive from a knowledge graph which is then processed by a novel pipeline based on multiple attention mechanisms to predict accurate trajectories. SemanticFormer comprises a hierarchical heterogeneous graph encoder to capture spatio-temporal and relational information across agents as well as between agents and road elements. Further, it includes a predictor to fuse different encodings and decode trajectories with probabilities. Finally, a refinement module assesses permitted meta-paths of trajectories and speed profiles to obtain final predicted trajectories. Evaluation of the nuScenes benchmark demonstrates improved performance compared to several SOTA methods. In addition, we demonstrate that our knowledge graph can be easily added to two graph-based existing SOTA methods, namely VectorNet and Laformer, replacing their original homogeneous graphs. The evaluation results suggest that by adding our knowledge graph the performance of the original methods is enhanced by 5% and 4%, respectively.
VisPath: Automated Visualization Code Synthesis via Multi-Path Reasoning and Feedback-Driven Optimization
Unprecedented breakthroughs in Large Language Models (LLMs) has amplified its penetration into application of automated visualization code generation. Few-shot prompting and query expansion techniques have notably enhanced data visualization performance, however, still fail to overcome ambiguity and complexity of natural language queries - imposing an inherent burden for manual human intervention. To mitigate such limitations, we propose a holistic framework VisPath : A Multi-Path Reasoning and Feedback-Driven Optimization Framework for Visualization Code Generation, which systematically enhances code quality through structured reasoning and refinement. VisPath is a multi-stage framework, specially designed to handle underspecified queries. To generate a robust final visualization code, it first utilizes initial query to generate diverse reformulated queries via Chain-of-Thought (CoT) prompting, each representing a distinct reasoning path. Refined queries are used to produce candidate visualization scripts, consequently executed to generate multiple images. Comprehensively assessing correctness and quality of outputs, VisPath generates feedback for each image, which are then fed to aggregation module to generate optimal result. Extensive experiments on benchmarks including MatPlotBench and the Qwen-Agent Code Interpreter Benchmark show that VisPath significantly outperforms state-of-the-art (SOTA) methods, increased up to average 17%, offering a more reliable solution for AI-driven visualization code generation.
Trajectory Prediction Meets Large Language Models: A Survey
Recent advances in large language models (LLMs) have sparked growing interest in integrating language-driven techniques into trajectory prediction. By leveraging their semantic and reasoning capabilities, LLMs are reshaping how autonomous systems perceive, model, and predict trajectories. This survey provides a comprehensive overview of this emerging field, categorizing recent work into five directions: (1) Trajectory prediction via language modeling paradigms, (2) Direct trajectory prediction with pretrained language models, (3) Language-guided scene understanding for trajectory prediction, (4) Language-driven data generation for trajectory prediction, (5) Language-based reasoning and interpretability for trajectory prediction. For each, we analyze representative methods, highlight core design choices, and identify open challenges. This survey bridges natural language processing and trajectory prediction, offering a unified perspective on how language can enrich trajectory prediction.
ALPINE: Unveiling the Planning Capability of Autoregressive Learning in Language Models
In this paper, we present the findings of our Project ALPINE which stands for ``Autoregressive Learning for Planning In NEtworks." Project ALPINE initiates a theoretical investigation into the development of planning capabilities in Transformer-based language models through their autoregressive learning mechanisms, aiming to identify any potential limitations in their planning abilities. We abstract planning as a network path-finding task where the objective is to generate a valid path from a specified source node to a designated target node. In terms of expressiveness, we show that the Transformer is capable of executing path-finding by embedding the adjacency and reachability matrices within its weights. Our theoretical analysis of the gradient-based learning dynamic of the Transformer reveals that the Transformer is capable of learning both the adjacency matrix and a limited form of the reachability matrix. These theoretical insights are then validated through experiments, which demonstrate that the Transformer indeed learns the adjacency matrix and an incomplete reachability matrix, which aligns with the predictions made in our theoretical analysis. Additionally, when applying our methodology to a real-world planning benchmark, called Blocksworld, our observations remain consistent. Our theoretical and empirical analyses further unveil a potential limitation of Transformer in path-finding: it cannot identify reachability relationships through transitivity, and thus would fail when path concatenation is needed to generate a path. In summary, our findings shed new light on how the internal mechanisms of autoregressive learning enable planning in networks. This study may contribute to our understanding of the general planning capabilities in other related domains.
RefAV: Towards Planning-Centric Scenario Mining
Autonomous Vehicles (AVs) collect and pseudo-label terabytes of multi-modal data localized to HD maps during normal fleet testing. However, identifying interesting and safety-critical scenarios from uncurated driving logs remains a significant challenge. Traditional scenario mining techniques are error-prone and prohibitively time-consuming, often relying on hand-crafted structured queries. In this work, we revisit spatio-temporal scenario mining through the lens of recent vision-language models (VLMs) to detect whether a described scenario occurs in a driving log and, if so, precisely localize it in both time and space. To address this problem, we introduce RefAV, a large-scale dataset of 10,000 diverse natural language queries that describe complex multi-agent interactions relevant to motion planning derived from 1000 driving logs in the Argoverse 2 Sensor dataset. We evaluate several referential multi-object trackers and present an empirical analysis of our baselines. Notably, we find that naively repurposing off-the-shelf VLMs yields poor performance, suggesting that scenario mining presents unique challenges. Our code and dataset are available at https://github.com/CainanD/RefAV/ and https://argoverse.github.io/user-guide/tasks/scenario_mining.html
Affordances-Oriented Planning using Foundation Models for Continuous Vision-Language Navigation
LLM-based agents have demonstrated impressive zero-shot performance in vision-language navigation (VLN) task. However, existing LLM-based methods often focus only on solving high-level task planning by selecting nodes in predefined navigation graphs for movements, overlooking low-level control in navigation scenarios. To bridge this gap, we propose AO-Planner, a novel Affordances-Oriented Planner for continuous VLN task. Our AO-Planner integrates various foundation models to achieve affordances-oriented low-level motion planning and high-level decision-making, both performed in a zero-shot setting. Specifically, we employ a Visual Affordances Prompting (VAP) approach, where the visible ground is segmented by SAM to provide navigational affordances, based on which the LLM selects potential candidate waypoints and plans low-level paths towards selected waypoints. We further propose a high-level PathAgent which marks planned paths into the image input and reasons the most probable path by comprehending all environmental information. Finally, we convert the selected path into 3D coordinates using camera intrinsic parameters and depth information, avoiding challenging 3D predictions for LLMs. Experiments on the challenging R2R-CE and RxR-CE datasets show that AO-Planner achieves state-of-the-art zero-shot performance (8.8% improvement on SPL). Our method can also serve as a data annotator to obtain pseudo-labels, distilling its waypoint prediction ability into a learning-based predictor. This new predictor does not require any waypoint data from the simulator and achieves 47% SR competing with supervised methods. We establish an effective connection between LLM and 3D world, presenting novel prospects for employing foundation models in low-level motion control.
TRAVEL: Training-Free Retrieval and Alignment for Vision-and-Language Navigation
In this work, we propose a modular approach for the Vision-Language Navigation (VLN) task by decomposing the problem into four sub-modules that use state-of-the-art Large Language Models (LLMs) and Vision-Language Models (VLMs) in a zero-shot setting. Given navigation instruction in natural language, we first prompt LLM to extract the landmarks and the order in which they are visited. Assuming the known model of the environment, we retrieve the top-k locations of the last landmark and generate k path hypotheses from the starting location to the last landmark using the shortest path algorithm on the topological map of the environment. Each path hypothesis is represented by a sequence of panoramas. We then use dynamic programming to compute the alignment score between the sequence of panoramas and the sequence of landmark names, which match scores obtained from VLM. Finally, we compute the nDTW metric between the hypothesis that yields the highest alignment score to evaluate the path fidelity. We demonstrate superior performance compared to other approaches that use joint semantic maps like VLMaps vlmaps on the complex R2R-Habitat r2r instruction dataset and quantify in detail the effect of visual grounding on navigation performance.
Towards credible visual model interpretation with path attribution
Originally inspired by game-theory, path attribution framework stands out among the post-hoc model interpretation tools due to its axiomatic nature. However, recent developments show that this framework can still suffer from counter-intuitive results. Moreover, specifically for deep visual models, the existing path-based methods also fall short on conforming to the original intuitions that are the basis of the claimed axiomatic properties of this framework. We address these problems with a systematic investigation, and pinpoint the conditions in which the counter-intuitive results can be avoided for deep visual model interpretation with the path attribution strategy. We also devise a scheme to preclude the conditions in which visual model interpretation can invalidate the axiomatic properties of path attribution. These insights are combined into a method that enables reliable visual model interpretation. Our findings are establish empirically with multiple datasets, models and evaluation metrics. Extensive experiments show a consistent performance gain of our method over the baselines.
Learn to Follow: Decentralized Lifelong Multi-agent Pathfinding via Planning and Learning
Multi-agent Pathfinding (MAPF) problem generally asks to find a set of conflict-free paths for a set of agents confined to a graph and is typically solved in a centralized fashion. Conversely, in this work, we investigate the decentralized MAPF setting, when the central controller that posses all the information on the agents' locations and goals is absent and the agents have to sequientially decide the actions on their own without having access to a full state of the environment. We focus on the practically important lifelong variant of MAPF, which involves continuously assigning new goals to the agents upon arrival to the previous ones. To address this complex problem, we propose a method that integrates two complementary approaches: planning with heuristic search and reinforcement learning through policy optimization. Planning is utilized to construct and re-plan individual paths. We enhance our planning algorithm with a dedicated technique tailored to avoid congestion and increase the throughput of the system. We employ reinforcement learning to discover the collision avoidance policies that effectively guide the agents along the paths. The policy is implemented as a neural network and is effectively trained without any reward-shaping or external guidance. We evaluate our method on a wide range of setups comparing it to the state-of-the-art solvers. The results show that our method consistently outperforms the learnable competitors, showing higher throughput and better ability to generalize to the maps that were unseen at the training stage. Moreover our solver outperforms a rule-based one in terms of throughput and is an order of magnitude faster than a state-of-the-art search-based solver.
GridRoute: A Benchmark for LLM-Based Route Planning with Cardinal Movement in Grid Environments
Recent advancements in Large Language Models (LLMs) have demonstrated their potential in planning and reasoning tasks, offering a flexible alternative to classical pathfinding algorithms. However, most existing studies focus on LLMs' independent reasoning capabilities and overlook the potential synergy between LLMs and traditional algorithms. To fill this gap, we propose a comprehensive evaluation benchmark GridRoute to assess how LLMs can take advantage of traditional algorithms. We also propose a novel hybrid prompting technique called Algorithm of Thought (AoT), which introduces traditional algorithms' guidance into prompting. Our benchmark evaluates six LLMs ranging from 7B to 72B parameters across various map sizes, assessing their performance in correctness, optimality, and efficiency in grid environments with varying sizes. Our results show that AoT significantly boosts performance across all model sizes, particularly in larger or more complex environments, suggesting a promising approach to addressing path planning challenges. Our code is open-sourced at https://github.com/LinChance/GridRoute.
Select2Plan: Training-Free ICL-Based Planning through VQA and Memory Retrieval
This study explores the potential of off-the-shelf Vision-Language Models (VLMs) for high-level robot planning in the context of autonomous navigation. Indeed, while most of existing learning-based approaches for path planning require extensive task-specific training/fine-tuning, we demonstrate how such training can be avoided for most practical cases. To do this, we introduce Select2Plan (S2P), a novel training-free framework for high-level robot planning which completely eliminates the need for fine-tuning or specialised training. By leveraging structured Visual Question-Answering (VQA) and In-Context Learning (ICL), our approach drastically reduces the need for data collection, requiring a fraction of the task-specific data typically used by trained models, or even relying only on online data. Our method facilitates the effective use of a generally trained VLM in a flexible and cost-efficient way, and does not require additional sensing except for a simple monocular camera. We demonstrate its adaptability across various scene types, context sources, and sensing setups. We evaluate our approach in two distinct scenarios: traditional First-Person View (FPV) and infrastructure-driven Third-Person View (TPV) navigation, demonstrating the flexibility and simplicity of our method. Our technique significantly enhances the navigational capabilities of a baseline VLM of approximately 50% in TPV scenario, and is comparable to trained models in the FPV one, with as few as 20 demonstrations.
Path Aggregation Network for Instance Segmentation
The way that information propagates in neural networks is of great importance. In this paper, we propose Path Aggregation Network (PANet) aiming at boosting information flow in proposal-based instance segmentation framework. Specifically, we enhance the entire feature hierarchy with accurate localization signals in lower layers by bottom-up path augmentation, which shortens the information path between lower layers and topmost feature. We present adaptive feature pooling, which links feature grid and all feature levels to make useful information in each feature level propagate directly to following proposal subnetworks. A complementary branch capturing different views for each proposal is created to further improve mask prediction. These improvements are simple to implement, with subtle extra computational overhead. Our PANet reaches the 1st place in the COCO 2017 Challenge Instance Segmentation task and the 2nd place in Object Detection task without large-batch training. It is also state-of-the-art on MVD and Cityscapes. Code is available at https://github.com/ShuLiu1993/PANet
Pre-training on Synthetic Driving Data for Trajectory Prediction
Accumulating substantial volumes of real-world driving data proves pivotal in the realm of trajectory forecasting for autonomous driving. Given the heavy reliance of current trajectory forecasting models on data-driven methodologies, we aim to tackle the challenge of learning general trajectory forecasting representations under limited data availability. We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting. The solution is composed of two parts: firstly, we adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them. Specifically, we apply vector transformations to reshape the maps, and then employ a rule-based model to generate trajectories on both original and augmented scenes; thus enlarging the driving data without collecting additional real ones. To foster the learning of general representations within this augmented dataset, we comprehensively explore the different pre-training strategies, including extending the concept of a Masked AutoEncoder (MAE) for trajectory forecasting. Without bells and whistles, our proposed pipeline-level solution is general, simple, yet effective: we conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies, which outperform the baseline prediction model by large margins, e.g. 5.04%, 3.84% and 8.30% in terms of MR_6, minADE_6 and minFDE_6. The pre-training dataset and the codes for pre-training and fine-tuning are released at https://github.com/yhli123/Pretraining_on_Synthetic_Driving_Data_for_Trajectory_Prediction.
VisionTrap: Vision-Augmented Trajectory Prediction Guided by Textual Descriptions
Predicting future trajectories for other road agents is an essential task for autonomous vehicles. Established trajectory prediction methods primarily use agent tracks generated by a detection and tracking system and HD map as inputs. In this work, we propose a novel method that also incorporates visual input from surround-view cameras, allowing the model to utilize visual cues such as human gazes and gestures, road conditions, vehicle turn signals, etc, which are typically hidden from the model in prior methods. Furthermore, we use textual descriptions generated by a Vision-Language Model (VLM) and refined by a Large Language Model (LLM) as supervision during training to guide the model on what to learn from the input data. Despite using these extra inputs, our method achieves a latency of 53 ms, making it feasible for real-time processing, which is significantly faster than that of previous single-agent prediction methods with similar performance. Our experiments show that both the visual inputs and the textual descriptions contribute to improvements in trajectory prediction performance, and our qualitative analysis highlights how the model is able to exploit these additional inputs. Lastly, in this work we create and release the nuScenes-Text dataset, which augments the established nuScenes dataset with rich textual annotations for every scene, demonstrating the positive impact of utilizing VLM on trajectory prediction. Our project page is at https://moonseokha.github.io/VisionTrap/
AMEND: A Mixture of Experts Framework for Long-tailed Trajectory Prediction
Accurate prediction of pedestrians' future motions is critical for intelligent driving systems. Developing models for this task requires rich datasets containing diverse sets of samples. However, the existing naturalistic trajectory prediction datasets are generally imbalanced in favor of simpler samples and lack challenging scenarios. Such a long-tail effect causes prediction models to underperform on the tail portion of the data distribution containing safety-critical scenarios. Previous methods tackle the long-tail problem using methods such as contrastive learning and class-conditioned hypernetworks. These approaches, however, are not modular and cannot be applied to many machine learning architectures. In this work, we propose a modular model-agnostic framework for trajectory prediction that leverages a specialized mixture of experts. In our approach, each expert is trained with a specialized skill with respect to a particular part of the data. To produce predictions, we utilise a router network that selects the best expert by generating relative confidence scores. We conduct experimentation on common pedestrian trajectory prediction datasets and show that besides achieving state-of-the-art performance, our method significantly performs better on long-tail scenarios. We further conduct ablation studies to highlight the contribution of different proposed components.
PI3DETR: Parametric Instance Detection of 3D Point Cloud Edges with a Geometry-Aware 3DETR
We present PI3DETR, an end-to-end framework that directly predicts 3D parametric curve instances from raw point clouds, avoiding the intermediate representations and multi-stage processing common in prior work. Extending 3DETR, our model introduces a geometry-aware matching strategy and specialized loss functions that enable unified detection of differently parameterized curve types, including cubic B\'ezier curves, line segments, circles, and arcs, in a single forward pass. Optional post-processing steps further refine predictions without adding complexity. This streamlined design improves robustness to noise and varying sampling densities, addressing critical challenges in real world LiDAR and 3D sensing scenarios. PI3DETR sets a new state-of-the-art on the ABC dataset and generalizes effectively to real sensor data, offering a simple yet powerful solution for 3D edge and curve estimation.
EigenTrajectory: Low-Rank Descriptors for Multi-Modal Trajectory Forecasting
Capturing high-dimensional social interactions and feasible futures is essential for predicting trajectories. To address this complex nature, several attempts have been devoted to reducing the dimensionality of the output variables via parametric curve fitting such as the B\'ezier curve and B-spline function. However, these functions, which originate in computer graphics fields, are not suitable to account for socially acceptable human dynamics. In this paper, we present EigenTrajectory (ET), a trajectory prediction approach that uses a novel trajectory descriptor to form a compact space, known here as ET space, in place of Euclidean space, for representing pedestrian movements. We first reduce the complexity of the trajectory descriptor via a low-rank approximation. We transform the pedestrians' history paths into our ET space represented by spatio-temporal principle components, and feed them into off-the-shelf trajectory forecasting models. The inputs and outputs of the models as well as social interactions are all gathered and aggregated in the corresponding ET space. Lastly, we propose a trajectory anchor-based refinement method to cover all possible futures in the proposed ET space. Extensive experiments demonstrate that our EigenTrajectory predictor can significantly improve both the prediction accuracy and reliability of existing trajectory forecasting models on public benchmarks, indicating that the proposed descriptor is suited to represent pedestrian behaviors. Code is publicly available at https://github.com/inhwanbae/EigenTrajectory .
Eyes Will Shut: A Vision-Based Next GPS Location Prediction Model by Reinforcement Learning from Visual Map Feed Back
Next Location Prediction is a fundamental task in the study of human mobility, with wide-ranging applications in transportation planning, urban governance, and epidemic forecasting. In practice, when humans attempt to predict the next location in a trajectory, they often visualize the trajectory on a map and reason based on road connectivity and movement trends. However, the vast majority of existing next-location prediction models do not reason over maps in the way that humans do. Fortunately, the recent development of Vision-Language Models (VLMs) has demonstrated strong capabilities in visual perception and even visual reasoning. This opens up a new possibility: by rendering both the road network and trajectory onto an image and leveraging the reasoning abilities of VLMs, we can enable models to perform trajectory inference in a human-like manner. To explore this idea, we first propose a method called Vision-Guided Location Search (VGLS), which evaluates whether a general-purpose VLM is capable of trajectory-based reasoning without modifying any of its internal parameters. Based on insights from the VGLS results, we further propose our main approach: VLMLocPredictor, which is composed of two stages: In the first stage, we design two Supervised Fine-Tuning (SFT) tasks that help the VLM understand road network and trajectory structures and acquire basic reasoning ability on such visual inputs. In the second stage, we introduce Reinforcement Learning from Visual Map Feedback, enabling the model to self-improve its next-location prediction ability through interaction with the environment. Experiments conducted on datasets from four different cities show that our method achieves state-of-the-art (SOTA) performance and exhibits superior cross-city generalization compared to other LLM-based approaches.
TrajFlow: Multi-modal Motion Prediction via Flow Matching
Efficient and accurate motion prediction is crucial for ensuring safety and informed decision-making in autonomous driving, particularly under dynamic real-world conditions that necessitate multi-modal forecasts. We introduce TrajFlow, a novel flow matching-based motion prediction framework that addresses the scalability and efficiency challenges of existing generative trajectory prediction methods. Unlike conventional generative approaches that employ i.i.d. sampling and require multiple inference passes to capture diverse outcomes, TrajFlow predicts multiple plausible future trajectories in a single pass, significantly reducing computational overhead while maintaining coherence across predictions. Moreover, we propose a ranking loss based on the Plackett-Luce distribution to improve uncertainty estimation of predicted trajectories. Additionally, we design a self-conditioning training technique that reuses the model's own predictions to construct noisy inputs during a second forward pass, thereby improving generalization and accelerating inference. Extensive experiments on the large-scale Waymo Open Motion Dataset (WOMD) demonstrate that TrajFlow achieves state-of-the-art performance across various key metrics, underscoring its effectiveness for safety-critical autonomous driving applications. The code and other details are available on the project website https://traj-flow.github.io/.
ViNT: A Foundation Model for Visual Navigation
General-purpose pre-trained models ("foundation models") have enabled practitioners to produce generalizable solutions for individual machine learning problems with datasets that are significantly smaller than those required for learning from scratch. Such models are typically trained on large and diverse datasets with weak supervision, consuming much more training data than is available for any individual downstream application. In this paper, we describe the Visual Navigation Transformer (ViNT), a foundation model that aims to bring the success of general-purpose pre-trained models to vision-based robotic navigation. ViNT is trained with a general goal-reaching objective that can be used with any navigation dataset, and employs a flexible Transformer-based architecture to learn navigational affordances and enable efficient adaptation to a variety of downstream navigational tasks. ViNT is trained on a number of existing navigation datasets, comprising hundreds of hours of robotic navigation from a variety of different robotic platforms, and exhibits positive transfer, outperforming specialist models trained on singular datasets. ViNT can be augmented with diffusion-based subgoal proposals to explore novel environments, and can solve kilometer-scale navigation problems when equipped with long-range heuristics. ViNT can also be adapted to novel task specifications with a technique inspired by prompt-tuning, where the goal encoder is replaced by an encoding of another task modality (e.g., GPS waypoints or routing commands) embedded into the same space of goal tokens. This flexibility and ability to accommodate a variety of downstream problem domains establishes ViNT as an effective foundation model for mobile robotics. For videos, code, and model checkpoints, see our project page at https://visualnav-transformer.github.io.
Parting with Misconceptions about Learning-based Vehicle Motion Planning
The release of nuPlan marks a new era in vehicle motion planning research, offering the first large-scale real-world dataset and evaluation schemes requiring both precise short-term planning and long-horizon ego-forecasting. Existing systems struggle to simultaneously meet both requirements. Indeed, we find that these tasks are fundamentally misaligned and should be addressed independently. We further assess the current state of closed-loop planning in the field, revealing the limitations of learning-based methods in complex real-world scenarios and the value of simple rule-based priors such as centerline selection through lane graph search algorithms. More surprisingly, for the open-loop sub-task, we observe that the best results are achieved when using only this centerline as scene context (\ie, ignoring all information regarding the map and other agents). Combining these insights, we propose an extremely simple and efficient planner which outperforms an extensive set of competitors, winning the nuPlan planning challenge 2023.
VideoRepair: Improving Text-to-Video Generation via Misalignment Evaluation and Localized Refinement
Recent text-to-video (T2V) diffusion models have demonstrated impressive generation capabilities across various domains. However, these models often generate videos that have misalignments with text prompts, especially when the prompts describe complex scenes with multiple objects and attributes. To address this, we introduce VideoRepair, a novel model-agnostic, training-free video refinement framework that automatically identifies fine-grained text-video misalignments and generates explicit spatial and textual feedback, enabling a T2V diffusion model to perform targeted, localized refinements. VideoRepair consists of four stages: In (1) video evaluation, we detect misalignments by generating fine-grained evaluation questions and answering those questions with MLLM. In (2) refinement planning, we identify accurately generated objects and then create localized prompts to refine other areas in the video. Next, in (3) region decomposition, we segment the correctly generated area using a combined grounding module. We regenerate the video by adjusting the misaligned regions while preserving the correct regions in (4) localized refinement. On two popular video generation benchmarks (EvalCrafter and T2V-CompBench), VideoRepair substantially outperforms recent baselines across various text-video alignment metrics. We provide a comprehensive analysis of VideoRepair components and qualitative examples.
NaviDiffusor: Cost-Guided Diffusion Model for Visual Navigation
Visual navigation, a fundamental challenge in mobile robotics, demands versatile policies to handle diverse environments. Classical methods leverage geometric solutions to minimize specific costs, offering adaptability to new scenarios but are prone to system errors due to their multi-modular design and reliance on hand-crafted rules. Learning-based methods, while achieving high planning success rates, face difficulties in generalizing to unseen environments beyond the training data and often require extensive training. To address these limitations, we propose a hybrid approach that combines the strengths of learning-based methods and classical approaches for RGB-only visual navigation. Our method first trains a conditional diffusion model on diverse path-RGB observation pairs. During inference, it integrates the gradients of differentiable scene-specific and task-level costs, guiding the diffusion model to generate valid paths that meet the constraints. This approach alleviates the need for retraining, offering a plug-and-play solution. Extensive experiments in both indoor and outdoor settings, across simulated and real-world scenarios, demonstrate zero-shot transfer capability of our approach, achieving higher success rates and fewer collisions compared to baseline methods. Code will be released at https://github.com/SYSU-RoboticsLab/NaviD.
ReFIne: A Framework for Trustworthy Large Reasoning Models with Reliability, Faithfulness, and Interpretability
Recent advances in long chain-of-thought (CoT) reasoning have largely prioritized answer accuracy and token efficiency, while overlooking aspects critical to trustworthiness. We argue that usable reasoning systems must be trustworthy, characterized by three properties: interpretability, faithfulness, and reliability. To this end, we propose ReFIne, a new training framework that integrates supervised fine-tuning with GRPO to encourage models to: (i) improve interpretability by producing structured, tag-based traces with high-level planning that are easier for humans to follow; (ii) enhance faithfulness by explicitly disclosing the decisive information guiding each solution, with consistent cross-section references; and (iii) promote reliability by providing self-assessments of both the derivation's soundness and the confidence of the final answer. We apply ReFIne to the Qwen3 models at multiple scales (1.7B/4B/8B) and evaluate across mathematical benchmarks of varying difficulty. Our experimental results show that ReFIne models generate clearer and better-structured reasoning traces (interpretability +44.0%), more faithfully expose their underlying decision process (faithfulness +18.8%), and offer informative confidence estimates (reliability +42.4%). These findings highlight an overlooked but important direction: reasoning models should be optimized not only for accuracy, but also for broader dimensions of trustworthiness. Our code is available at: https://github.com/Trustworthy-ML-Lab/Training_Trustworthy_LRM_with_Refine
Can Large Vision Language Models Read Maps Like a Human?
In this paper, we introduce MapBench-the first dataset specifically designed for human-readable, pixel-based map-based outdoor navigation, curated from complex path finding scenarios. MapBench comprises over 1600 pixel space map path finding problems from 100 diverse maps. In MapBench, LVLMs generate language-based navigation instructions given a map image and a query with beginning and end landmarks. For each map, MapBench provides Map Space Scene Graph (MSSG) as an indexing data structure to convert between natural language and evaluate LVLM-generated results. We demonstrate that MapBench significantly challenges state-of-the-art LVLMs both zero-shot prompting and a Chain-of-Thought (CoT) augmented reasoning framework that decomposes map navigation into sequential cognitive processes. Our evaluation of both open-source and closed-source LVLMs underscores the substantial difficulty posed by MapBench, revealing critical limitations in their spatial reasoning and structured decision-making capabilities. We release all the code and dataset in https://github.com/taco-group/MapBench.
GLoRe: When, Where, and How to Improve LLM Reasoning via Global and Local Refinements
State-of-the-art language models can exhibit impressive reasoning refinement capabilities on math, science or coding tasks. However, recent work demonstrates that even the best models struggle to identify when and where to refine without access to external feedback. Outcome-based Reward Models (ORMs), trained to predict correctness of the final answer indicating when to refine, offer one convenient solution for deciding when to refine. Process Based Reward Models (PRMs), trained to predict correctness of intermediate steps, can then be used to indicate where to refine. But they are expensive to train, requiring extensive human annotations. In this paper, we propose Stepwise ORMs (SORMs) which are trained, only on synthetic data, to approximate the expected future reward of the optimal policy or V^{star}. More specifically, SORMs are trained to predict the correctness of the final answer when sampling the current policy many times (rather than only once as in the case of ORMs). Our experiments show that SORMs can more accurately detect incorrect reasoning steps compared to ORMs, thus improving downstream accuracy when doing refinements. We then train global refinement models, which take only the question and a draft solution as input and predict a corrected solution, and local refinement models which also take as input a critique indicating the location of the first reasoning error. We generate training data for both models synthetically by reusing data used to train the SORM. We find combining global and local refinements, using the ORM as a reranker, significantly outperforms either one individually, as well as a best of three sample baseline. With this strategy we can improve the accuracy of a LLaMA-2 13B model (already fine-tuned with RL) on GSM8K from 53\% to 65\% when greedily sampled.
NextBestPath: Efficient 3D Mapping of Unseen Environments
This work addresses the problem of active 3D mapping, where an agent must find an efficient trajectory to exhaustively reconstruct a new scene. Previous approaches mainly predict the next best view near the agent's location, which is prone to getting stuck in local areas. Additionally, existing indoor datasets are insufficient due to limited geometric complexity and inaccurate ground truth meshes. To overcome these limitations, we introduce a novel dataset AiMDoom with a map generator for the Doom video game, enabling to better benchmark active 3D mapping in diverse indoor environments. Moreover, we propose a new method we call next-best-path (NBP), which predicts long-term goals rather than focusing solely on short-sighted views. The model jointly predicts accumulated surface coverage gains for long-term goals and obstacle maps, allowing it to efficiently plan optimal paths with a unified model. By leveraging online data collection, data augmentation and curriculum learning, NBP significantly outperforms state-of-the-art methods on both the existing MP3D dataset and our AiMDoom dataset, achieving more efficient mapping in indoor environments of varying complexity.
PIG-Nav: Key Insights for Pretrained Image Goal Navigation Models
Recent studies have explored pretrained (foundation) models for vision-based robotic navigation, aiming to achieve generalizable navigation and positive transfer across diverse environments while enhancing zero-shot performance in unseen settings. In this work, we introduce PIG-Nav (Pretrained Image-Goal Navigation), a new approach that further investigates pretraining strategies for vision-based navigation models and contributes in two key areas. Model-wise, we identify two critical design choices that consistently improve the performance of pretrained navigation models: (1) integrating an early-fusion network structure to combine visual observations and goal images via appropriately pretrained Vision Transformer (ViT) image encoder, and (2) introducing suitable auxiliary tasks to enhance global navigation representation learning, thus further improving navigation performance. Dataset-wise, we propose a novel data preprocessing pipeline for efficiently labeling large-scale game video datasets for navigation model training. We demonstrate that augmenting existing open navigation datasets with diverse gameplay videos improves model performance. Our model achieves an average improvement of 22.6% in zero-shot settings and a 37.5% improvement in fine-tuning settings over existing visual navigation foundation models in two complex simulated environments and one real-world environment. These results advance the state-of-the-art in pretrained image-goal navigation models. Notably, our model maintains competitive performance while requiring significantly less fine-tuning data, highlighting its potential for real-world deployment with minimal labeled supervision.
Ground then Navigate: Language-guided Navigation in Dynamic Scenes
We investigate the Vision-and-Language Navigation (VLN) problem in the context of autonomous driving in outdoor settings. We solve the problem by explicitly grounding the navigable regions corresponding to the textual command. At each timestamp, the model predicts a segmentation mask corresponding to the intermediate or the final navigable region. Our work contrasts with existing efforts in VLN, which pose this task as a node selection problem, given a discrete connected graph corresponding to the environment. We do not assume the availability of such a discretised map. Our work moves towards continuity in action space, provides interpretability through visual feedback and allows VLN on commands requiring finer manoeuvres like "park between the two cars". Furthermore, we propose a novel meta-dataset CARLA-NAV to allow efficient training and validation. The dataset comprises pre-recorded training sequences and a live environment for validation and testing. We provide extensive qualitative and quantitive empirical results to validate the efficacy of the proposed approach.
TRACE: Textual Reasoning for Affordance Coordinate Extraction
Vision-Language Models (VLMs) struggle to translate high-level instructions into the precise spatial affordances required for robotic manipulation. While visual Chain-of-Thought (CoT) methods exist, they are often computationally intensive. In this work, we introduce TRACE (Textual Reasoning for Affordance Coordinate Extraction), a novel methodology that integrates a textual Chain of Reasoning (CoR) into the affordance prediction process. We use this methodology to create the TRACE dataset, a large-scale collection created via an autonomous pipeline that pairs instructions with explicit textual rationales. By fine-tuning a VLM on this data, our model learns to externalize its spatial reasoning before acting. Our experiments show that our TRACE-tuned model achieves state-of-the-art performance, reaching 48.1% accuracy on the primary Where2Place (W2P) benchmark (a 9.6% relative improvement) and 55.0% on the more challenging W2P(h) subset. Crucially, an ablation study demonstrates that performance scales directly with the amount of reasoning data used, confirming the CoR's effectiveness. Furthermore, analysis of the model's attention maps reveals an interpretable reasoning process where focus shifts dynamically across reasoning steps. This work shows that training VLMs to generate a textual CoR is an effective and robust strategy for enhancing the precision, reliability, and interpretability of VLM-based robot control. Our dataset and code are available at https://github.com/jink-ucla/TRACE
Modeling Dynamic Environments with Scene Graph Memory
Embodied AI agents that search for objects in large environments such as households often need to make efficient decisions by predicting object locations based on partial information. We pose this as a new type of link prediction problem: link prediction on partially observable dynamic graphs. Our graph is a representation of a scene in which rooms and objects are nodes, and their relationships are encoded in the edges; only parts of the changing graph are known to the agent at each timestep. This partial observability poses a challenge to existing link prediction approaches, which we address. We propose a novel state representation -- Scene Graph Memory (SGM) -- with captures the agent's accumulated set of observations, as well as a neural net architecture called a Node Edge Predictor (NEP) that extracts information from the SGM to search efficiently. We evaluate our method in the Dynamic House Simulator, a new benchmark that creates diverse dynamic graphs following the semantic patterns typically seen at homes, and show that NEP can be trained to predict the locations of objects in a variety of environments with diverse object movement dynamics, outperforming baselines both in terms of new scene adaptability and overall accuracy. The codebase and more can be found at https://www.scenegraphmemory.com.
Self-supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot Navigation
Enabling robots to autonomously navigate complex environments is essential for real-world deployment. Prior methods approach this problem by having the robot maintain an internal map of the world, and then use a localization and planning method to navigate through the internal map. However, these approaches often include a variety of assumptions, are computationally intensive, and do not learn from failures. In contrast, learning-based methods improve as the robot acts in the environment, but are difficult to deploy in the real-world due to their high sample complexity. To address the need to learn complex policies with few samples, we propose a generalized computation graph that subsumes value-based model-free methods and model-based methods, with specific instantiations interpolating between model-free and model-based. We then instantiate this graph to form a navigation model that learns from raw images and is sample efficient. Our simulated car experiments explore the design decisions of our navigation model, and show our approach outperforms single-step and N-step double Q-learning. We also evaluate our approach on a real-world RC car and show it can learn to navigate through a complex indoor environment with a few hours of fully autonomous, self-supervised training. Videos of the experiments and code can be found at github.com/gkahn13/gcg
E(2)-Equivariant Graph Planning for Navigation
Learning for robot navigation presents a critical and challenging task. The scarcity and costliness of real-world datasets necessitate efficient learning approaches. In this letter, we exploit Euclidean symmetry in planning for 2D navigation, which originates from Euclidean transformations between reference frames and enables parameter sharing. To address the challenges of unstructured environments, we formulate the navigation problem as planning on a geometric graph and develop an equivariant message passing network to perform value iteration. Furthermore, to handle multi-camera input, we propose a learnable equivariant layer to lift features to a desired space. We conduct comprehensive evaluations across five diverse tasks encompassing structured and unstructured environments, along with maps of known and unknown, given point goals or semantic goals. Our experiments confirm the substantial benefits on training efficiency, stability, and generalization.
VG-Refiner: Towards Tool-Refined Referring Grounded Reasoning via Agentic Reinforcement Learning
Tool-integrated visual reasoning (TiVR) has demonstrated great potential in enhancing multimodal problem-solving. However, existing TiVR paradigms mainly focus on integrating various visual tools through reinforcement learning, while neglecting to design effective response mechanisms for handling unreliable or erroneous tool outputs. This limitation is particularly pronounced in referring and grounding tasks, where inaccurate detection tool predictions often mislead TiVR models into generating hallucinated reasoning. To address this issue, we propose the VG-Refiner, the first framework aiming at the tool-refined referring grounded reasoning. Technically, we introduce a two-stage think-rethink mechanism that enables the model to explicitly analyze and respond to tool feedback, along with a refinement reward that encourages effective correction in response to poor tool results. In addition, we propose two new metrics and establish fair evaluation protocols to systematically measure the refinement ability of current models. We adopt a small amount of task-specific data to enhance the refinement capability of VG-Refiner, achieving a significant improvement in accuracy and correction ability on referring and reasoning grounding benchmarks while preserving the general capabilities of the pretrained model.
A Machine Learning Approach That Beats Large Rubik's Cubes
The paper proposes a novel machine learning-based approach to the pathfinding problem on extremely large graphs. This method leverages diffusion distance estimation via a neural network and uses beam search for pathfinding. We demonstrate its efficiency by finding solutions for 4x4x4 and 5x5x5 Rubik's cubes with unprecedentedly short solution lengths, outperforming all available solvers and introducing the first machine learning solver beyond the 3x3x3 case. In particular, it surpasses every single case of the combined best results in the Kaggle Santa 2023 challenge, which involved over 1,000 teams. For the 3x3x3 Rubik's cube, our approach achieves an optimality rate exceeding 98%, matching the performance of task-specific solvers and significantly outperforming prior solutions such as DeepCubeA (60.3%) and EfficientCube (69.6%). Additionally, our solution is more than 26 times faster in solving 3x3x3 Rubik's cubes while requiring up to 18.5 times less model training time than the most efficient state-of-the-art competitor.
Guiding VLM Agents with Process Rewards at Inference Time for GUI Navigation
Recent advancements in visual language models (VLMs) have notably enhanced their capabilities in handling complex Graphical User Interface (GUI) interaction tasks. Despite these improvements, current frameworks often struggle to generate correct actions in challenging GUI environments. State-of-the-art commercial VLMs are black-boxes, and fine-tuning open-source VLMs for GUI tasks requires significant resources. Additionally, existing trajectory-level evaluation and refinement techniques frequently fall short due to delayed feedback and local optimization issues. To address these challenges, we propose an approach that guides VLM agents with process supervision by a reward model during GUI navigation and control at inference time. This guidance allows the VLM agent to optimize actions at each inference step, thereby improving performance in both static and dynamic environments. In particular, our method demonstrates significant performance gains in three GUI navigation tasks, achieving a 3.4% improvement in single step action accuracy for static environments, along with a around 33% increase in task success rate in one dynamic environment. With further integration of trajectory reflection and retry mechanisms, we also demonstrate even greater enhancement in task success.
Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments
Despite their stellar performance on a wide range of tasks, including in-context tasks only revealed during inference, vanilla transformers and variants trained for next-token predictions (a) do not learn an explicit world model of their environment which can be flexibly queried and (b) cannot be used for planning or navigation. In this paper, we consider partially observed environments (POEs), where an agent receives perceptually aliased observations as it navigates, which makes path planning hard. We introduce a transformer with (multiple) discrete bottleneck(s), TDB, whose latent codes learn a compressed representation of the history of observations and actions. After training a TDB to predict the future observation(s) given the history, we extract interpretable cognitive maps of the environment from its active bottleneck(s) indices. These maps are then paired with an external solver to solve (constrained) path planning problems. First, we show that a TDB trained on POEs (a) retains the near perfect predictive performance of a vanilla transformer or an LSTM while (b) solving shortest path problems exponentially faster. Second, a TDB extracts interpretable representations from text datasets, while reaching higher in-context accuracy than vanilla sequence models. Finally, in new POEs, a TDB (a) reaches near-perfect in-context accuracy, (b) learns accurate in-context cognitive maps (c) solves in-context path planning problems.
InstruGen: Automatic Instruction Generation for Vision-and-Language Navigation Via Large Multimodal Models
Recent research on Vision-and-Language Navigation (VLN) indicates that agents suffer from poor generalization in unseen environments due to the lack of realistic training environments and high-quality path-instruction pairs. Most existing methods for constructing realistic navigation scenes have high costs, and the extension of instructions mainly relies on predefined templates or rules, lacking adaptability. To alleviate the issue, we propose InstruGen, a VLN path-instruction pairs generation paradigm. Specifically, we use YouTube house tour videos as realistic navigation scenes and leverage the powerful visual understanding and generation abilities of large multimodal models (LMMs) to automatically generate diverse and high-quality VLN path-instruction pairs. Our method generates navigation instructions with different granularities and achieves fine-grained alignment between instructions and visual observations, which was difficult to achieve with previous methods. Additionally, we design a multi-stage verification mechanism to reduce hallucinations and inconsistency of LMMs. Experimental results demonstrate that agents trained with path-instruction pairs generated by InstruGen achieves state-of-the-art performance on the R2R and RxR benchmarks, particularly in unseen environments. Code is available at https://github.com/yanyu0526/InstruGen.
FMT^{x}: An Efficient and Asymptotically Optimal Extension of the Fast Marching Tree for Dynamic Replanning
Path planning in dynamic environments remains a core challenge in robotics, especially as autonomous systems are deployed in unpredictable spaces such as warehouses and public roads. While algorithms like Fast Marching Tree (FMT^{*}) offer asymptotically optimal solutions in static settings, their single-pass design prevents path revisions which are essential for real-time adaptation. On the other hand, full replanning is often too computationally expensive. This paper introduces FMT^{x}, an extension of the Fast Marching Tree algorithm that enables efficient and consistent replanning in dynamic environments. We revisit the neighbor selection rule of FMT^{*} and demonstrate that a minimal change overcomes its single-pass limitation, enabling the algorithm to update cost-to-come values upon discovering better connections without sacrificing asymptotic optimality or computational efficiency. By maintaining a cost-ordered priority queue and applying a selective update condition that uses an expanding neighbor to identify and trigger the re-evaluation of any node with a potentially suboptimal path, FMT^{x} ensures that suboptimal routes are efficiently repaired as the environment evolves. This targeted strategy preserves the inherent efficiency of FMT^{*} while enabling robust adaptation to changes in obstacle configuration. FMT^{x} is proven to recover an asymptotically optimal solution after environmental changes. Experimental results demonstrate that FMT^{x} outperforms the influential replanner RRT^{x}, reacting more swiftly to dynamic events with lower computational overhead and thus offering a more effective solution for real-time robotic navigation in unpredictable worlds.
PEANUT: Predicting and Navigating to Unseen Targets
Efficient ObjectGoal navigation (ObjectNav) in novel environments requires an understanding of the spatial and semantic regularities in environment layouts. In this work, we present a straightforward method for learning these regularities by predicting the locations of unobserved objects from incomplete semantic maps. Our method differs from previous prediction-based navigation methods, such as frontier potential prediction or egocentric map completion, by directly predicting unseen targets while leveraging the global context from all previously explored areas. Our prediction model is lightweight and can be trained in a supervised manner using a relatively small amount of passively collected data. Once trained, the model can be incorporated into a modular pipeline for ObjectNav without the need for any reinforcement learning. We validate the effectiveness of our method on the HM3D and MP3D ObjectNav datasets. We find that it achieves the state-of-the-art on both datasets, despite not using any additional data for training.
Pinpoint, Not Criticize: Refining Large Language Models via Fine-Grained Actionable Feedback
Recent improvements in text generation have leveraged human feedback to improve the quality of the generated output. However, human feedback is not always available, especially during inference. In this work, we propose an inference time optimization method FITO to use fine-grained actionable feedback in the form of error type, error location and severity level that are predicted by a learned error pinpoint model for iterative refinement. FITO starts with an initial output, then iteratively incorporates the feedback via a refinement model that generates an improved output conditioned on the feedback. Given the uncertainty of consistent refined samples at iterative steps, we formulate iterative refinement into a local search problem and develop a simulated annealing based algorithm that balances exploration of the search space and optimization for output quality. We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA) and topical summarization. We observe 0.8 and 0.7 MetricX gain on Chinese-English and English-German translation, 4.5 and 1.8 ROUGE-L gain at long form QA and topic summarization respectively, with a single iteration of refinement. With our simulated annealing algorithm, we see further quality improvements, including up to 1.7 MetricX improvements over the baseline approach.
