Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeView-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields
Large-scale vision foundation models such as Segment Anything (SAM) demonstrate impressive performance in zero-shot image segmentation at multiple levels of granularity. However, these zero-shot predictions are rarely 3D-consistent. As the camera viewpoint changes in a scene, so do the segmentation predictions, as well as the characterizations of "coarse" or "fine" granularity. In this work, we address the challenging task of lifting multi-granular and view-inconsistent image segmentations into a hierarchical and 3D-consistent representation. We learn a novel feature field within a Neural Radiance Field (NeRF) representing a 3D scene, whose segmentation structure can be revealed at different scales by simply using different thresholds on feature distance. Our key idea is to learn an ultrametric feature space, which unlike a Euclidean space, exhibits transitivity in distance-based grouping, naturally leading to a hierarchical clustering. Put together, our method takes view-inconsistent multi-granularity 2D segmentations as input and produces a hierarchy of 3D-consistent segmentations as output. We evaluate our method and several baselines on synthetic datasets with multi-view images and multi-granular segmentation, showcasing improved accuracy and viewpoint-consistency. We additionally provide qualitative examples of our model's 3D hierarchical segmentations in real world scenes. The code and dataset are available at https://github.com/hardyho/ultrametric_feature_fields
OmniSeg3D: Omniversal 3D Segmentation via Hierarchical Contrastive Learning
Towards holistic understanding of 3D scenes, a general 3D segmentation method is needed that can segment diverse objects without restrictions on object quantity or categories, while also reflecting the inherent hierarchical structure. To achieve this, we propose OmniSeg3D, an omniversal segmentation method aims for segmenting anything in 3D all at once. The key insight is to lift multi-view inconsistent 2D segmentations into a consistent 3D feature field through a hierarchical contrastive learning framework, which is accomplished by two steps. Firstly, we design a novel hierarchical representation based on category-agnostic 2D segmentations to model the multi-level relationship among pixels. Secondly, image features rendered from the 3D feature field are clustered at different levels, which can be further drawn closer or pushed apart according to the hierarchical relationship between different levels. In tackling the challenges posed by inconsistent 2D segmentations, this framework yields a global consistent 3D feature field, which further enables hierarchical segmentation, multi-object selection, and global discretization. Extensive experiments demonstrate the effectiveness of our method on high-quality 3D segmentation and accurate hierarchical structure understanding. A graphical user interface further facilitates flexible interaction for omniversal 3D segmentation.
Beyond Pixels: Enhancing LIME with Hierarchical Features and Segmentation Foundation Models
LIME (Local Interpretable Model-agnostic Explanations) is a popular XAI framework for unraveling decision-making processes in vision machine-learning models. The technique utilizes image segmentation methods to identify fixed regions for calculating feature importance scores as explanations. Therefore, poor segmentation can weaken the explanation and reduce the importance of segments, ultimately affecting the overall clarity of interpretation. To address these challenges, we introduce the DSEG-LIME (Data-Driven Segmentation LIME) framework, featuring: i) a data-driven segmentation for human-recognized feature generation by foundation model integration, and ii) a user-steered granularity in the hierarchical segmentation procedure through composition. Our findings demonstrate that DSEG outperforms on several XAI metrics on pre-trained ImageNet models and improves the alignment of explanations with human-recognized concepts. The code is available under: https://github. com/patrick-knab/DSEG-LIME
ChildlikeSHAPES: Semantic Hierarchical Region Parsing for Animating Figure Drawings
Childlike human figure drawings represent one of humanity's most accessible forms of character expression, yet automatically analyzing their contents remains a significant challenge. While semantic segmentation of realistic humans has recently advanced considerably, existing models often fail when confronted with the abstract, representational nature of childlike drawings. This semantic understanding is a crucial prerequisite for animation tools that seek to modify figures while preserving their unique style. To help achieve this, we propose a novel hierarchical segmentation model, built upon the architecture and pre-trained SAM, to quickly and accurately obtain these semantic labels. Our model achieves higher accuracy than state-of-the-art segmentation models focused on realistic humans and cartoon figures, even after fine-tuning. We demonstrate the value of our model for semantic segmentation through multiple applications: a fully automatic facial animation pipeline, a figure relighting pipeline, improvements to an existing childlike human figure drawing animation method, and generalization to out-of-domain figures. Finally, to support future work in this area, we introduce a dataset of 16,000 childlike drawings with pixel-level annotations across 25 semantic categories. Our work can enable entirely new, easily accessible tools for hand-drawn character animation, and our dataset can enable new lines of inquiry in a variety of graphics and human-centric research fields.
From Text Segmentation to Smart Chaptering: A Novel Benchmark for Structuring Video Transcriptions
Text segmentation is a fundamental task in natural language processing, where documents are split into contiguous sections. However, prior research in this area has been constrained by limited datasets, which are either small in scale, synthesized, or only contain well-structured documents. In this paper, we address these limitations by introducing a novel benchmark YTSeg focusing on spoken content that is inherently more unstructured and both topically and structurally diverse. As part of this work, we introduce an efficient hierarchical segmentation model MiniSeg, that outperforms state-of-the-art baselines. Lastly, we expand the notion of text segmentation to a more practical "smart chaptering" task that involves the segmentation of unstructured content, the generation of meaningful segment titles, and a potential real-time application of the models.
Leveraging Frequency Domain Learning in 3D Vessel Segmentation
Coronary microvascular disease constitutes a substantial risk to human health. Employing computer-aided analysis and diagnostic systems, medical professionals can intervene early in disease progression, with 3D vessel segmentation serving as a crucial component. Nevertheless, conventional U-Net architectures tend to yield incoherent and imprecise segmentation outcomes, particularly for small vessel structures. While models with attention mechanisms, such as Transformers and large convolutional kernels, demonstrate superior performance, their extensive computational demands during training and inference lead to increased time complexity. In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models, which can reduce computational expenses while preserving global receptive fields within the network. Furthermore, a zero-parameter frequency domain fusion method is designed to improve the skip connections in U-Net architecture. Experimental results on a public dataset and an in-house dataset indicate that our novel Fourier transformation-based network achieves remarkable dice performance (84.37\% on ASACA500 and 80.32\% on ImageCAS) in tubular vessel segmentation tasks and substantially reduces computational requirements without compromising global receptive fields.
TinySAM: Pushing the Envelope for Efficient Segment Anything Model
Recently segment anything model (SAM) has shown powerful segmentation capability and has drawn great attention in computer vision fields. Massive following works have developed various applications based on the pretrained SAM and achieved impressive performance on downstream vision tasks. However, SAM consists of heavy architectures and requires massive computational capacity, which hinders the further application of SAM on computation constrained edge devices. To this end, in this paper we propose a framework to obtain a tiny segment anything model (TinySAM) while maintaining the strong zero-shot performance. We first propose a full-stage knowledge distillation method with online hard prompt sampling strategy to distill a lightweight student model. We also adapt the post-training quantization to the promptable segmentation task and further reduce the computational cost. