new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 1

Wave optics lensing of gravitational waves: theory and phenomenology of triple systems in the LISA band

We study lensing of gravitational waves by a black hole in the deep wave optics regime, i.e. when the wavelength is much larger than the black hole Schwarzschild radius. We apply it to triple systems, with a binary of stellar mass objects in the inspiraling phase orbiting around a central massive black hole. We describe the full polarisation structure of the wave and derive predictions for the polarisation modes of the scattered wave measured by the observer. We show that lensing in the wave optics regime is not helicity preserving, as opposed to lensing in the geometric optics regime. The amplitude of the total wave is modulated due to interference between the directly transmitted and lensed components. The relative amplitude of the modulation is fixed by the lensing geometry and can reach unity in the most favourable settings. This indicates that wave optics lensing is potentially detectable by LISA for sufficiently high SNR systems. Our findings show that in the wave optics regime it is necessary to go beyond the usual lensing description where the amplification factor is assumed to be the same for both helicity modes. While motivated by GW190521 and the AGN formation scenario, our results apply more broadly to stellar-mass binaries orbiting a third body described as a Schwarzschild black hole, with a period comparable to the GW observation time.

  • 4 authors
·
Apr 10, 2024

Dark forces suppress structure growth

No experimental test precludes the possibility that the dark matter experiences forces beyond general relativity -- in fact, a variety of cosmic microwave background observations suggest greater late-time structure than predicted in the standard Lambda cold dark matter model. We show that minimal models of scalar-mediated forces between dark matter particles do not enhance the growth of unbiased tracers of structure: weak lensing observables depend on the total density perturbation, for which the enhanced growth of the density contrast in the matter era is cancelled by the more rapid dilution of the background dark matter density. Moreover, the same background-level effects imply that scenarios compatible with CMB temperature and polarization anisotropies in fact suppress structure growth, as fixing the distance to last scattering requires a substantially increased density of dark energy. Though massive mediators undo these effects upon oscillating, they suppress structure even further because their gravitational impact as nonclustering subcomponents of matter outweighs the enhanced clustering strength of dark matter. We support these findings with analytic insight that clarifies the physical impact of dark forces and explains how primary CMB measurements calibrate the model's predictions for low-redshift observables. We discuss implications for neutrino mass limits and other cosmological anomalies, and we also consider how nonminimal extensions of the model might be engineered to enhance structure.

  • 4 authors
·
Sep 30, 2025

From chambers to echo chambers: Quantifying polarization with a second-neighbor approach applied to Twitter's climate discussion

Social media platforms often foster environments where users primarily engage with content that aligns with their existing beliefs, thereby reinforcing their views and limiting exposure to opposing viewpoints. In this paper, we analyze X (formerly Twitter) discussions on climate change throughout 2019, using an unsupervised method centered on chambers--second-order information sources--to uncover ideological patterns at scale. Beyond direct connections, chambers capture shared sources of influence, revealing polarization dynamics efficiently and effectively. Analyzing retweet patterns, we identify echo chambers of climate believers and skeptics, revealing strong chamber overlap within ideological groups and minimal overlap between them, resulting in a robust bimodal structure that characterizes polarization. Our method enables us to infer the stance of high-impact users based on their audience's chamber alignment, allowing for the classification of over half the retweeting population with minimal cross-group interaction, in what we term augmented echo chamber classification. We benchmark our approach against manual labeling and a state-of-the-art latent ideology model, finding comparable performance but with nearly four times greater coverage. Moreover, we find that echo chamber structures remain stable over time, even as their members change significantly, suggesting that these structures are a persistent and emergent property of the system. Notably, polarization decreases and climate skepticism rises during the #FridaysForFuture strikes in September 2019. This chamber-based analysis offers valuable insights into the persistence and fluidity of ideological polarization on social media.

  • 4 authors
·
Jun 29, 2022 1

Representation Learning in Continuous-Time Dynamic Signed Networks

Signed networks allow us to model conflicting relationships and interactions, such as friend/enemy and support/oppose. These signed interactions happen in real-time. Modeling such dynamics of signed networks is crucial to understanding the evolution of polarization in the network and enabling effective prediction of the signed structure (i.e., link signs and signed weights) in the future. However, existing works have modeled either (static) signed networks or dynamic (unsigned) networks but not dynamic signed networks. Since both sign and dynamics inform the graph structure in different ways, it is non-trivial to model how to combine the two features. In this work, we propose a new Graph Neural Network (GNN)-based approach to model dynamic signed networks, named SEMBA: Signed link's Evolution using Memory modules and Balanced Aggregation. Here, the idea is to incorporate the signs of temporal interactions using separate modules guided by balance theory and to evolve the embeddings from a higher-order neighborhood. Experiments on 4 real-world datasets and 4 different tasks demonstrate that SEMBA consistently and significantly outperforms the baselines by up to 80% on the tasks of predicting signs of future links while matching the state-of-the-art performance on predicting the existence of these links in the future. We find that this improvement is due specifically to the superior performance of SEMBA on the minority negative class.

  • 5 authors
·
Jul 7, 2022