GMFlow: Learning Optical Flow via Global Matching
Learning-based optical flow estimation has been dominated with the pipeline of cost volume with convolutions for flow regression, which is inherently limited to local correlations and thus is hard to address the long-standing challenge of large displacements. To alleviate this, the state-of-the-art framework RAFT gradually improves its prediction quality by using a large number of iterative refinements, achieving remarkable performance but introducing linearly increasing inference time. To enable both high accuracy and efficiency, we completely revamp the dominant flow regression pipeline by reformulating optical flow as a global matching problem, which identifies the correspondences by directly comparing feature similarities. Specifically, we propose a GMFlow framework, which consists of three main components: a customized Transformer for feature enhancement, a correlation and softmax layer for global feature matching, and a self-attention layer for flow propagation. We further introduce a refinement step that reuses GMFlow at higher feature resolution for residual flow prediction. Our new framework outperforms 31-refinements RAFT on the challenging Sintel benchmark, while using only one refinement and running faster, suggesting a new paradigm for accurate and efficient optical flow estimation. Code is available at https://github.com/haofeixu/gmflow.
Adaptive Human Trajectory Prediction via Latent Corridors
Human trajectory prediction is typically posed as a zero-shot generalization problem: a predictor is learnt on a dataset of human motion in training scenes, and then deployed on unseen test scenes. While this paradigm has yielded tremendous progress, it fundamentally assumes that trends in human behavior within the deployment scene are constant over time. As such, current prediction models are unable to adapt to scene-specific transient human behaviors, such as crowds temporarily gathering to see buskers, pedestrians hurrying through the rain and avoiding puddles, or a protest breaking out. We formalize the problem of scene-specific adaptive trajectory prediction and propose a new adaptation approach inspired by prompt tuning called latent corridors. By augmenting the input of any pre-trained human trajectory predictor with learnable image prompts, the predictor can improve in the deployment scene by inferring trends from extremely small amounts of new data (e.g., 2 humans observed for 30 seconds). With less than 0.1% additional model parameters, we see up to 23.9% ADE improvement in MOTSynth simulated data and 16.4% ADE in MOT and Wildtrack real pedestrian data. Qualitatively, we observe that latent corridors imbue predictors with an awareness of scene geometry and scene-specific human behaviors that non-adaptive predictors struggle to capture. The project website can be found at https://neerja.me/atp_latent_corridors/.
Graph Neural Networks for Decentralized Multi-Robot Path Planning
Effective communication is key to successful, decentralized, multi-robot path planning. Yet, it is far from obvious what information is crucial to the task at hand, and how and when it must be shared among robots. To side-step these issues and move beyond hand-crafted heuristics, we propose a combined model that automatically synthesizes local communication and decision-making policies for robots navigating in constrained workspaces. Our architecture is composed of a convolutional neural network (CNN) that extracts adequate features from local observations, and a graph neural network (GNN) that communicates these features among robots. We train the model to imitate an expert algorithm, and use the resulting model online in decentralized planning involving only local communication and local observations. We evaluate our method in simulations {by navigating teams of robots to their destinations in 2D} cluttered workspaces. We measure the success rates and sum of costs over the planned paths. The results show a performance close to that of our expert algorithm, demonstrating the validity of our approach. In particular, we show our model's capability to generalize to previously unseen cases (involving larger environments and larger robot teams).
Learning Vision-and-Language Navigation from YouTube Videos
Vision-and-language navigation (VLN) requires an embodied agent to navigate in realistic 3D environments using natural language instructions. Existing VLN methods suffer from training on small-scale environments or unreasonable path-instruction datasets, limiting the generalization to unseen environments. There are massive house tour videos on YouTube, providing abundant real navigation experiences and layout information. However, these videos have not been explored for VLN before. In this paper, we propose to learn an agent from these videos by creating a large-scale dataset which comprises reasonable path-instruction pairs from house tour videos and pre-training the agent on it. To achieve this, we have to tackle the challenges of automatically constructing path-instruction pairs and exploiting real layout knowledge from raw and unlabeled videos. To address these, we first leverage an entropy-based method to construct the nodes of a path trajectory. Then, we propose an action-aware generator for generating instructions from unlabeled trajectories. Last, we devise a trajectory judgment pretext task to encourage the agent to mine the layout knowledge. Experimental results show that our method achieves state-of-the-art performance on two popular benchmarks (R2R and REVERIE). Code is available at https://github.com/JeremyLinky/YouTube-VLN
SPaRC: A Spatial Pathfinding Reasoning Challenge
Existing reasoning datasets saturate and fail to test abstract, multi-step problems, especially pathfinding and complex rule constraint satisfaction. We introduce SPaRC (Spatial Pathfinding Reasoning Challenge), a dataset of 1,000 2D grid pathfinding puzzles to evaluate spatial and symbolic reasoning, requiring step-by-step planning with arithmetic and geometric rules. Humans achieve near-perfect accuracy (98.0%; 94.5% on hard puzzles), while the best reasoning models, such as o4-mini, struggle (15.8%; 1.1% on hard puzzles). Models often generate invalid paths (>50% of puzzles for o4-mini), and reasoning tokens reveal they make errors in navigation and spatial logic. Unlike humans, who take longer on hard puzzles, models fail to scale test-time compute with difficulty. Allowing models to make multiple solution attempts improves accuracy, suggesting potential for better spatial reasoning with improved training and efficient test-time scaling methods. SPaRC can be used as a window into models' spatial reasoning limitations and drive research toward new methods that excel in abstract, multi-step problem-solving.
VL-TGS: Trajectory Generation and Selection using Vision Language Models in Mapless Outdoor Environments
We present a multi-modal trajectory generation and selection algorithm for real-world mapless outdoor navigation in human-centered environments. Such environments contain rich features like crosswalks, grass, and curbs, which are easily interpretable by humans, but not by mobile robots. We aim to compute suitable trajectories that (1) satisfy the environment-specific traversability constraints and (2) generate human-like paths while navigating on crosswalks, sidewalks, etc. Our formulation uses a Conditional Variational Autoencoder (CVAE) generative model enhanced with traversability constraints to generate multiple candidate trajectories for global navigation. We develop a visual prompting approach and leverage the Visual Language Model's (VLM) zero-shot ability of semantic understanding and logical reasoning to choose the best trajectory given the contextual information about the task. We evaluate our method in various outdoor scenes with wheeled robots and compare the performance with other global navigation algorithms. In practice, we observe an average improvement of 20.81% in satisfying traversability constraints and 28.51% in terms of human-like navigation in four different outdoor navigation scenarios.
Mastering Spatial Graph Prediction of Road Networks
Accurately predicting road networks from satellite images requires a global understanding of the network topology. We propose to capture such high-level information by introducing a graph-based framework that simulates the addition of sequences of graph edges using a reinforcement learning (RL) approach. In particular, given a partially generated graph associated with a satellite image, an RL agent nominates modifications that maximize a cumulative reward. As opposed to standard supervised techniques that tend to be more restricted to commonly used surrogate losses, these rewards can be based on various complex, potentially non-continuous, metrics of interest. This yields more power and flexibility to encode problem-dependent knowledge. Empirical results on several benchmark datasets demonstrate enhanced performance and increased high-level reasoning about the graph topology when using a tree-based search. We further highlight the superiority of our approach under substantial occlusions by introducing a new synthetic benchmark dataset for this task.
Universal Model Routing for Efficient LLM Inference
Large language models' significant advances in capabilities are accompanied by significant increases in inference costs. Model routing is a simple technique for reducing inference cost, wherein one maintains a pool of candidate LLMs, and learns to route each prompt to the smallest feasible LLM. Existing works focus on learning a router for a fixed pool of LLMs. In this paper, we consider the problem of dynamic routing, where new, previously unobserved LLMs are available at test time. We propose a new approach to this problem that relies on representing each LLM as a feature vector, derived based on predictions on a set of representative prompts. Based on this, we detail two effective strategies, relying on cluster-based routing and a learned cluster map respectively. We prove that these strategies are estimates of a theoretically optimal routing rule, and provide an excess risk bound to quantify their errors. Experiments on a range of public benchmarks show the effectiveness of the proposed strategies in routing amongst more than 30 unseen LLMs.
RefCritic: Training Long Chain-of-Thought Critic Models with Refinement Feedback
With the rapid advancement of Large Language Models (LLMs), developing effective critic modules for precise guidance has become crucial yet challenging. In this paper, we initially demonstrate that supervised fine-tuning for building critic modules (which is widely adopted in current solutions) fails to genuinely enhance models' critique abilities, producing superficial critiques with insufficient reflections and verifications. To unlock the unprecedented critique capabilities, we propose RefCritic, a long-chain-of-thought critic module based on reinforcement learning with dual rule-based rewards: (1) instance-level correctness of solution judgments and (2) refinement accuracies of the policy model based on critiques, aiming to generate high-quality evaluations with actionable feedback that effectively guides model refinement. We evaluate RefCritic on Qwen2.5-14B-Instruct and DeepSeek-R1-Distill-Qwen-14B across five benchmarks. On critique and refinement settings, RefCritic demonstrates consistent advantages across all benchmarks, e.g., 6.8\% and 7.2\% gains on AIME25 for the respective base models. Notably, under majority voting, policy models filtered by RefCritic show superior scaling with increased voting numbers. Moreover, despite training on solution-level supervision, RefCritic outperforms step-level supervised approaches on ProcessBench, a benchmark to identify erroneous steps in mathematical reasoning.
Discrete Diffusion for Reflective Vision-Language-Action Models in Autonomous Driving
End-to-End (E2E) solutions have emerged as a mainstream approach for autonomous driving systems, with Vision-Language-Action (VLA) models representing a new paradigm that leverages pre-trained multimodal knowledge from Vision-Language Models (VLMs) to interpret and interact with complex real-world environments. However, these methods remain constrained by the limitations of imitation learning, which struggles to inherently encode physical rules during training. Existing approaches often rely on complex rule-based post-refinement, employ reinforcement learning that remains largely limited to simulation, or utilize diffusion guidance that requires computationally expensive gradient calculations. To address these challenges, we introduce ReflectDrive, a novel learning-based framework that integrates a reflection mechanism for safe trajectory generation via discrete diffusion. We first discretize the two-dimensional driving space to construct an action codebook, enabling the use of pre-trained Diffusion Language Models for planning tasks through fine-tuning. Central to our approach is a safety-aware reflection mechanism that performs iterative self-correction without gradient computation. Our method begins with goal-conditioned trajectory generation to model multi-modal driving behaviors. Based on this, we apply local search methods to identify unsafe tokens and determine feasible solutions, which then serve as safe anchors for inpainting-based regeneration. Evaluated on the NAVSIM benchmark, ReflectDrive demonstrates significant advantages in safety-critical trajectory generation, offering a scalable and reliable solution for autonomous driving systems.
Traffic Scene Generation from Natural Language Description for Autonomous Vehicles with Large Language Model
Text-to-scene generation typically limits environmental diversity by generating key scenarios along predetermined paths. To address these constraints, we propose a novel text-to-traffic scene framework that leverages a large language model (LLM) to autonomously generate diverse traffic scenarios for the CARLA simulator based on natural language descriptions. Our pipeline comprises several key stages: (1) Prompt Analysis, where natural language inputs are decomposed; (2) Road Retrieval, selecting optimal roads from a database; (3) Agent Planning, detailing agent types and behaviors; (4) Road Ranking, scoring roads to match scenario requirements; and (5) Scene Generation, rendering the planned scenarios in the simulator. This framework supports both routine and critical traffic scenarios, enhancing its applicability. We demonstrate that our approach not only diversifies agent planning and road selection but also significantly reduces the average collision rate from 8% to 3.5% in SafeBench. Additionally, our framework improves narration and reasoning for driving captioning tasks. Our contributions and resources are publicly available at https://basiclab.github.io/TTSG.
RouteFinder: Towards Foundation Models for Vehicle Routing Problems
This paper introduces RouteFinder, a comprehensive foundation model framework to tackle different Vehicle Routing Problem (VRP) variants. Our core idea is that a foundation model for VRPs should be able to represent variants by treating each as a subset of a generalized problem equipped with different attributes. We propose a unified VRP environment capable of efficiently handling any attribute combination. The RouteFinder model leverages a modern transformer-based encoder and global attribute embeddings to improve task representation. Additionally, we introduce two reinforcement learning techniques to enhance multi-task performance: mixed batch training, which enables training on different variants at once, and multi-variant reward normalization to balance different reward scales. Finally, we propose efficient adapter layers that enable fine-tuning for new variants with unseen attributes. Extensive experiments on 48 VRP variants show RouteFinder outperforms recent state-of-the-art learning methods. Code: https://github.com/ai4co/routefinder.
Data-Driven Traffic Simulation for an Intersection in a Metropolis
We present a novel data-driven simulation environment for modeling traffic in metropolitan street intersections. Using real-world tracking data collected over an extended period of time, we train trajectory forecasting models to learn agent interactions and environmental constraints that are difficult to capture conventionally. Trajectories of new agents are first coarsely generated by sampling from the spatial and temporal generative distributions, then refined using state-of-the-art trajectory forecasting models. The simulation can run either autonomously, or under explicit human control conditioned on the generative distributions. We present the experiments for a variety of model configurations. Under an iterative prediction scheme, the way-point-supervised TrajNet++ model obtained 0.36 Final Displacement Error (FDE) in 20 FPS on an NVIDIA A100 GPU.
Enhancing Recommendation Explanations through User-Centric Refinement
Generating natural language explanations for recommendations has become increasingly important in recommender systems. Traditional approaches typically treat user reviews as ground truth for explanations and focus on improving review prediction accuracy by designing various model architectures. However, due to limitations in data scale and model capability, these explanations often fail to meet key user-centric aspects such as factuality, personalization, and sentiment coherence, significantly reducing their overall helpfulness to users. In this paper, we propose a novel paradigm that refines initial explanations generated by existing explainable recommender models during the inference stage to enhance their quality in multiple aspects. Specifically, we introduce a multi-agent collaborative refinement framework based on large language models. To ensure alignment between the refinement process and user demands, we employ a plan-then-refine pattern to perform targeted modifications. To enable continuous improvements, we design a hierarchical reflection mechanism that provides feedback on the refinement process from both strategic and content perspectives. Extensive experiments on three datasets demonstrate the effectiveness of our framework.
Home Run: Finding Your Way Home by Imagining Trajectories
When studying unconstrained behaviour and allowing mice to leave their cage to navigate a complex labyrinth, the mice exhibit foraging behaviour in the labyrinth searching for rewards, returning to their home cage now and then, e.g. to drink. Surprisingly, when executing such a ``home run'', the mice do not follow the exact reverse path, in fact, the entry path and home path have very little overlap. Recent work proposed a hierarchical active inference model for navigation, where the low level model makes inferences about hidden states and poses that explain sensory inputs, whereas the high level model makes inferences about moving between locations, effectively building a map of the environment. However, using this ``map'' for planning, only allows the agent to find trajectories that it previously explored, far from the observed mice's behaviour. In this paper, we explore ways of incorporating before-unvisited paths in the planning algorithm, by using the low level generative model to imagine potential, yet undiscovered paths. We demonstrate a proof of concept in a grid-world environment, showing how an agent can accurately predict a new, shorter path in the map leading to its starting point, using a generative model learnt from pixel-based observations.
