Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA Closer Look at GAN Priors: Exploiting Intermediate Features for Enhanced Model Inversion Attacks
Model Inversion (MI) attacks aim to reconstruct privacy-sensitive training data from released models by utilizing output information, raising extensive concerns about the security of Deep Neural Networks (DNNs). Recent advances in generative adversarial networks (GANs) have contributed significantly to the improved performance of MI attacks due to their powerful ability to generate realistic images with high fidelity and appropriate semantics. However, previous MI attacks have solely disclosed private information in the latent space of GAN priors, limiting their semantic extraction and transferability across multiple target models and datasets. To address this challenge, we propose a novel method, Intermediate Features enhanced Generative Model Inversion (IF-GMI), which disassembles the GAN structure and exploits features between intermediate blocks. This allows us to extend the optimization space from latent code to intermediate features with enhanced expressive capabilities. To prevent GAN priors from generating unrealistic images, we apply a L1 ball constraint to the optimization process. Experiments on multiple benchmarks demonstrate that our method significantly outperforms previous approaches and achieves state-of-the-art results under various settings, especially in the out-of-distribution (OOD) scenario. Our code is available at: https://github.com/final-solution/IF-GMI
Re-thinking Model Inversion Attacks Against Deep Neural Networks
Model inversion (MI) attacks aim to infer and reconstruct private training data by abusing access to a model. MI attacks have raised concerns about the leaking of sensitive information (e.g. private face images used in training a face recognition system). Recently, several algorithms for MI have been proposed to improve the attack performance. In this work, we revisit MI, study two fundamental issues pertaining to all state-of-the-art (SOTA) MI algorithms, and propose solutions to these issues which lead to a significant boost in attack performance for all SOTA MI. In particular, our contributions are two-fold: 1) We analyze the optimization objective of SOTA MI algorithms, argue that the objective is sub-optimal for achieving MI, and propose an improved optimization objective that boosts attack performance significantly. 2) We analyze "MI overfitting", show that it would prevent reconstructed images from learning semantics of training data, and propose a novel "model augmentation" idea to overcome this issue. Our proposed solutions are simple and improve all SOTA MI attack accuracy significantly. E.g., in the standard CelebA benchmark, our solutions improve accuracy by 11.8% and achieve for the first time over 90% attack accuracy. Our findings demonstrate that there is a clear risk of leaking sensitive information from deep learning models. We urge serious consideration to be given to the privacy implications. Our code, demo, and models are available at https://ngoc-nguyen-0.github.io/re-thinking_model_inversion_attacks/
Knowledge-Enriched Distributional Model Inversion Attacks
Model inversion (MI) attacks are aimed at reconstructing training data from model parameters. Such attacks have triggered increasing concerns about privacy, especially given a growing number of online model repositories. However, existing MI attacks against deep neural networks (DNNs) have large room for performance improvement. We present a novel inversion-specific GAN that can better distill knowledge useful for performing attacks on private models from public data. In particular, we train the discriminator to differentiate not only the real and fake samples but the soft-labels provided by the target model. Moreover, unlike previous work that directly searches for a single data point to represent a target class, we propose to model a private data distribution for each target class. Our experiments show that the combination of these techniques can significantly boost the success rate of the state-of-the-art MI attacks by 150%, and generalize better to a variety of datasets and models. Our code is available at https://github.com/SCccc21/Knowledge-Enriched-DMI.
Variational Model Inversion Attacks
Given the ubiquity of deep neural networks, it is important that these models do not reveal information about sensitive data that they have been trained on. In model inversion attacks, a malicious user attempts to recover the private dataset used to train a supervised neural network. A successful model inversion attack should generate realistic and diverse samples that accurately describe each of the classes in the private dataset. In this work, we provide a probabilistic interpretation of model inversion attacks, and formulate a variational objective that accounts for both diversity and accuracy. In order to optimize this variational objective, we choose a variational family defined in the code space of a deep generative model, trained on a public auxiliary dataset that shares some structural similarity with the target dataset. Empirically, our method substantially improves performance in terms of target attack accuracy, sample realism, and diversity on datasets of faces and chest X-ray images.
Label-Only Model Inversion Attacks via Knowledge Transfer
In a model inversion (MI) attack, an adversary abuses access to a machine learning (ML) model to infer and reconstruct private training data. Remarkable progress has been made in the white-box and black-box setups, where the adversary has access to the complete model or the model's soft output respectively. However, there is very limited study in the most challenging but practically important setup: Label-only MI attacks, where the adversary only has access to the model's predicted label (hard label) without confidence scores nor any other model information. In this work, we propose LOKT, a novel approach for label-only MI attacks. Our idea is based on transfer of knowledge from the opaque target model to surrogate models. Subsequently, using these surrogate models, our approach can harness advanced white-box attacks. We propose knowledge transfer based on generative modelling, and introduce a new model, Target model-assisted ACGAN (T-ACGAN), for effective knowledge transfer. Our method casts the challenging label-only MI into the more tractable white-box setup. We provide analysis to support that surrogate models based on our approach serve as effective proxies for the target model for MI. Our experiments show that our method significantly outperforms existing SOTA Label-only MI attack by more than 15% across all MI benchmarks. Furthermore, our method compares favorably in terms of query budget. Our study highlights rising privacy threats for ML models even when minimal information (i.e., hard labels) is exposed. Our study highlights rising privacy threats for ML models even when minimal information (i.e., hard labels) is exposed. Our code, demo, models and reconstructed data are available at our project page: https://ngoc-nguyen-0.github.io/lokt/
Improving Robustness to Model Inversion Attacks via Mutual Information Regularization
This paper studies defense mechanisms against model inversion (MI) attacks -- a type of privacy attacks aimed at inferring information about the training data distribution given the access to a target machine learning model. Existing defense mechanisms rely on model-specific heuristics or noise injection. While being able to mitigate attacks, existing methods significantly hinder model performance. There remains a question of how to design a defense mechanism that is applicable to a variety of models and achieves better utility-privacy tradeoff. In this paper, we propose the Mutual Information Regularization based Defense (MID) against MI attacks. The key idea is to limit the information about the model input contained in the prediction, thereby limiting the ability of an adversary to infer the private training attributes from the model prediction. Our defense principle is model-agnostic and we present tractable approximations to the regularizer for linear regression, decision trees, and neural networks, which have been successfully attacked by prior work if not attached with any defenses. We present a formal study of MI attacks by devising a rigorous game-based definition and quantifying the associated information leakage. Our theoretical analysis sheds light on the inefficacy of DP in defending against MI attacks, which has been empirically observed in several prior works. Our experiments demonstrate that MID leads to state-of-the-art performance for a variety of MI attacks, target models and datasets.
The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks
This paper studies model-inversion attacks, in which the access to a model is abused to infer information about the training data. Since its first introduction, such attacks have raised serious concerns given that training data usually contain privacy-sensitive information. Thus far, successful model-inversion attacks have only been demonstrated on simple models, such as linear regression and logistic regression. Previous attempts to invert neural networks, even the ones with simple architectures, have failed to produce convincing results. We present a novel attack method, termed the generative model-inversion attack, which can invert deep neural networks with high success rates. Rather than reconstructing private training data from scratch, we leverage partial public information, which can be very generic, to learn a distributional prior via generative adversarial networks (GANs) and use it to guide the inversion process. Moreover, we theoretically prove that a model's predictive power and its vulnerability to inversion attacks are indeed two sides of the same coin---highly predictive models are able to establish a strong correlation between features and labels, which coincides exactly with what an adversary exploits to mount the attacks. Our extensive experiments demonstrate that the proposed attack improves identification accuracy over the existing work by about 75\% for reconstructing face images from a state-of-the-art face recognition classifier. We also show that differential privacy, in its canonical form, is of little avail to defend against our attacks.
Algorithms that Remember: Model Inversion Attacks and Data Protection Law
Many individuals are concerned about the governance of machine learning systems and the prevention of algorithmic harms. The EU's recent General Data Protection Regulation (GDPR) has been seen as a core tool for achieving better governance of this area. While the GDPR does apply to the use of models in some limited situations, most of its provisions relate to the governance of personal data, while models have traditionally been seen as intellectual property. We present recent work from the information security literature around `model inversion' and `membership inference' attacks, which indicate that the process of turning training data into machine learned systems is not one-way, and demonstrate how this could lead some models to be legally classified as personal data. Taking this as a probing experiment, we explore the different rights and obligations this would trigger and their utility, and posit future directions for algorithmic governance and regulation.
Be Careful What You Smooth For: Label Smoothing Can Be a Privacy Shield but Also a Catalyst for Model Inversion Attacks
Label smoothing -- using softened labels instead of hard ones -- is a widely adopted regularization method for deep learning, showing diverse benefits such as enhanced generalization and calibration. Its implications for preserving model privacy, however, have remained unexplored. To fill this gap, we investigate the impact of label smoothing on model inversion attacks (MIAs), which aim to generate class-representative samples by exploiting the knowledge encoded in a classifier, thereby inferring sensitive information about its training data. Through extensive analyses, we uncover that traditional label smoothing fosters MIAs, thereby increasing a model's privacy leakage. Even more, we reveal that smoothing with negative factors counters this trend, impeding the extraction of class-related information and leading to privacy preservation, beating state-of-the-art defenses. This establishes a practical and powerful novel way for enhancing model resilience against MIAs.
Bilateral Dependency Optimization: Defending Against Model-inversion Attacks
Through using only a well-trained classifier, model-inversion (MI) attacks can recover the data used for training the classifier, leading to the privacy leakage of the training data. To defend against MI attacks, previous work utilizes a unilateral dependency optimization strategy, i.e., minimizing the dependency between inputs (i.e., features) and outputs (i.e., labels) during training the classifier. However, such a minimization process conflicts with minimizing the supervised loss that aims to maximize the dependency between inputs and outputs, causing an explicit trade-off between model robustness against MI attacks and model utility on classification tasks. In this paper, we aim to minimize the dependency between the latent representations and the inputs while maximizing the dependency between latent representations and the outputs, named a bilateral dependency optimization (BiDO) strategy. In particular, we use the dependency constraints as a universally applicable regularizer in addition to commonly used losses for deep neural networks (e.g., cross-entropy), which can be instantiated with appropriate dependency criteria according to different tasks. To verify the efficacy of our strategy, we propose two implementations of BiDO, by using two different dependency measures: BiDO with constrained covariance (BiDO-COCO) and BiDO with Hilbert-Schmidt Independence Criterion (BiDO-HSIC). Experiments show that BiDO achieves the state-of-the-art defense performance for a variety of datasets, classifiers, and MI attacks while suffering a minor classification-accuracy drop compared to the well-trained classifier with no defense, which lights up a novel road to defend against MI attacks.
Model Inversion Robustness: Can Transfer Learning Help?
Model Inversion (MI) attacks aim to reconstruct private training data by abusing access to machine learning models. Contemporary MI attacks have achieved impressive attack performance, posing serious threats to privacy. Meanwhile, all existing MI defense methods rely on regularization that is in direct conflict with the training objective, resulting in noticeable degradation in model utility. In this work, we take a different perspective, and propose a novel and simple Transfer Learning-based Defense against Model Inversion (TL-DMI) to render MI-robust models. Particularly, by leveraging TL, we limit the number of layers encoding sensitive information from private training dataset, thereby degrading the performance of MI attack. We conduct an analysis using Fisher Information to justify our method. Our defense is remarkably simple to implement. Without bells and whistles, we show in extensive experiments that TL-DMI achieves state-of-the-art (SOTA) MI robustness. Our code, pre-trained models, demo and inverted data are available at: https://hosytuyen.github.io/projects/TL-DMI
Better Language Model Inversion by Compactly Representing Next-Token Distributions
Language model inversion seeks to recover hidden prompts using only language model outputs. This capability has implications for security and accountability in language model deployments, such as leaking private information from an API-protected language model's system message. We propose a new method -- prompt inversion from logprob sequences (PILS) -- that recovers hidden prompts by gleaning clues from the model's next-token probabilities over the course of multiple generation steps. Our method is enabled by a key insight: The vector-valued outputs of a language model occupy a low-dimensional subspace. This enables us to losslessly compress the full next-token probability distribution over multiple generation steps using a linear map, allowing more output information to be used for inversion. Our approach yields massive gains over previous state-of-the-art methods for recovering hidden prompts, achieving 2--3.5 times higher exact recovery rates across test sets, in one case increasing the recovery rate from 17% to 60%. Our method also exhibits surprisingly good generalization behavior; for instance, an inverter trained on 16 generations steps gets 5--27 points higher prompt recovery when we increase the number of steps to 32 at test time. Furthermore, we demonstrate strong performance of our method on the more challenging task of recovering hidden system messages. We also analyze the role of verbatim repetition in prompt recovery and propose a new method for cross-family model transfer for logit-based inverters. Our findings show that next-token probabilities are a considerably more vulnerable attack surface for inversion attacks than previously known.
Canary Extraction in Natural Language Understanding Models
Natural Language Understanding (NLU) models can be trained on sensitive information such as phone numbers, zip-codes etc. Recent literature has focused on Model Inversion Attacks (ModIvA) that can extract training data from model parameters. In this work, we present a version of such an attack by extracting canaries inserted in NLU training data. In the attack, an adversary with open-box access to the model reconstructs the canaries contained in the model's training set. We evaluate our approach by performing text completion on canaries and demonstrate that by using the prefix (non-sensitive) tokens of the canary, we can generate the full canary. As an example, our attack is able to reconstruct a four digit code in the training dataset of the NLU model with a probability of 0.5 in its best configuration. As countermeasures, we identify several defense mechanisms that, when combined, effectively eliminate the risk of ModIvA in our experiments.
Exploring the Vulnerabilities of Federated Learning: A Deep Dive into Gradient Inversion Attacks
Federated Learning (FL) has emerged as a promising privacy-preserving collaborative model training paradigm without sharing raw data. However, recent studies have revealed that private information can still be leaked through shared gradient information and attacked by Gradient Inversion Attacks (GIA). While many GIA methods have been proposed, a detailed analysis, evaluation, and summary of these methods are still lacking. Although various survey papers summarize existing privacy attacks in FL, few studies have conducted extensive experiments to unveil the effectiveness of GIA and their associated limiting factors in this context. To fill this gap, we first undertake a systematic review of GIA and categorize existing methods into three types, i.e., optimization-based GIA (OP-GIA), generation-based GIA (GEN-GIA), and analytics-based GIA (ANA-GIA). Then, we comprehensively analyze and evaluate the three types of GIA in FL, providing insights into the factors that influence their performance, practicality, and potential threats. Our findings indicate that OP-GIA is the most practical attack setting despite its unsatisfactory performance, while GEN-GIA has many dependencies and ANA-GIA is easily detectable, making them both impractical. Finally, we offer a three-stage defense pipeline to users when designing FL frameworks and protocols for better privacy protection and share some future research directions from the perspectives of attackers and defenders that we believe should be pursued. We hope that our study can help researchers design more robust FL frameworks to defend against these attacks.
A New Federated Learning Framework Against Gradient Inversion Attacks
Federated Learning (FL) aims to protect data privacy by enabling clients to collectively train machine learning models without sharing their raw data. However, recent studies demonstrate that information exchanged during FL is subject to Gradient Inversion Attacks (GIA) and, consequently, a variety of privacy-preserving methods have been integrated into FL to thwart such attacks, such as Secure Multi-party Computing (SMC), Homomorphic Encryption (HE), and Differential Privacy (DP). Despite their ability to protect data privacy, these approaches inherently involve substantial privacy-utility trade-offs. By revisiting the key to privacy exposure in FL under GIA, which lies in the frequent sharing of model gradients that contain private data, we take a new perspective by designing a novel privacy preserve FL framework that effectively ``breaks the direct connection'' between the shared parameters and the local private data to defend against GIA. Specifically, we propose a Hypernetwork Federated Learning (HyperFL) framework that utilizes hypernetworks to generate the parameters of the local model and only the hypernetwork parameters are uploaded to the server for aggregation. Theoretical analyses demonstrate the convergence rate of the proposed HyperFL, while extensive experimental results show the privacy-preserving capability and comparable performance of HyperFL. Code is available at https://github.com/Pengxin-Guo/HyperFL.
Surrogate Model Extension (SME): A Fast and Accurate Weight Update Attack on Federated Learning
In Federated Learning (FL) and many other distributed training frameworks, collaborators can hold their private data locally and only share the network weights trained with the local data after multiple iterations. Gradient inversion is a family of privacy attacks that recovers data from its generated gradients. Seemingly, FL can provide a degree of protection against gradient inversion attacks on weight updates, since the gradient of a single step is concealed by the accumulation of gradients over multiple local iterations. In this work, we propose a principled way to extend gradient inversion attacks to weight updates in FL, thereby better exposing weaknesses in the presumed privacy protection inherent in FL. In particular, we propose a surrogate model method based on the characteristic of two-dimensional gradient flow and low-rank property of local updates. Our method largely boosts the ability of gradient inversion attacks on weight updates containing many iterations and achieves state-of-the-art (SOTA) performance. Additionally, our method runs up to 100times faster than the SOTA baseline in the common FL scenario. Our work re-evaluates and highlights the privacy risk of sharing network weights. Our code is available at https://github.com/JunyiZhu-AI/surrogate_model_extension.
GIFD: A Generative Gradient Inversion Method with Feature Domain Optimization
Federated Learning (FL) has recently emerged as a promising distributed machine learning framework to preserve clients' privacy, by allowing multiple clients to upload the gradients calculated from their local data to a central server. Recent studies find that the exchanged gradients also take the risk of privacy leakage, e.g., an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge. However, performing gradient inversion attacks in the latent space of the GAN model limits their expression ability and generalizability. To tackle these challenges, we propose Gradient Inversion over Feature Domains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers. Instead of optimizing only over the initial latent code, we progressively change the optimized layer, from the initial latent space to intermediate layers closer to the output images. In addition, we design a regularizer to avoid unreal image generation by adding a small {l_1} ball constraint to the searching range. We also extend GIFD to the out-of-distribution (OOD) setting, which weakens the assumption that the training sets of GANs and FL tasks obey the same data distribution. Extensive experiments demonstrate that our method can achieve pixel-level reconstruction and is superior to the existing methods. Notably, GIFD also shows great generalizability under different defense strategy settings and batch sizes.
FedRE: A Representation Entanglement Framework for Model-Heterogeneous Federated Learning
Federated learning (FL) enables collaborative training across clients without compromising privacy. While most existing FL methods assume homogeneous model architectures, client heterogeneity in data and resources renders this assumption impractical, motivating model-heterogeneous FL. To address this problem, we propose Federated Representation Entanglement (FedRE), a framework built upon a novel form of client knowledge termed entangled representation. In FedRE, each client aggregates its local representations into a single entangled representation using normalized random weights and applies the same weights to integrate the corresponding one-hot label encodings into the entangled-label encoding. Those are then uploaded to the server to train a global classifier. During training, each entangled representation is supervised across categories via its entangled-label encoding, while random weights are resampled each round to introduce diversity, mitigating the global classifier's overconfidence and promoting smoother decision boundaries. Furthermore, each client uploads a single cross-category entangled representation along with its entangled-label encoding, mitigating the risk of representation inversion attacks and reducing communication overhead. Extensive experiments demonstrate that FedRE achieves an effective trade-off among model performance, privacy protection, and communication overhead. The codes are available at https://github.com/AIResearch-Group/FedRE.
Dataset Size Recovery from LoRA Weights
Model inversion and membership inference attacks aim to reconstruct and verify the data which a model was trained on. However, they are not guaranteed to find all training samples as they do not know the size of the training set. In this paper, we introduce a new task: dataset size recovery, that aims to determine the number of samples used to train a model, directly from its weights. We then propose DSiRe, a method for recovering the number of images used to fine-tune a model, in the common case where fine-tuning uses LoRA. We discover that both the norm and the spectrum of the LoRA matrices are closely linked to the fine-tuning dataset size; we leverage this finding to propose a simple yet effective prediction algorithm. To evaluate dataset size recovery of LoRA weights, we develop and release a new benchmark, LoRA-WiSE, consisting of over 25000 weight snapshots from more than 2000 diverse LoRA fine-tuned models. Our best classifier can predict the number of fine-tuning images with a mean absolute error of 0.36 images, establishing the feasibility of this attack.