Adapting Web Agents with Synthetic Supervision
Web agents struggle to adapt to new websites due to the scarcity of environment specific tasks and demonstrations. Recent works have explored synthetic data generation to address this challenge, however, they suffer from data quality issues where synthesized tasks contain hallucinations that cannot be executed, and collected trajectories are noisy with redundant or misaligned actions. In this paper, we propose SynthAgent, a fully synthetic supervision framework that aims at improving synthetic data quality via dual refinement of both tasks and trajectories. Our approach begins by synthesizing diverse tasks through categorized exploration of web elements, ensuring efficient coverage of the target environment. During trajectory collection, we refine tasks when conflicts with actual observations are detected, mitigating hallucinations while maintaining task consistency. After collection, we conduct trajectory refinement with a global context to mitigate potential noise or misalignments. Finally, we fine-tune open-source web agents on the refined synthetic data to adapt them to the target environment. Experimental results demonstrate that SynthAgent outperforms existing synthetic data methods, validating the importance of high-quality synthetic supervision. The code will be publicly available at https://github.com/aiming-lab/SynthAgent.
SEPT: Towards Efficient Scene Representation Learning for Motion Prediction
Motion prediction is crucial for autonomous vehicles to operate safely in complex traffic environments. Extracting effective spatiotemporal relationships among traffic elements is key to accurate forecasting. Inspired by the successful practice of pretrained large language models, this paper presents SEPT, a modeling framework that leverages self-supervised learning to develop powerful spatiotemporal understanding for complex traffic scenes. Specifically, our approach involves three masking-reconstruction modeling tasks on scene inputs including agents' trajectories and road network, pretraining the scene encoder to capture kinematics within trajectory, spatial structure of road network, and interactions among roads and agents. The pretrained encoder is then finetuned on the downstream forecasting task. Extensive experiments demonstrate that SEPT, without elaborate architectural design or manual feature engineering, achieves state-of-the-art performance on the Argoverse 1 and Argoverse 2 motion forecasting benchmarks, outperforming previous methods on all main metrics by a large margin.
RAP: 3D Rasterization Augmented End-to-End Planning
Imitation learning for end-to-end driving trains policies only on expert demonstrations. Once deployed in a closed loop, such policies lack recovery data: small mistakes cannot be corrected and quickly compound into failures. A promising direction is to generate alternative viewpoints and trajectories beyond the logged path. Prior work explores photorealistic digital twins via neural rendering or game engines, but these methods are prohibitively slow and costly, and thus mainly used for evaluation. In this work, we argue that photorealism is unnecessary for training end-to-end planners. What matters is semantic fidelity and scalability: driving depends on geometry and dynamics, not textures or lighting. Motivated by this, we propose 3D Rasterization, which replaces costly rendering with lightweight rasterization of annotated primitives, enabling augmentations such as counterfactual recovery maneuvers and cross-agent view synthesis. To transfer these synthetic views effectively to real-world deployment, we introduce a Raster-to-Real feature-space alignment that bridges the sim-to-real gap. Together, these components form Rasterization Augmented Planning (RAP), a scalable data augmentation pipeline for planning. RAP achieves state-of-the-art closed-loop robustness and long-tail generalization, ranking first on four major benchmarks: NAVSIM v1/v2, Waymo Open Dataset Vision-based E2E Driving, and Bench2Drive. Our results show that lightweight rasterization with feature alignment suffices to scale E2E training, offering a practical alternative to photorealistic rendering. Project page: https://alan-lanfeng.github.io/RAP/.
Path Choice Matters for Clear Attribution in Path Methods
Rigorousness and clarity are both essential for interpretations of DNNs to engender human trust. Path methods are commonly employed to generate rigorous attributions that satisfy three axioms. However, the meaning of attributions remains ambiguous due to distinct path choices. To address the ambiguity, we introduce Concentration Principle, which centrally allocates high attributions to indispensable features, thereby endowing aesthetic and sparsity. We then present SAMP, a model-agnostic interpreter, which efficiently searches the near-optimal path from a pre-defined set of manipulation paths. Moreover, we propose the infinitesimal constraint (IC) and momentum strategy (MS) to improve the rigorousness and optimality. Visualizations show that SAMP can precisely reveal DNNs by pinpointing salient image pixels. We also perform quantitative experiments and observe that our method significantly outperforms the counterparts. Code: https://github.com/zbr17/SAMP.
FaSTA^*: Fast-Slow Toolpath Agent with Subroutine Mining for Efficient Multi-turn Image Editing
We develop a cost-efficient neurosymbolic agent to address challenging multi-turn image editing tasks such as "Detect the bench in the image while recoloring it to pink. Also, remove the cat for a clearer view and recolor the wall to yellow.'' It combines the fast, high-level subtask planning by large language models (LLMs) with the slow, accurate, tool-use, and local A^* search per subtask to find a cost-efficient toolpath -- a sequence of calls to AI tools. To save the cost of A^* on similar subtasks, we perform inductive reasoning on previously successful toolpaths via LLMs to continuously extract/refine frequently used subroutines and reuse them as new tools for future tasks in an adaptive fast-slow planning, where the higher-level subroutines are explored first, and only when they fail, the low-level A^* search is activated. The reusable symbolic subroutines considerably save exploration cost on the same types of subtasks applied to similar images, yielding a human-like fast-slow toolpath agent "FaSTA^*'': fast subtask planning followed by rule-based subroutine selection per subtask is attempted by LLMs at first, which is expected to cover most tasks, while slow A^* search is only triggered for novel and challenging subtasks. By comparing with recent image editing approaches, we demonstrate FaSTA^* is significantly more computationally efficient while remaining competitive with the state-of-the-art baseline in terms of success rate.
Star-Searcher: A Complete and Efficient Aerial System for Autonomous Target Search in Complex Unknown Environments
This paper tackles the challenge of autonomous target search using unmanned aerial vehicles (UAVs) in complex unknown environments. To fill the gap in systematic approaches for this task, we introduce Star-Searcher, an aerial system featuring specialized sensor suites, mapping, and planning modules to optimize searching. Path planning challenges due to increased inspection requirements are addressed through a hierarchical planner with a visibility-based viewpoint clustering method. This simplifies planning by breaking it into global and local sub-problems, ensuring efficient global and local path coverage in real-time. Furthermore, our global path planning employs a history-aware mechanism to reduce motion inconsistency from frequent map changes, significantly enhancing search efficiency. We conduct comparisons with state-of-the-art methods in both simulation and the real world, demonstrating shorter flight paths, reduced time, and higher target search completeness. Our approach will be open-sourced for community benefit at https://github.com/SYSU-STAR/STAR-Searcher.
DreamDrone
We introduce DreamDrone, an innovative method for generating unbounded flythrough scenes from textual prompts. Central to our method is a novel feature-correspondence-guidance diffusion process, which utilizes the strong correspondence of intermediate features in the diffusion model. Leveraging this guidance strategy, we further propose an advanced technique for editing the intermediate latent code, enabling the generation of subsequent novel views with geometric consistency. Extensive experiments reveal that DreamDrone significantly surpasses existing methods, delivering highly authentic scene generation with exceptional visual quality. This approach marks a significant step in zero-shot perpetual view generation from textual prompts, enabling the creation of diverse scenes, including natural landscapes like oases and caves, as well as complex urban settings such as Lego-style street views. Our code is publicly available.
Sparse Multilevel Roadmaps for High-Dimensional Robot Motion Planning
Sparse roadmaps are important to compactly represent state spaces, to determine problems to be infeasible and to terminate in finite time. However, sparse roadmaps do not scale well to high-dimensional planning problems. In prior work, we showed improved planning performance on high-dimensional planning problems by using multilevel abstractions to simplify state spaces. In this work, we generalize sparse roadmaps to multilevel abstractions by developing a novel algorithm, the sparse multilevel roadmap planner (SMLR). To this end, we represent multilevel abstractions using the language of fiber bundles, and generalize sparse roadmap planners by using the concept of restriction sampling with visibility regions. We argue SMLR to be probabilistically complete and asymptotically near-optimal by inheritance from sparse roadmap planners. In evaluations, we outperform sparse roadmap planners on challenging planning problems, in particular problems which are high-dimensional, contain narrow passages or are infeasible. We thereby demonstrate sparse multilevel roadmaps as an efficient tool for feasible and infeasible high-dimensional planning problems.
Iterative Prompt Refinement for Safer Text-to-Image Generation
Text-to-Image (T2I) models have made remarkable progress in generating images from text prompts, but their output quality and safety still depend heavily on how prompts are phrased. Existing safety methods typically refine prompts using large language models (LLMs), but they overlook the images produced, which can result in unsafe outputs or unnecessary changes to already safe prompts. To address this, we propose an iterative prompt refinement algorithm that uses Vision Language Models (VLMs) to analyze both the input prompts and the generated images. By leveraging visual feedback, our method refines prompts more effectively, improving safety while maintaining user intent and reliability comparable to existing LLM-based approaches. Additionally, we introduce a new dataset labeled with both textual and visual safety signals using off-the-shelf multi-modal LLM, enabling supervised fine-tuning. Experimental results demonstrate that our approach produces safer outputs without compromising alignment with user intent, offering a practical solution for generating safer T2I content. Our code is available at https://github.com/ku-dmlab/IPR. \textcolor{redWARNING: This paper contains examples of harmful or inappropriate images generated by models.
OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive Learning
Spatio-temporal predictive learning is a learning paradigm that enables models to learn spatial and temporal patterns by predicting future frames from given past frames in an unsupervised manner. Despite remarkable progress in recent years, a lack of systematic understanding persists due to the diverse settings, complex implementation, and difficult reproducibility. Without standardization, comparisons can be unfair and insights inconclusive. To address this dilemma, we propose OpenSTL, a comprehensive benchmark for spatio-temporal predictive learning that categorizes prevalent approaches into recurrent-based and recurrent-free models. OpenSTL provides a modular and extensible framework implementing various state-of-the-art methods. We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and weather forecasting. Based on our observations, we provide a detailed analysis of how model architecture and dataset properties affect spatio-temporal predictive learning performance. Surprisingly, we find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models. Thus, we further extend the common MetaFormers to boost recurrent-free spatial-temporal predictive learning. We open-source the code and models at https://github.com/chengtan9907/OpenSTL.
Hydra-NeXt: Robust Closed-Loop Driving with Open-Loop Training
End-to-end autonomous driving research currently faces a critical challenge in bridging the gap between open-loop training and closed-loop deployment. Current approaches are trained to predict trajectories in an open-loop environment, which struggle with quick reactions to other agents in closed-loop environments and risk generating kinematically infeasible plans due to the gap between open-loop training and closed-loop driving. In this paper, we introduce Hydra-NeXt, a novel multi-branch planning framework that unifies trajectory prediction, control prediction, and a trajectory refinement network in one model. Unlike current open-loop trajectory prediction models that only handle general-case planning, Hydra-NeXt further utilizes a control decoder to focus on short-term actions, which enables faster responses to dynamic situations and reactive agents. Moreover, we propose the Trajectory Refinement module to augment and refine the planning decisions by effectively adhering to kinematic constraints in closed-loop environments. This unified approach bridges the gap between open-loop training and closed-loop driving, demonstrating superior performance of 65.89 Driving Score (DS) and 48.20% Success Rate (SR) on the Bench2Drive dataset without relying on external experts for data collection. Hydra-NeXt surpasses the previous state-of-the-art by 22.98 DS and 17.49 SR, marking a significant advancement in autonomous driving. Code will be available at https://github.com/woxihuanjiangguo/Hydra-NeXt.
An Image-Based Path Planning Algorithm Using a UAV Equipped with Stereo Vision
This paper presents a novel image-based path planning algorithm that was developed using computer vision techniques, as well as its comparative analysis with well-known deterministic and probabilistic algorithms, namely A* and Probabilistic Road Map algorithm (PRM). The terrain depth has a significant impact on the calculated path safety. The craters and hills on the surface cannot be distinguished in a two-dimensional image. The proposed method uses a disparity map of the terrain that is generated by using a UAV. Several computer vision techniques, including edge, line and corner detection methods, as well as the stereo depth reconstruction technique, are applied to the captured images and the found disparity map is used to define candidate way-points of the trajectory. The initial and desired points are detected automatically using ArUco marker pose estimation and circle detection techniques. After presenting the mathematical model and vision techniques, the developed algorithm is compared with well-known algorithms on different virtual scenes created in the V-REP simulation program and a physical setup created in a laboratory environment. Results are promising and demonstrate effectiveness of the proposed algorithm.
Fine-Grained Alignment and Noise Refinement for Compositional Text-to-Image Generation
Text-to-image generative models have made significant advancements in recent years; however, accurately capturing intricate details in textual prompts, such as entity missing, attribute binding errors, and incorrect relationships remains a formidable challenge. In response, we present an innovative, training-free method that directly addresses these challenges by incorporating tailored objectives to account for textual constraints. Unlike layout-based approaches that enforce rigid structures and limit diversity, our proposed approach offers a more flexible arrangement of the scene by imposing just the extracted constraints from the text, without any unnecessary additions. These constraints are formulated as losses-entity missing, entity mixing, attribute binding, and spatial relationships, integrated into a unified loss that is applied in the first generation stage. Furthermore, we introduce a feedback-driven system for fine-grained initial noise refinement. This system integrates a verifier that evaluates the generated image, identifies inconsistencies, and provides corrective feedback. Leveraging this feedback, our refinement method first targets the unmet constraints by refining the faulty attention maps caused by initial noise, through the optimization of selective losses associated with these constraints. Subsequently, our unified loss function is reapplied to proceed the second generation phase. Experimental results demonstrate that our method, relying solely on our proposed objective functions, significantly enhances compositionality, achieving a 24% improvement in human evaluation and a 25% gain in spatial relationships. Furthermore, our fine-grained noise refinement proves effective, boosting performance by up to 5%. Code is available at https://github.com/hadi-hosseini/noise-refinement.
IRef-VLA: A Benchmark for Interactive Referential Grounding with Imperfect Language in 3D Scenes
With the recent rise of large language models, vision-language models, and other general foundation models, there is growing potential for multimodal, multi-task robotics that can operate in diverse environments given natural language input. One such application is indoor navigation using natural language instructions. However, despite recent progress, this problem remains challenging due to the 3D spatial reasoning and semantic understanding required. Additionally, the language used may be imperfect or misaligned with the scene, further complicating the task. To address this challenge, we curate a benchmark dataset, IRef-VLA, for Interactive Referential Vision and Language-guided Action in 3D Scenes with imperfect references. IRef-VLA is the largest real-world dataset for the referential grounding task, consisting of over 11.5K scanned 3D rooms from existing datasets, 7.6M heuristically generated semantic relations, and 4.7M referential statements. Our dataset also contains semantic object and room annotations, scene graphs, navigable free space annotations, and is augmented with statements where the language has imperfections or ambiguities. We verify the generalizability of our dataset by evaluating with state-of-the-art models to obtain a performance baseline and also develop a graph-search baseline to demonstrate the performance bound and generation of alternatives using scene-graph knowledge. With this benchmark, we aim to provide a resource for 3D scene understanding that aids the development of robust, interactive navigation systems. The dataset and all source code is publicly released at https://github.com/HaochenZ11/IRef-VLA.
ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaptation
Forecasting future trajectories of agents in complex traffic scenes requires reliable and efficient predictions for all agents in the scene. However, existing methods for trajectory prediction are either inefficient or sacrifice accuracy. To address this challenge, we propose ADAPT, a novel approach for jointly predicting the trajectories of all agents in the scene with dynamic weight learning. Our approach outperforms state-of-the-art methods in both single-agent and multi-agent settings on the Argoverse and Interaction datasets, with a fraction of their computational overhead. We attribute the improvement in our performance: first, to the adaptive head augmenting the model capacity without increasing the model size; second, to our design choices in the endpoint-conditioned prediction, reinforced by gradient stopping. Our analyses show that ADAPT can focus on each agent with adaptive prediction, allowing for accurate predictions efficiently. https://KUIS-AI.github.io/adapt
Towards Robust and Adaptive Motion Forecasting: A Causal Representation Perspective
Learning behavioral patterns from observational data has been a de-facto approach to motion forecasting. Yet, the current paradigm suffers from two shortcomings: brittle under distribution shifts and inefficient for knowledge transfer. In this work, we propose to address these challenges from a causal representation perspective. We first introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables, namely invariant variables, style confounders, and spurious features. We then introduce a learning framework that treats each group separately: (i) unlike the common practice mixing datasets collected from different locations, we exploit their subtle distinctions by means of an invariance loss encouraging the model to suppress spurious correlations; (ii) we devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a sparse causal graph; (iii) we introduce a style contrastive loss that not only enforces the structure of style representations but also serves as a self-supervisory signal for test-time refinement on the fly. Experiments on synthetic and real datasets show that our proposed method improves the robustness and reusability of learned motion representations, significantly outperforming prior state-of-the-art motion forecasting models for out-of-distribution generalization and low-shot transfer.
Navigation-Oriented Scene Understanding for Robotic Autonomy: Learning to Segment Driveability in Egocentric Images
This work tackles scene understanding for outdoor robotic navigation, solely relying on images captured by an on-board camera. Conventional visual scene understanding interprets the environment based on specific descriptive categories. However, such a representation is not directly interpretable for decision-making and constrains robot operation to a specific domain. Thus, we propose to segment egocentric images directly in terms of how a robot can navigate in them, and tailor the learning problem to an autonomous navigation task. Building around an image segmentation network, we present a generic affordance consisting of 3 driveability levels which can broadly apply to both urban and off-road scenes. By encoding these levels with soft ordinal labels, we incorporate inter-class distances during learning which improves segmentation compared to standard "hard" one-hot labelling. In addition, we propose a navigation-oriented pixel-wise loss weighting method which assigns higher importance to safety-critical areas. We evaluate our approach on large-scale public image segmentation datasets ranging from sunny city streets to snowy forest trails. In a cross-dataset generalization experiment, we show that our affordance learning scheme can be applied across a diverse mix of datasets and improves driveability estimation in unseen environments compared to general-purpose, single-dataset segmentation.
Hybrid Imitative Planning with Geometric and Predictive Costs in Off-road Environments
Geometric methods for solving open-world off-road navigation tasks, by learning occupancy and metric maps, provide good generalization but can be brittle in outdoor environments that violate their assumptions (e.g., tall grass). Learning-based methods can directly learn collision-free behavior from raw observations, but are difficult to integrate with standard geometry-based pipelines. This creates an unfortunate conflict -- either use learning and lose out on well-understood geometric navigational components, or do not use it, in favor of extensively hand-tuned geometry-based cost maps. In this work, we reject this dichotomy by designing the learning and non-learning-based components in a way such that they can be effectively combined in a self-supervised manner. Both components contribute to a planning criterion: the learned component contributes predicted traversability as rewards, while the geometric component contributes obstacle cost information. We instantiate and comparatively evaluate our system in both in-distribution and out-of-distribution environments, showing that this approach inherits complementary gains from the learned and geometric components and significantly outperforms either of them. Videos of our results are hosted at https://sites.google.com/view/hybrid-imitative-planning
MAPF-GPT: Imitation Learning for Multi-Agent Pathfinding at Scale
Multi-agent pathfinding (MAPF) is a challenging computational problem that typically requires to find collision-free paths for multiple agents in a shared environment. Solving MAPF optimally is NP-hard, yet efficient solutions are critical for numerous applications, including automated warehouses and transportation systems. Recently, learning-based approaches to MAPF have gained attention, particularly those leveraging deep reinforcement learning. Following current trends in machine learning, we have created a foundation model for the MAPF problems called MAPF-GPT. Using imitation learning, we have trained a policy on a set of pre-collected sub-optimal expert trajectories that can generate actions in conditions of partial observability without additional heuristics, reward functions, or communication with other agents. The resulting MAPF-GPT model demonstrates zero-shot learning abilities when solving the MAPF problem instances that were not present in the training dataset. We show that MAPF-GPT notably outperforms the current best-performing learnable-MAPF solvers on a diverse range of problem instances and is efficient in terms of computation (in the inference mode).
What Happens Next? Anticipating Future Motion by Generating Point Trajectories
We consider the problem of forecasting motion from a single image, i.e., predicting how objects in the world are likely to move, without the ability to observe other parameters such as the object velocities or the forces applied to them. We formulate this task as conditional generation of dense trajectory grids with a model that closely follows the architecture of modern video generators but outputs motion trajectories instead of pixels. This approach captures scene-wide dynamics and uncertainty, yielding more accurate and diverse predictions than prior regressors and generators. We extensively evaluate our method on simulated data, demonstrate its effectiveness on downstream applications such as robotics, and show promising accuracy on real-world intuitive physics datasets. Although recent state-of-the-art video generators are often regarded as world models, we show that they struggle with forecasting motion from a single image, even in simple physical scenarios such as falling blocks or mechanical object interactions, despite fine-tuning on such data. We show that this limitation arises from the overhead of generating pixels rather than directly modeling motion.
TOMD: A Trail-based Off-road Multimodal Dataset for Traversable Pathway Segmentation under Challenging Illumination Conditions
Detecting traversable pathways in unstructured outdoor environments remains a significant challenge for autonomous robots, especially in critical applications such as wide-area search and rescue, as well as incident management scenarios like forest fires. Existing datasets and models primarily target urban settings or wide, vehicle-traversable off-road tracks, leaving a substantial gap in addressing the complexity of narrow, trail-like off-road scenarios. To address this, we introduce the Trail-based Off-road Multimodal Dataset (TOMD), a comprehensive dataset specifically designed for such environments. TOMD features high-fidelity multimodal sensor data -- including 128-channel LiDAR, stereo imagery, GNSS, IMU, and illumination measurements -- collected through repeated traversals under diverse conditions. We also propose a dynamic multiscale data fusion model for accurate traversable pathway prediction. The study analyzes the performance of early, cross, and mixed fusion strategies under varying illumination levels. Results demonstrate the effectiveness of our approach and the relevance of illumination in segmentation performance. We publicly release TOMD at https://github.com/yyyxs1125/TMOD to support future research in trail-based off-road navigation.
LLM Blueprint: Enabling Text-to-Image Generation with Complex and Detailed Prompts
Diffusion-based generative models have significantly advanced text-to-image generation but encounter challenges when processing lengthy and intricate text prompts describing complex scenes with multiple objects. While excelling in generating images from short, single-object descriptions, these models often struggle to faithfully capture all the nuanced details within longer and more elaborate textual inputs. In response, we present a novel approach leveraging Large Language Models (LLMs) to extract critical components from text prompts, including bounding box coordinates for foreground objects, detailed textual descriptions for individual objects, and a succinct background context. These components form the foundation of our layout-to-image generation model, which operates in two phases. The initial Global Scene Generation utilizes object layouts and background context to create an initial scene but often falls short in faithfully representing object characteristics as specified in the prompts. To address this limitation, we introduce an Iterative Refinement Scheme that iteratively evaluates and refines box-level content to align them with their textual descriptions, recomposing objects as needed to ensure consistency. Our evaluation on complex prompts featuring multiple objects demonstrates a substantial improvement in recall compared to baseline diffusion models. This is further validated by a user study, underscoring the efficacy of our approach in generating coherent and detailed scenes from intricate textual inputs.
Decoupled Diffusion Sparks Adaptive Scene Generation
Controllable scene generation could reduce the cost of diverse data collection substantially for autonomous driving. Prior works formulate the traffic layout generation as predictive progress, either by denoising entire sequences at once or by iteratively predicting the next frame. However, full sequence denoising hinders online reaction, while the latter's short-sighted next-frame prediction lacks precise goal-state guidance. Further, the learned model struggles to generate complex or challenging scenarios due to a large number of safe and ordinal driving behaviors from open datasets. To overcome these, we introduce Nexus, a decoupled scene generation framework that improves reactivity and goal conditioning by simulating both ordinal and challenging scenarios from fine-grained tokens with independent noise states. At the core of the decoupled pipeline is the integration of a partial noise-masking training strategy and a noise-aware schedule that ensures timely environmental updates throughout the denoising process. To complement challenging scenario generation, we collect a dataset consisting of complex corner cases. It covers 540 hours of simulated data, including high-risk interactions such as cut-in, sudden braking, and collision. Nexus achieves superior generation realism while preserving reactivity and goal orientation, with a 40% reduction in displacement error. We further demonstrate that Nexus improves closed-loop planning by 20% through data augmentation and showcase its capability in safety-critical data generation.
HPNet: Dynamic Trajectory Forecasting with Historical Prediction Attention
Predicting the trajectories of road agents is essential for autonomous driving systems. The recent mainstream methods follow a static paradigm, which predicts the future trajectory by using a fixed duration of historical frames. These methods make the predictions independently even at adjacent time steps, which leads to potential instability and temporal inconsistency. As successive time steps have largely overlapping historical frames, their forecasting should have intrinsic correlation, such as overlapping predicted trajectories should be consistent, or be different but share the same motion goal depending on the road situation. Motivated by this, in this work, we introduce HPNet, a novel dynamic trajectory forecasting method. Aiming for stable and accurate trajectory forecasting, our method leverages not only historical frames including maps and agent states, but also historical predictions. Specifically, we newly design a Historical Prediction Attention module to automatically encode the dynamic relationship between successive predictions. Besides, it also extends the attention range beyond the currently visible window benefitting from the use of historical predictions. The proposed Historical Prediction Attention together with the Agent Attention and Mode Attention is further formulated as the Triple Factorized Attention module, serving as the core design of HPNet.Experiments on the Argoverse and INTERACTION datasets show that HPNet achieves state-of-the-art performance, and generates accurate and stable future trajectories. Our code are available at https://github.com/XiaolongTang23/HPNet.
NavForesee: A Unified Vision-Language World Model for Hierarchical Planning and Dual-Horizon Navigation Prediction
Embodied navigation for long-horizon tasks, guided by complex natural language instructions, remains a formidable challenge in artificial intelligence. Existing agents often struggle with robust long-term planning about unseen environments, leading to high failure rates. To address these limitations, we introduce NavForesee, a novel Vision-Language Model (VLM) that unifies high-level language planning and predictive world model imagination within a single, unified framework. Our approach empowers a single VLM to concurrently perform planning and predictive foresight. Conditioned on the full instruction and historical observations, the model is trained to understand the navigation instructions by decomposing the task, tracking its progress, and formulating the subsequent sub-goal. Simultaneously, it functions as a generative world model, providing crucial foresight by predicting short-term environmental dynamics and long-term navigation milestones. The VLM's structured plan guides its targeted prediction, while the imagined future provides rich context to inform the navigation actions, creating a powerful internal feedback loop of perception-planning/prediction-action. We demonstrate through extensive experiments on the R2R-CE and RxR-CE benchmark that NavForesee achieves highly competitive performance in complex scenarios. Our work highlights the immense potential of fusing explicit language planning with implicit spatiotemporal prediction, paving the way for more intelligent and capable embodied agents.
Fast and Unified Path Gradient Estimators for Normalizing Flows
Recent work shows that path gradient estimators for normalizing flows have lower variance compared to standard estimators for variational inference, resulting in improved training. However, they are often prohibitively more expensive from a computational point of view and cannot be applied to maximum likelihood training in a scalable manner, which severely hinders their widespread adoption. In this work, we overcome these crucial limitations. Specifically, we propose a fast path gradient estimator which improves computational efficiency significantly and works for all normalizing flow architectures of practical relevance. We then show that this estimator can also be applied to maximum likelihood training for which it has a regularizing effect as it can take the form of a given target energy function into account. We empirically establish its superior performance and reduced variance for several natural sciences applications.
IGL-Nav: Incremental 3D Gaussian Localization for Image-goal Navigation
Visual navigation with an image as goal is a fundamental and challenging problem. Conventional methods either rely on end-to-end RL learning or modular-based policy with topological graph or BEV map as memory, which cannot fully model the geometric relationship between the explored 3D environment and the goal image. In order to efficiently and accurately localize the goal image in 3D space, we build our navigation system upon the renderable 3D gaussian (3DGS) representation. However, due to the computational intensity of 3DGS optimization and the large search space of 6-DoF camera pose, directly leveraging 3DGS for image localization during agent exploration process is prohibitively inefficient. To this end, we propose IGL-Nav, an Incremental 3D Gaussian Localization framework for efficient and 3D-aware image-goal navigation. Specifically, we incrementally update the scene representation as new images arrive with feed-forward monocular prediction. Then we coarsely localize the goal by leveraging the geometric information for discrete space matching, which can be equivalent to efficient 3D convolution. When the agent is close to the goal, we finally solve the fine target pose with optimization via differentiable rendering. The proposed IGL-Nav outperforms existing state-of-the-art methods by a large margin across diverse experimental configurations. It can also handle the more challenging free-view image-goal setting and be deployed on real-world robotic platform using a cellphone to capture goal image at arbitrary pose. Project page: https://gwxuan.github.io/IGL-Nav/.
A Landmark-Aware Visual Navigation Dataset
Map representation learned by expert demonstrations has shown promising research value. However, recent advancements in the visual navigation field face challenges due to the lack of human datasets in the real world for efficient supervised representation learning of the environments. We present a Landmark-Aware Visual Navigation (LAVN) dataset to allow for supervised learning of human-centric exploration policies and map building. We collect RGB observation and human point-click pairs as a human annotator explores virtual and real-world environments with the goal of full coverage exploration of the space. The human annotators also provide distinct landmark examples along each trajectory, which we intuit will simplify the task of map or graph building and localization. These human point-clicks serve as direct supervision for waypoint prediction when learning to explore in environments. Our dataset covers a wide spectrum of scenes, including rooms in indoor environments, as well as walkways outdoors. Dataset is available at DOI: 10.5281/zenodo.10608067.
Chasing Ghosts: Instruction Following as Bayesian State Tracking
A visually-grounded navigation instruction can be interpreted as a sequence of expected observations and actions an agent following the correct trajectory would encounter and perform. Based on this intuition, we formulate the problem of finding the goal location in Vision-and-Language Navigation (VLN) within the framework of Bayesian state tracking - learning observation and motion models conditioned on these expectable events. Together with a mapper that constructs a semantic spatial map on-the-fly during navigation, we formulate an end-to-end differentiable Bayes filter and train it to identify the goal by predicting the most likely trajectory through the map according to the instructions. The resulting navigation policy constitutes a new approach to instruction following that explicitly models a probability distribution over states, encoding strong geometric and algorithmic priors while enabling greater explainability. Our experiments show that our approach outperforms a strong LingUNet baseline when predicting the goal location on the map. On the full VLN task, i.e. navigating to the goal location, our approach achieves promising results with less reliance on navigation constraints.
Navigation World Models
Navigation is a fundamental skill of agents with visual-motor capabilities. We introduce a Navigation World Model (NWM), a controllable video generation model that predicts future visual observations based on past observations and navigation actions. To capture complex environment dynamics, NWM employs a Conditional Diffusion Transformer (CDiT), trained on a diverse collection of egocentric videos of both human and robotic agents, and scaled up to 1 billion parameters. In familiar environments, NWM can plan navigation trajectories by simulating them and evaluating whether they achieve the desired goal. Unlike supervised navigation policies with fixed behavior, NWM can dynamically incorporate constraints during planning. Experiments demonstrate its effectiveness in planning trajectories from scratch or by ranking trajectories sampled from an external policy. Furthermore, NWM leverages its learned visual priors to imagine trajectories in unfamiliar environments from a single input image, making it a flexible and powerful tool for next-generation navigation systems.
PlanAgent: A Multi-modal Large Language Agent for Closed-loop Vehicle Motion Planning
Vehicle motion planning is an essential component of autonomous driving technology. Current rule-based vehicle motion planning methods perform satisfactorily in common scenarios but struggle to generalize to long-tailed situations. Meanwhile, learning-based methods have yet to achieve superior performance over rule-based approaches in large-scale closed-loop scenarios. To address these issues, we propose PlanAgent, the first mid-to-mid planning system based on a Multi-modal Large Language Model (MLLM). MLLM is used as a cognitive agent to introduce human-like knowledge, interpretability, and common-sense reasoning into the closed-loop planning. Specifically, PlanAgent leverages the power of MLLM through three core modules. First, an Environment Transformation module constructs a Bird's Eye View (BEV) map and a lane-graph-based textual description from the environment as inputs. Second, a Reasoning Engine module introduces a hierarchical chain-of-thought from scene understanding to lateral and longitudinal motion instructions, culminating in planner code generation. Last, a Reflection module is integrated to simulate and evaluate the generated planner for reducing MLLM's uncertainty. PlanAgent is endowed with the common-sense reasoning and generalization capability of MLLM, which empowers it to effectively tackle both common and complex long-tailed scenarios. Our proposed PlanAgent is evaluated on the large-scale and challenging nuPlan benchmarks. A comprehensive set of experiments convincingly demonstrates that PlanAgent outperforms the existing state-of-the-art in the closed-loop motion planning task. Codes will be soon released.
NaviTrace: Evaluating Embodied Navigation of Vision-Language Models
Vision-language models demonstrate unprecedented performance and generalization across a wide range of tasks and scenarios. Integrating these foundation models into robotic navigation systems opens pathways toward building general-purpose robots. Yet, evaluating these models' navigation capabilities remains constrained by costly real-world trials, overly simplified simulations, and limited benchmarks. We introduce NaviTrace, a high-quality Visual Question Answering benchmark where a model receives an instruction and embodiment type (human, legged robot, wheeled robot, bicycle) and must output a 2D navigation trace in image space. Across 1000 scenarios and more than 3000 expert traces, we systematically evaluate eight state-of-the-art VLMs using a newly introduced semantic-aware trace score. This metric combines Dynamic Time Warping distance, goal endpoint error, and embodiment-conditioned penalties derived from per-pixel semantics and correlates with human preferences. Our evaluation reveals consistent gap to human performance caused by poor spatial grounding and goal localization. NaviTrace establishes a scalable and reproducible benchmark for real-world robotic navigation. The benchmark and leaderboard can be found at https://leggedrobotics.github.io/navitrace_webpage/.
Can LLMs Generate Human-Like Wayfinding Instructions? Towards Platform-Agnostic Embodied Instruction Synthesis
We present a novel approach to automatically synthesize "wayfinding instructions" for an embodied robot agent. In contrast to prior approaches that are heavily reliant on human-annotated datasets designed exclusively for specific simulation platforms, our algorithm uses in-context learning to condition an LLM to generate instructions using just a few references. Using an LLM-based Visual Question Answering strategy, we gather detailed information about the environment which is used by the LLM for instruction synthesis. We implement our approach on multiple simulation platforms including Matterport3D, AI Habitat and ThreeDWorld, thereby demonstrating its platform-agnostic nature. We subjectively evaluate our approach via a user study and observe that 83.3% of users find the synthesized instructions accurately capture the details of the environment and show characteristics similar to those of human-generated instructions. Further, we conduct zero-shot navigation with multiple approaches on the REVERIE dataset using the generated instructions, and observe very close correlation with the baseline on standard success metrics (< 1% change in SR), quantifying the viability of generated instructions in replacing human-annotated data. We finally discuss the applicability of our approach in enabling a generalizable evaluation of embodied navigation policies. To the best of our knowledge, ours is the first LLM-driven approach capable of generating "human-like" instructions in a platform-agnostic manner, without training.
Lookahead Routing for Large Language Models
Large language model (LLM) routers improve the efficiency of multi-model systems by directing each query to the most appropriate model while leveraging the diverse strengths of heterogeneous LLMs. Most existing approaches frame routing as a classification problem based solely on the input query. While this reduces overhead by avoiding inference across all models, it overlooks valuable information that could be gleaned from potential outputs and fails to capture implicit intent or contextual nuances that often emerge only during response generation. These limitations can result in suboptimal routing decisions, particularly for complex or ambiguous queries that require deeper semantic understanding. To address this challenge, we propose Lookahead, a routing framework that "foresees" potential model outputs by predicting their latent representations and uses these predictions to guide model selection, thus enabling more informed routing without full inference. Within this framework, we implement two approaches based on causal and masked language models. Empirical evaluations across seven public benchmarks - spanning instruction following, mathematical reasoning, and code generation - show that Lookahead consistently outperforms existing routing baselines, achieving an average performance gain of 7.7% over the state-of-the-art. Our code is available at https://github.com/huangcb01/lookahead-routing.
Segment Anything Model for Road Network Graph Extraction
We propose SAM-Road, an adaptation of the Segment Anything Model (SAM) for extracting large-scale, vectorized road network graphs from satellite imagery. To predict graph geometry, we formulate it as a dense semantic segmentation task, leveraging the inherent strengths of SAM. The image encoder of SAM is fine-tuned to produce probability masks for roads and intersections, from which the graph vertices are extracted via simple non-maximum suppression. To predict graph topology, we designed a lightweight transformer-based graph neural network, which leverages the SAM image embeddings to estimate the edge existence probabilities between vertices. Our approach directly predicts the graph vertices and edges for large regions without expensive and complex post-processing heuristics, and is capable of building complete road network graphs spanning multiple square kilometers in a matter of seconds. With its simple, straightforward, and minimalist design, SAM-Road achieves comparable accuracy with the state-of-the-art method RNGDet++, while being 40 times faster on the City-scale dataset. We thus demonstrate the power of a foundational vision model when applied to a graph learning task. The code is available at https://github.com/htcr/sam_road.
DreamPolisher: Towards High-Quality Text-to-3D Generation via Geometric Diffusion
We present DreamPolisher, a novel Gaussian Splatting based method with geometric guidance, tailored to learn cross-view consistency and intricate detail from textual descriptions. While recent progress on text-to-3D generation methods have been promising, prevailing methods often fail to ensure view-consistency and textural richness. This problem becomes particularly noticeable for methods that work with text input alone. To address this, we propose a two-stage Gaussian Splatting based approach that enforces geometric consistency among views. Initially, a coarse 3D generation undergoes refinement via geometric optimization. Subsequently, we use a ControlNet driven refiner coupled with the geometric consistency term to improve both texture fidelity and overall consistency of the generated 3D asset. Empirical evaluations across diverse textual prompts spanning various object categories demonstrate the efficacy of DreamPolisher in generating consistent and realistic 3D objects, aligning closely with the semantics of the textual instructions.
Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks
The rapid development of AI systems has been greatly influenced by the emergence of foundation models. A common approach for targeted problems involves fine-tuning these pre-trained foundation models for specific target tasks, resulting in a rapid spread of models fine-tuned across a diverse array of tasks. This work focuses on the problem of merging multiple fine-tunings of the same foundation model derived from a spectrum of auxiliary tasks. We introduce a new simple method, Model Breadcrumbs, which consists of a sparsely defined set of weights that carve out a trajectory within the weight space of a pre-trained model, enhancing task performance when traversed. These breadcrumbs are constructed by subtracting the weights from a pre-trained model before and after fine-tuning, followed by a sparsification process that eliminates weight outliers and negligible perturbations. Our experiments demonstrate the effectiveness of Model Breadcrumbs to simultaneously improve performance across multiple tasks. This contribution aligns with the evolving paradigm of updatable machine learning, reminiscent of the collaborative principles underlying open-source software development, fostering a community-driven effort to reliably update machine learning models. Our method is shown to be more efficient and unlike previous proposals does not require hyperparameter tuning for each new task added. Through extensive experimentation involving various models, tasks, and modalities we establish that integrating Model Breadcrumbs offers a simple, efficient, and highly effective approach for constructing multi-task models and facilitating updates to foundation models.
GUI-ReWalk: Massive Data Generation for GUI Agent via Stochastic Exploration and Intent-Aware Reasoning
Graphical User Interface (GUI) Agents, powered by large language and vision-language models, hold promise for enabling end-to-end automation in digital environments. However, their progress is fundamentally constrained by the scarcity of scalable, high-quality trajectory data. Existing data collection strategies either rely on costly and inconsistent manual annotations or on synthetic generation methods that trade off between diversity and meaningful task coverage. To bridge this gap, we present GUI-ReWalk: a reasoning-enhanced, multi-stage framework for synthesizing realistic and diverse GUI trajectories. GUI-ReWalk begins with a stochastic exploration phase that emulates human trial-and-error behaviors, and progressively transitions into a reasoning-guided phase where inferred goals drive coherent and purposeful interactions. Moreover, it supports multi-stride task generation, enabling the construction of long-horizon workflows across multiple applications. By combining randomness for diversity with goal-aware reasoning for structure, GUI-ReWalk produces data that better reflects the intent-aware, adaptive nature of human-computer interaction. We further train Qwen2.5-VL-7B on the GUI-ReWalk dataset and evaluate it across multiple benchmarks, including Screenspot-Pro, OSWorld-G, UI-Vision, AndroidControl, and GUI-Odyssey. Results demonstrate that GUI-ReWalk enables superior coverage of diverse interaction flows, higher trajectory entropy, and more realistic user intent. These findings establish GUI-ReWalk as a scalable and data-efficient framework for advancing GUI agent research and enabling robust real-world automation.
LineRetriever: Planning-Aware Observation Reduction for Web Agents
While large language models have demonstrated impressive capabilities in web navigation tasks, the extensive context of web pages, often represented as DOM or Accessibility Tree (AxTree) structures, frequently exceeds model context limits. Current approaches like bottom-up truncation or embedding-based retrieval lose critical information about page state and action history. This is particularly problematic for adaptive planning in web agents, where understanding the current state is essential for determining future actions. We hypothesize that embedding models lack sufficient capacity to capture plan-relevant information, especially when retrieving content that supports future action prediction. This raises a fundamental question: how can retrieval methods be optimized for adaptive planning in web navigation tasks? In response, we introduce LineRetriever, a novel approach that leverages a language model to identify and retrieve observation lines most relevant to future navigation steps. Unlike traditional retrieval methods that focus solely on semantic similarity, LineRetriever explicitly considers the planning horizon, prioritizing elements that contribute to action prediction. Our experiments demonstrate that LineRetriever can reduce the size of the observation at each step for the web agent while maintaining consistent performance within the context limitations.
SingularTrajectory: Universal Trajectory Predictor Using Diffusion Model
There are five types of trajectory prediction tasks: deterministic, stochastic, domain adaptation, momentary observation, and few-shot. These associated tasks are defined by various factors, such as the length of input paths, data split and pre-processing methods. Interestingly, even though they commonly take sequential coordinates of observations as input and infer future paths in the same coordinates as output, designing specialized architectures for each task is still necessary. For the other task, generality issues can lead to sub-optimal performances. In this paper, we propose SingularTrajectory, a diffusion-based universal trajectory prediction framework to reduce the performance gap across the five tasks. The core of SingularTrajectory is to unify a variety of human dynamics representations on the associated tasks. To do this, we first build a Singular space to project all types of motion patterns from each task into one embedding space. We next propose an adaptive anchor working in the Singular space. Unlike traditional fixed anchor methods that sometimes yield unacceptable paths, our adaptive anchor enables correct anchors, which are put into a wrong location, based on a traversability map. Finally, we adopt a diffusion-based predictor to further enhance the prototype paths using a cascaded denoising process. Our unified framework ensures the generality across various benchmark settings such as input modality, and trajectory lengths. Extensive experiments on five public benchmarks demonstrate that SingularTrajectory substantially outperforms existing models, highlighting its effectiveness in estimating general dynamics of human movements. Code is publicly available at https://github.com/inhwanbae/SingularTrajectory .
Bridging Past and Future: End-to-End Autonomous Driving with Historical Prediction and Planning
End-to-end autonomous driving unifies tasks in a differentiable framework, enabling planning-oriented optimization and attracting growing attention. Current methods aggregate historical information either through dense historical bird's-eye-view (BEV) features or by querying a sparse memory bank, following paradigms inherited from detection. However, we argue that these paradigms either omit historical information in motion planning or fail to align with its multi-step nature, which requires predicting or planning multiple future time steps. In line with the philosophy of future is a continuation of past, we propose BridgeAD, which reformulates motion and planning queries as multi-step queries to differentiate the queries for each future time step. This design enables the effective use of historical prediction and planning by applying them to the appropriate parts of the end-to-end system based on the time steps, which improves both perception and motion planning. Specifically, historical queries for the current frame are combined with perception, while queries for future frames are integrated with motion planning. In this way, we bridge the gap between past and future by aggregating historical insights at every time step, enhancing the overall coherence and accuracy of the end-to-end autonomous driving pipeline. Extensive experiments on the nuScenes dataset in both open-loop and closed-loop settings demonstrate that BridgeAD achieves state-of-the-art performance.
Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling
In the endeavor to make autonomous robots take actions, task planning is a major challenge that requires translating high-level task descriptions into long-horizon action sequences. Despite recent advances in language model agents, they remain prone to planning errors and limited in their ability to plan ahead. To address these limitations in robotic planning, we advocate a self-refining scheme that iteratively refines a draft plan until an equilibrium is reached. Remarkably, this process can be optimized end-to-end from an analytical perspective without the need to curate additional verifiers or reward models, allowing us to train self-refining planners in a simple supervised learning fashion. Meanwhile, a nested equilibrium sequence modeling procedure is devised for efficient closed-loop planning that incorporates useful feedback from the environment (or an internal world model). Our method is evaluated on the VirtualHome-Env benchmark, showing advanced performance with better scaling for inference computation. Code is available at https://github.com/Singularity0104/equilibrium-planner.