Expressive variational quantum circuits provide inherent privacy in federated learning
Federated learning has emerged as a viable distributed solution to train machine learning models without the actual need to share data with the central aggregator. However, standard neural network-based federated learning models have been shown to be susceptible to data leakage from the gradients shared with the server. In this work, we introduce federated learning with variational quantum circuit model built using expressive encoding maps coupled with overparameterized ans\"atze. We show that expressive maps lead to inherent privacy against gradient inversion attacks, while overparameterization ensures model trainability. Our privacy framework centers on the complexity of solving the system of high-degree multivariate Chebyshev polynomials generated by the gradients of quantum circuit. We present compelling arguments highlighting the inherent difficulty in solving these equations, both in exact and approximate scenarios. Additionally, we delve into machine learning-based attack strategies and establish a direct connection between overparameterization in the original federated learning model and underparameterization in the attack model. Furthermore, we provide numerical scaling arguments showcasing that underparameterization of the expressive map in the attack model leads to the loss landscape being swamped with exponentially many spurious local minima points, thus making it extremely hard to realize a successful attack. This provides a strong claim, for the first time, that the nature of quantum machine learning models inherently helps prevent data leakage in federated learning.
AIRTBench: Measuring Autonomous AI Red Teaming Capabilities in Language Models
We introduce AIRTBench, an AI red teaming benchmark for evaluating language models' ability to autonomously discover and exploit Artificial Intelligence and Machine Learning (AI/ML) security vulnerabilities. The benchmark consists of 70 realistic black-box capture-the-flag (CTF) challenges from the Crucible challenge environment on the Dreadnode platform, requiring models to write python code to interact with and compromise AI systems. Claude-3.7-Sonnet emerged as the clear leader, solving 43 challenges (61% of the total suite, 46.9% overall success rate), with Gemini-2.5-Pro following at 39 challenges (56%, 34.3% overall), GPT-4.5-Preview at 34 challenges (49%, 36.9% overall), and DeepSeek R1 at 29 challenges (41%, 26.9% overall). Our evaluations show frontier models excel at prompt injection attacks (averaging 49% success rates) but struggle with system exploitation and model inversion challenges (below 26%, even for the best performers). Frontier models are far outpacing open-source alternatives, with the best truly open-source model (Llama-4-17B) solving 7 challenges (10%, 1.0% overall), though demonstrating specialized capabilities on certain hard challenges. Compared to human security researchers, large language models (LLMs) solve challenges with remarkable efficiency completing in minutes what typically takes humans hours or days-with efficiency advantages of over 5,000x on hard challenges. Our contribution fills a critical gap in the evaluation landscape, providing the first comprehensive benchmark specifically designed to measure and track progress in autonomous AI red teaming capabilities.
KnFu: Effective Knowledge Fusion
Federated Learning (FL) has emerged as a prominent alternative to the traditional centralized learning approach. Generally speaking, FL is a decentralized approach that allows for collaborative training of Machine Learning (ML) models across multiple local nodes, ensuring data privacy and security while leveraging diverse datasets. Conventional FL, however, is susceptible to gradient inversion attacks, restrictively enforces a uniform architecture on local models, and suffers from model heterogeneity (model drift) due to non-IID local datasets. To mitigate some of these challenges, the new paradigm of Federated Knowledge Distillation (FKD) has emerged. FDK is developed based on the concept of Knowledge Distillation (KD), which involves extraction and transfer of a large and well-trained teacher model's knowledge to lightweight student models. FKD, however, still faces the model drift issue. Intuitively speaking, not all knowledge is universally beneficial due to the inherent diversity of data among local nodes. This calls for innovative mechanisms to evaluate the relevance and effectiveness of each client's knowledge for others, to prevent propagation of adverse knowledge. In this context, the paper proposes Effective Knowledge Fusion (KnFu) algorithm that evaluates knowledge of local models to only fuse semantic neighbors' effective knowledge for each client. The KnFu is a personalized effective knowledge fusion scheme for each client, that analyzes effectiveness of different local models' knowledge prior to the aggregation phase. Comprehensive experiments were performed on MNIST and CIFAR10 datasets illustrating effectiveness of the proposed KnFu in comparison to its state-of-the-art counterparts. A key conclusion of the work is that in scenarios with large and highly heterogeneous local datasets, local training could be preferable to knowledge fusion-based solutions.