Auto-Evolve: Enhancing Large Language Model's Performance via Self-Reasoning Framework
Recent advancements in prompt engineering strategies, such as Chain-of-Thought (CoT) and Self-Discover, have demonstrated significant potential in improving the reasoning abilities of Large Language Models (LLMs). However, these state-of-the-art (SOTA) prompting strategies rely on single or fixed set of static seed reasoning modules like "think step by step" or "break down this problem" intended to simulate human approach to problem-solving. This constraint limits the flexibility of models in tackling diverse problems effectively. In this paper, we introduce Auto-Evolve, a novel framework that enables LLMs to self-create dynamic reasoning modules and downstream action plan, resulting in significant improvements over current SOTA methods. We evaluate Auto-Evolve on the challenging BigBench-Hard (BBH) dataset with Claude 2.0, Claude 3 Sonnet, Mistral Large, and GPT 4, where it consistently outperforms the SOTA prompt strategies. Auto-Evolve outperforms CoT by up to 10.4% and on an average by 7% across these four models. Our framework introduces two innovations: a) Auto-Evolve dynamically generates reasoning modules for each task while aligning with human reasoning paradigm, thus eliminating the need for predefined templates. b) We introduce an iterative refinement component, that incrementally refines instruction guidance for LLMs and helps boost performance by average 2.8% compared to doing it in a single step.
Continuous 3D Perception Model with Persistent State
We present a unified framework capable of solving a broad range of 3D tasks. Our approach features a stateful recurrent model that continuously updates its state representation with each new observation. Given a stream of images, this evolving state can be used to generate metric-scale pointmaps (per-pixel 3D points) for each new input in an online fashion. These pointmaps reside within a common coordinate system, and can be accumulated into a coherent, dense scene reconstruction that updates as new images arrive. Our model, called CUT3R (Continuous Updating Transformer for 3D Reconstruction), captures rich priors of real-world scenes: not only can it predict accurate pointmaps from image observations, but it can also infer unseen regions of the scene by probing at virtual, unobserved views. Our method is simple yet highly flexible, naturally accepting varying lengths of images that may be either video streams or unordered photo collections, containing both static and dynamic content. We evaluate our method on various 3D/4D tasks and demonstrate competitive or state-of-the-art performance in each. Project Page: https://cut3r.github.io/
ResPlan: A Large-Scale Vector-Graph Dataset of 17,000 Residential Floor Plans
We introduce ResPlan, a large-scale dataset of 17,000 detailed, structurally rich, and realistic residential floor plans, created to advance spatial AI research. Each plan includes precise annotations of architectural elements (walls, doors, windows, balconies) and functional spaces (such as kitchens, bedrooms, and bathrooms). ResPlan addresses key limitations of existing datasets such as RPLAN (Wu et al., 2019) and MSD (van Engelenburg et al., 2024) by offering enhanced visual fidelity and greater structural diversity, reflecting realistic and non-idealized residential layouts. Designed as a versatile, general-purpose resource, ResPlan supports a wide range of applications including robotics, reinforcement learning, generative AI, virtual and augmented reality, simulations, and game development. Plans are provided in both geometric and graph-based formats, enabling direct integration into simulation engines and fast 3D conversion. A key contribution is an open-source pipeline for geometry cleaning, alignment, and annotation refinement. Additionally, ResPlan includes structured representations of room connectivity, supporting graph-based spatial reasoning tasks. Finally, we present comparative analyses with existing benchmarks and outline several open benchmark tasks enabled by ResPlan. Ultimately, ResPlan offers a significant advance in scale, realism, and usability, providing a robust foundation for developing and benchmarking next-generation spatial intelligence systems.
NavGPT: Explicit Reasoning in Vision-and-Language Navigation with Large Language Models
Trained with an unprecedented scale of data, large language models (LLMs) like ChatGPT and GPT-4 exhibit the emergence of significant reasoning abilities from model scaling. Such a trend underscored the potential of training LLMs with unlimited language data, advancing the development of a universal embodied agent. In this work, we introduce the NavGPT, a purely LLM-based instruction-following navigation agent, to reveal the reasoning capability of GPT models in complex embodied scenes by performing zero-shot sequential action prediction for vision-and-language navigation (VLN). At each step, NavGPT takes the textual descriptions of visual observations, navigation history, and future explorable directions as inputs to reason the agent's current status, and makes the decision to approach the target. Through comprehensive experiments, we demonstrate NavGPT can explicitly perform high-level planning for navigation, including decomposing instruction into sub-goal, integrating commonsense knowledge relevant to navigation task resolution, identifying landmarks from observed scenes, tracking navigation progress, and adapting to exceptions with plan adjustment. Furthermore, we show that LLMs is capable of generating high-quality navigational instructions from observations and actions along a path, as well as drawing accurate top-down metric trajectory given the agent's navigation history. Despite the performance of using NavGPT to zero-shot R2R tasks still falling short of trained models, we suggest adapting multi-modality inputs for LLMs to use as visual navigation agents and applying the explicit reasoning of LLMs to benefit learning-based models.
Generalized Trajectory Scoring for End-to-end Multimodal Planning
End-to-end multi-modal planning is a promising paradigm in autonomous driving, enabling decision-making with diverse trajectory candidates. A key component is a robust trajectory scorer capable of selecting the optimal trajectory from these candidates. While recent trajectory scorers focus on scoring either large sets of static trajectories or small sets of dynamically generated ones, both approaches face significant limitations in generalization. Static vocabularies provide effective coarse discretization but struggle to make fine-grained adaptation, while dynamic proposals offer detailed precision but fail to capture broader trajectory distributions. To overcome these challenges, we propose GTRS (Generalized Trajectory Scoring), a unified framework for end-to-end multi-modal planning that combines coarse and fine-grained trajectory evaluation. GTRS consists of three complementary innovations: (1) a diffusion-based trajectory generator that produces diverse fine-grained proposals; (2) a vocabulary generalization technique that trains a scorer on super-dense trajectory sets with dropout regularization, enabling its robust inference on smaller subsets; and (3) a sensor augmentation strategy that enhances out-of-domain generalization while incorporating refinement training for critical trajectory discrimination. As the winning solution of the Navsim v2 Challenge, GTRS demonstrates superior performance even with sub-optimal sensor inputs, approaching privileged methods that rely on ground-truth perception. Code will be available at https://github.com/NVlabs/GTRS.
Forecast-MAE: Self-supervised Pre-training for Motion Forecasting with Masked Autoencoders
This study explores the application of self-supervised learning (SSL) to the task of motion forecasting, an area that has not yet been extensively investigated despite the widespread success of SSL in computer vision and natural language processing. To address this gap, we introduce Forecast-MAE, an extension of the mask autoencoders framework that is specifically designed for self-supervised learning of the motion forecasting task. Our approach includes a novel masking strategy that leverages the strong interconnections between agents' trajectories and road networks, involving complementary masking of agents' future or history trajectories and random masking of lane segments. Our experiments on the challenging Argoverse 2 motion forecasting benchmark show that Forecast-MAE, which utilizes standard Transformer blocks with minimal inductive bias, achieves competitive performance compared to state-of-the-art methods that rely on supervised learning and sophisticated designs. Moreover, it outperforms the previous self-supervised learning method by a significant margin. Code is available at https://github.com/jchengai/forecast-mae.
Can We Rely on LLM Agents to Draft Long-Horizon Plans? Let's Take TravelPlanner as an Example
Large language models (LLMs) have brought autonomous agents closer to artificial general intelligence (AGI) due to their promising generalization and emergent capabilities. There is, however, a lack of studies on how LLM-based agents behave, why they could potentially fail, and how to improve them, particularly in demanding real-world planning tasks. In this paper, as an effort to fill the gap, we present our study using a realistic benchmark, TravelPlanner, where an agent must meet multiple constraints to generate accurate plans. We leverage this benchmark to address four key research questions: (1) are LLM agents robust enough to lengthy and noisy contexts when it comes to reasoning and planning? (2) can few-shot prompting adversely impact the performance of LLM agents in scenarios with long context? (3) can we rely on refinement to improve plans, and (4) can fine-tuning LLMs with both positive and negative feedback lead to further improvement? Our comprehensive experiments indicate that, firstly, LLMs often fail to attend to crucial parts of a long context, despite their ability to handle extensive reference information and few-shot examples; secondly, they still struggle with analyzing the long plans and cannot provide accurate feedback for refinement; thirdly, we propose Feedback-Aware Fine-Tuning (FAFT), which leverages both positive and negative feedback, resulting in substantial gains over Supervised Fine-Tuning (SFT). Our findings offer in-depth insights to the community on various aspects related to real-world planning applications.
3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation
Text-driven 3D scene generation techniques have made rapid progress in recent years. Their success is mainly attributed to using existing generative models to iteratively perform image warping and inpainting to generate 3D scenes. However, these methods heavily rely on the outputs of existing models, leading to error accumulation in geometry and appearance that prevent the models from being used in various scenarios (e.g., outdoor and unreal scenarios). To address this limitation, we generatively refine the newly generated local views by querying and aggregating global 3D information, and then progressively generate the 3D scene. Specifically, we employ a tri-plane features-based NeRF as a unified representation of the 3D scene to constrain global 3D consistency, and propose a generative refinement network to synthesize new contents with higher quality by exploiting the natural image prior from 2D diffusion model as well as the global 3D information of the current scene. Our extensive experiments demonstrate that, in comparison to previous methods, our approach supports wide variety of scene generation and arbitrary camera trajectories with improved visual quality and 3D consistency.
FlowDrive: Energy Flow Field for End-to-End Autonomous Driving
Recent advances in end-to-end autonomous driving leverage multi-view images to construct BEV representations for motion planning. In motion planning, autonomous vehicles need considering both hard constraints imposed by geometrically occupied obstacles (e.g., vehicles, pedestrians) and soft, rule-based semantics with no explicit geometry (e.g., lane boundaries, traffic priors). However, existing end-to-end frameworks typically rely on BEV features learned in an implicit manner, lacking explicit modeling of risk and guidance priors for safe and interpretable planning. To address this, we propose FlowDrive, a novel framework that introduces physically interpretable energy-based flow fields-including risk potential and lane attraction fields-to encode semantic priors and safety cues into the BEV space. These flow-aware features enable adaptive refinement of anchor trajectories and serve as interpretable guidance for trajectory generation. Moreover, FlowDrive decouples motion intent prediction from trajectory denoising via a conditional diffusion planner with feature-level gating, alleviating task interference and enhancing multimodal diversity. Experiments on the NAVSIM v2 benchmark demonstrate that FlowDrive achieves state-of-the-art performance with an EPDMS of 86.3, surpassing prior baselines in both safety and planning quality. The project is available at https://astrixdrive.github.io/FlowDrive.github.io/.
VURF: A General-purpose Reasoning and Self-refinement Framework for Video Understanding
Recent studies have demonstrated the effectiveness of Large Language Models (LLMs) as reasoning modules that can deconstruct complex tasks into more manageable sub-tasks, particularly when applied to visual reasoning tasks for images. In contrast, this paper introduces a Video Understanding and Reasoning Framework (VURF) based on the reasoning power of LLMs. Ours is a novel approach to extend the utility of LLMs in the context of video tasks, leveraging their capacity to generalize from minimal input and output demonstrations within a contextual framework. By presenting LLMs with pairs of instructions and their corresponding high-level programs, we harness their contextual learning capabilities to generate executable visual programs for video understanding. To enhance program's accuracy and robustness, we implement two important strategies. Firstly, we employ a feedback-generation approach, powered by GPT-3.5, to rectify errors in programs utilizing unsupported functions. Secondly, taking motivation from recent works on self refinement of LLM outputs, we introduce an iterative procedure for improving the quality of the in-context examples by aligning the initial outputs to the outputs that would have been generated had the LLM not been bound by the structure of the in-context examples. Our results on several video-specific tasks, including visual QA, video anticipation, pose estimation and multi-video QA illustrate the efficacy of these enhancements in improving the performance of visual programming approaches for video tasks. Our Codes and data will be publicly released.
Mono3R: Exploiting Monocular Cues for Geometric 3D Reconstruction
Recent advances in data-driven geometric multi-view 3D reconstruction foundation models (e.g., DUSt3R) have shown remarkable performance across various 3D vision tasks, facilitated by the release of large-scale, high-quality 3D datasets. However, as we observed, constrained by their matching-based principles, the reconstruction quality of existing models suffers significant degradation in challenging regions with limited matching cues, particularly in weakly textured areas and low-light conditions. To mitigate these limitations, we propose to harness the inherent robustness of monocular geometry estimation to compensate for the inherent shortcomings of matching-based methods. Specifically, we introduce a monocular-guided refinement module that integrates monocular geometric priors into multi-view reconstruction frameworks. This integration substantially enhances the robustness of multi-view reconstruction systems, leading to high-quality feed-forward reconstructions. Comprehensive experiments across multiple benchmarks demonstrate that our method achieves substantial improvements in both mutli-view camera pose estimation and point cloud accuracy.
Visual Scratchpads: Enabling Global Reasoning in Vision
Modern vision models have achieved remarkable success in benchmarks where local features provide critical information about the target. There is now a growing interest in solving tasks that require more global reasoning, where local features offer no significant information. These tasks are reminiscent of the connectivity tasks discussed by Minsky and Papert in 1969, which exposed the limitations of the perceptron model and contributed to the first AI winter. In this paper, we revisit such tasks by introducing four global visual benchmarks involving path findings and mazes. We show that: (1) although today's large vision models largely surpass the expressivity limitations of the early models, they still struggle with the learning efficiency; we put forward the "globality degree" notion to understand this limitation; (2) we then demonstrate that the picture changes and global reasoning becomes feasible with the introduction of "visual scratchpads"; similarly to the text scratchpads and chain-of-thoughts used in language models, visual scratchpads help break down global tasks into simpler ones; (3) we finally show that some scratchpads are better than others, in particular, "inductive scratchpads" that take steps relying on less information afford better out-of-distribution generalization and succeed for smaller model sizes.
TopoDiffuser: A Diffusion-Based Multimodal Trajectory Prediction Model with Topometric Maps
This paper introduces TopoDiffuser, a diffusion-based framework for multimodal trajectory prediction that incorporates topometric maps to generate accurate, diverse, and road-compliant future motion forecasts. By embedding structural cues from topometric maps into the denoising process of a conditional diffusion model, the proposed approach enables trajectory generation that naturally adheres to road geometry without relying on explicit constraints. A multimodal conditioning encoder fuses LiDAR observations, historical motion, and route information into a unified bird's-eye-view (BEV) representation. Extensive experiments on the KITTI benchmark demonstrate that TopoDiffuser outperforms state-of-the-art methods, while maintaining strong geometric consistency. Ablation studies further validate the contribution of each input modality, as well as the impact of denoising steps and the number of trajectory samples. To support future research, we publicly release our code at https://github.com/EI-Nav/TopoDiffuser.
Closing the Train-Test Gap in World Models for Gradient-Based Planning
World models paired with model predictive control (MPC) can be trained offline on large-scale datasets of expert trajectories and enable generalization to a wide range of planning tasks at inference time. Compared to traditional MPC procedures, which rely on slow search algorithms or on iteratively solving optimization problems exactly, gradient-based planning offers a computationally efficient alternative. However, the performance of gradient-based planning has thus far lagged behind that of other approaches. In this paper, we propose improved methods for training world models that enable efficient gradient-based planning. We begin with the observation that although a world model is trained on a next-state prediction objective, it is used at test-time to instead estimate a sequence of actions. The goal of our work is to close this train-test gap. To that end, we propose train-time data synthesis techniques that enable significantly improved gradient-based planning with existing world models. At test time, our approach outperforms or matches the classical gradient-free cross-entropy method (CEM) across a variety of object manipulation and navigation tasks in 10% of the time budget.