SCA: Improve Semantic Consistent in Unrestricted Adversarial Attacks via DDPM Inversion
Systems based on deep neural networks are vulnerable to adversarial attacks. Unrestricted adversarial attacks typically manipulate the semantic content of an image (e.g., color or texture) to create adversarial examples that are both effective and photorealistic. Recent works have utilized the diffusion inversion process to map images into a latent space, where high-level semantics are manipulated by introducing perturbations. However, they often result in substantial semantic distortions in the denoised output and suffer from low efficiency. In this study, we propose a novel framework called Semantic-Consistent Unrestricted Adversarial Attacks (SCA), which employs an inversion method to extract edit-friendly noise maps and utilizes a Multimodal Large Language Model (MLLM) to provide semantic guidance throughout the process. Under the condition of rich semantic information provided by MLLM, we perform the DDPM denoising process of each step using a series of edit-friendly noise maps and leverage DPM Solver++ to accelerate this process, enabling efficient sampling with semantic consistency. Compared to existing methods, our framework enables the efficient generation of adversarial examples that exhibit minimal discernible semantic changes. Consequently, we for the first time introduce Semantic-Consistent Adversarial Examples (SCAE). Extensive experiments and visualizations have demonstrated the high efficiency of SCA, particularly in being on average 12 times faster than the state-of-the-art attacks. Our code can be found at https://github.com/Pan-Zihao/SCA.
LLM Watermark Evasion via Bias Inversion
Watermarking for large language models (LLMs) embeds a statistical signal during generation to enable detection of model-produced text. While watermarking has proven effective in benign settings, its robustness under adversarial evasion remains contested. To advance a rigorous understanding and evaluation of such vulnerabilities, we propose the Bias-Inversion Rewriting Attack (BIRA), which is theoretically motivated and model-agnostic. BIRA weakens the watermark signal by suppressing the logits of likely watermarked tokens during LLM-based rewriting, without any knowledge of the underlying watermarking scheme. Across recent watermarking methods, BIRA achieves over 99\% evasion while preserving the semantic content of the original text. Beyond demonstrating an attack, our results reveal a systematic vulnerability, emphasizing the need for stress testing and robust defenses.
InverTune: Removing Backdoors from Multimodal Contrastive Learning Models via Trigger Inversion and Activation Tuning
Multimodal contrastive learning models like CLIP have demonstrated remarkable vision-language alignment capabilities, yet their vulnerability to backdoor attacks poses critical security risks. Attackers can implant latent triggers that persist through downstream tasks, enabling malicious control of model behavior upon trigger presentation. Despite great success in recent defense mechanisms, they remain impractical due to strong assumptions about attacker knowledge or excessive clean data requirements. In this paper, we introduce InverTune, the first backdoor defense framework for multimodal models under minimal attacker assumptions, requiring neither prior knowledge of attack targets nor access to the poisoned dataset. Unlike existing defense methods that rely on the same dataset used in the poisoning stage, InverTune effectively identifies and removes backdoor artifacts through three key components, achieving robust protection against backdoor attacks. Specifically, InverTune first exposes attack signatures through adversarial simulation, probabilistically identifying the target label by analyzing model response patterns. Building on this, we develop a gradient inversion technique to reconstruct latent triggers through activation pattern analysis. Finally, a clustering-guided fine-tuning strategy is employed to erase the backdoor function with only a small amount of arbitrary clean data, while preserving the original model capabilities. Experimental results show that InverTune reduces the average attack success rate (ASR) by 97.87% against the state-of-the-art (SOTA) attacks while limiting clean accuracy (CA) degradation to just 3.07%. This work establishes a new paradigm for securing multimodal systems, advancing security in foundation model deployment without compromising performance.
TIJO: Trigger Inversion with Joint Optimization for Defending Multimodal Backdoored Models
We present a Multimodal Backdoor Defense technique TIJO (Trigger Inversion using Joint Optimization). Recent work arXiv:2112.07668 has demonstrated successful backdoor attacks on multimodal models for the Visual Question Answering task. Their dual-key backdoor trigger is split across two modalities (image and text), such that the backdoor is activated if and only if the trigger is present in both modalities. We propose TIJO that defends against dual-key attacks through a joint optimization that reverse-engineers the trigger in both the image and text modalities. This joint optimization is challenging in multimodal models due to the disconnected nature of the visual pipeline which consists of an offline feature extractor, whose output is then fused with the text using a fusion module. The key insight enabling the joint optimization in TIJO is that the trigger inversion needs to be carried out in the object detection box feature space as opposed to the pixel space. We demonstrate the effectiveness of our method on the TrojVQA benchmark, where TIJO improves upon the state-of-the-art unimodal methods from an AUC of 0.6 to 0.92 on multimodal dual-key backdoors. Furthermore, our method also improves upon the unimodal baselines on unimodal backdoors. We present ablation studies and qualitative results to provide insights into our algorithm such as the critical importance of overlaying the inverted feature triggers on all visual features during trigger inversion. The prototype implementation of TIJO is available at https://github.com/SRI-CSL/TIJO.
Was it Slander? Towards Exact Inversion of Generative Language Models
Training large language models (LLMs) requires a substantial investment of time and money. To get a good return on investment, the developers spend considerable effort ensuring that the model never produces harmful and offensive outputs. However, bad-faith actors may still try to slander the reputation of an LLM by publicly reporting a forged output. In this paper, we show that defending against such slander attacks requires reconstructing the input of the forged output or proving that it does not exist. To do so, we propose and evaluate a search based approach for targeted adversarial attacks for LLMs. Our experiments show that we are rarely able to reconstruct the exact input of an arbitrary output, thus demonstrating that LLMs are still vulnerable to slander attacks.
Gungnir: Exploiting Stylistic Features in Images for Backdoor Attacks on Diffusion Models
In recent years, Diffusion Models (DMs) have demonstrated significant advances in the field of image generation. However, according to current research, DMs are vulnerable to backdoor attacks, which allow attackers to control the model's output by inputting data containing covert triggers, such as a specific patch or phrase. Existing defense strategies are well equipped to thwart such attacks through backdoor detection and trigger inversion because previous attack methods are constrained by limited input spaces and triggers defined by low-dimensional features. To bridge these gaps, we propose Gungnir, a novel method that enables attackers to activate the backdoor in DMs through hidden style triggers within input images. Our approach proposes using stylistic features as triggers for the first time and implements backdoor attacks successfully in image2image tasks by utilizing Reconstructing-Adversarial Noise (RAN) and Short-Term-Timesteps-Retention (STTR) of DMs. Meanwhile, experiments demonstrate that our method can easily bypass existing defense methods. Among existing DM main backdoor defense frameworks, our approach achieves a 0\% backdoor detection rate (BDR). Our codes are available at https://github.com/paoche11/Gungnir.
Zero-Day Backdoor Attack against Text-to-Image Diffusion Models via Personalization
Although recent personalization methods have democratized high-resolution image synthesis by enabling swift concept acquisition with minimal examples and lightweight computation, they also present an exploitable avenue for high accessible backdoor attacks. This paper investigates a critical and unexplored aspect of text-to-image (T2I) diffusion models - their potential vulnerability to backdoor attacks via personalization. Our study focuses on a zero-day backdoor vulnerability prevalent in two families of personalization methods, epitomized by Textual Inversion and DreamBooth.Compared to traditional backdoor attacks, our proposed method can facilitate more precise, efficient, and easily accessible attacks with a lower barrier to entry. We provide a comprehensive review of personalization in T2I diffusion models, highlighting the operation and exploitation potential of this backdoor vulnerability. To be specific, by studying the prompt processing of Textual Inversion and DreamBooth, we have devised dedicated backdoor attacks according to the different ways of dealing with unseen tokens and analyzed the influence of triggers and concept images on the attack effect. Our empirical study has shown that the nouveau-token backdoor attack has better attack performance while legacy-token backdoor attack is potentially harder to defend.
Frontier Language Models are not Robust to Adversarial Arithmetic, or "What do I need to say so you agree 2+2=5?
We introduce and study the problem of adversarial arithmetic, which provides a simple yet challenging testbed for language model alignment. This problem is comprised of arithmetic questions posed in natural language, with an arbitrary adversarial string inserted before the question is complete. Even in the simple setting of 1-digit addition problems, it is easy to find adversarial prompts that make all tested models (including PaLM2, GPT4, Claude2) misbehave, and even to steer models to a particular wrong answer. We additionally provide a simple algorithm for finding successful attacks by querying those same models, which we name "prompt inversion rejection sampling" (PIRS). We finally show that models can be partially hardened against these attacks via reinforcement learning and via agentic constitutional loops. However, we were not able to make a language model fully robust against adversarial arithmetic attacks.
Understanding Deep Gradient Leakage via Inversion Influence Functions
Deep Gradient Leakage (DGL) is a highly effective attack that recovers private training images from gradient vectors. This attack casts significant privacy challenges on distributed learning from clients with sensitive data, where clients are required to share gradients. Defending against such attacks requires but lacks an understanding of when and how privacy leakage happens, mostly because of the black-box nature of deep networks. In this paper, we propose a novel Inversion Influence Function (I^2F) that establishes a closed-form connection between the recovered images and the private gradients by implicitly solving the DGL problem. Compared to directly solving DGL, I^2F is scalable for analyzing deep networks, requiring only oracle access to gradients and Jacobian-vector products. We empirically demonstrate that I^2F effectively approximated the DGL generally on different model architectures, datasets, attack implementations, and noise-based defenses. With this novel tool, we provide insights into effective gradient perturbation directions, the unfairness of privacy protection, and privacy-preferred model initialization. Our codes are provided in https://github.com/illidanlab/inversion-influence-function.
Detection Limits and Statistical Separability of Tree Ring Watermarks in Rectified Flow-based Text-to-Image Generation Models
Tree-Ring Watermarking is a significant technique for authenticating AI-generated images. However, its effectiveness in rectified flow-based models remains unexplored, particularly given the inherent challenges of these models with noise latent inversion. Through extensive experimentation, we evaluated and compared the detection and separability of watermarks between SD 2.1 and FLUX.1-dev models. By analyzing various text guidance configurations and augmentation attacks, we demonstrate how inversion limitations affect both watermark recovery and the statistical separation between watermarked and unwatermarked images. Our findings provide valuable insights into the current limitations of Tree-Ring Watermarking in the current SOTA models and highlight the critical need for improved inversion methods to achieve reliable watermark detection and separability. The official implementation, dataset release and all experimental results are available at this https://github.com/dsgiitr/flux-watermarking{link}.
ReCIT: Reconstructing Full Private Data from Gradient in Parameter-Efficient Fine-Tuning of Large Language Models
Parameter-efficient fine-tuning (PEFT) has emerged as a practical solution for adapting large language models (LLMs) to custom datasets with significantly reduced computational cost. When carrying out PEFT under collaborative learning scenarios (e.g., federated learning), it is often required to exchange model updates (or gradients) across parties. These gradients, even with limited dimensions, can cause severe breach of data privacy. Recent works have shown that both contextual prefixes and personally identifiable information (PII) can be exposed through gradients. However, simultaneously and accurately recovering both components from the same training instance remains infeasible due to the following challenges: 1) limited number of PEFT parameters; 2) high-dimensional token spaces; and 3) large batch sizes. We propose ReCIT, a novel privacy attack that addresses all challenges, and achieves recovery of full private data from PEFT gradients with high fidelity. Specifically, ReCIT proposes to enhance the memorization capability of the pre-trained model through malicious fine-tuning with Personal Notes; ReCIT also proposes a novel filter-based token extraction technique and a token pairing mechanism, to accurately reconstruct tokens from the training sequences with large batch sizes. Extensive evaluations show that ReCIT consistently outperforms state-of-the-art gradient inversion and memorization-based attacks across different PEFT paradigms. It achieves up to 10times higher PII recovery rates and remains effective across varying batch sizes, especially in settings where prefix reconstruction is intractable for conventional approaches. These findings highlight an urgent need to reassess the privacy guarantees of PEFT, especially in decentralized or shared training environments.
CapRecover: A Cross-Modality Feature Inversion Attack Framework on Vision Language Models
As Vision-Language Models (VLMs) are increasingly deployed in split-DNN configurations--with visual encoders (e.g., ResNet, ViT) operating on user devices and sending intermediate features to the cloud--there is a growing privacy risk from semantic information leakage. Existing approaches to reconstructing images from these intermediate features often result in blurry, semantically ambiguous images. To directly address semantic leakage, we propose CapRecover, a cross-modality inversion framework that recovers high-level semantic content, such as labels or captions, directly from intermediate features without image reconstruction. We evaluate CapRecover on multiple datasets and victim models, demonstrating strong performance in semantic recovery. Specifically, CapRecover achieves up to 92.71% Top-1 label accuracy on CIFAR-10 and generates fluent captions from ResNet50 features on COCO2017 with ROUGE-L scores up to 0.52. Our analysis further reveals that deeper convolutional layers encode significantly more semantic information compared to shallow layers. To mitigate semantic leakage, we introduce a simple yet effective protection method: adding random noise to intermediate features at each layer and removing the noise in the next layer. Experimental results show that this approach prevents semantic leakage without additional training costs. Our code is available at https://jus1mple.github.io/Image2CaptionAttack.
Dropout is NOT All You Need to Prevent Gradient Leakage
Gradient inversion attacks on federated learning systems reconstruct client training data from exchanged gradient information. To defend against such attacks, a variety of defense mechanisms were proposed. However, they usually lead to an unacceptable trade-off between privacy and model utility. Recent observations suggest that dropout could mitigate gradient leakage and improve model utility if added to neural networks. Unfortunately, this phenomenon has not been systematically researched yet. In this work, we thoroughly analyze the effect of dropout on iterative gradient inversion attacks. We find that state of the art attacks are not able to reconstruct the client data due to the stochasticity induced by dropout during model training. Nonetheless, we argue that dropout does not offer reliable protection if the dropout induced stochasticity is adequately modeled during attack optimization. Consequently, we propose a novel Dropout Inversion Attack (DIA) that jointly optimizes for client data and dropout masks to approximate the stochastic client model. We conduct an extensive systematic evaluation of our attack on four seminal model architectures and three image classification datasets of increasing complexity. We find that our proposed attack bypasses the protection seemingly induced by dropout and reconstructs client data with high fidelity. Our work demonstrates that privacy inducing changes to model architectures alone cannot be assumed to reliably protect from gradient leakage and therefore should be combined with complementary defense mechanisms.
Tricking Retrievers with Influential Tokens: An Efficient Black-Box Corpus Poisoning Attack
Retrieval-augmented generation (RAG) systems enhance large language models by incorporating external knowledge, addressing issues like outdated internal knowledge and hallucination. However, their reliance on external knowledge bases makes them vulnerable to corpus poisoning attacks, where adversarial passages can be injected to manipulate retrieval results. Existing methods for crafting such passages, such as random token replacement or training inversion models, are often slow and computationally expensive, requiring either access to retriever's gradients or large computational resources. To address these limitations, we propose Dynamic Importance-Guided Genetic Algorithm (DIGA), an efficient black-box method that leverages two key properties of retrievers: insensitivity to token order and bias towards influential tokens. By focusing on these characteristics, DIGA dynamically adjusts its genetic operations to generate effective adversarial passages with significantly reduced time and memory usage. Our experimental evaluation shows that DIGA achieves superior efficiency and scalability compared to existing methods, while maintaining comparable or better attack success rates across multiple datasets.
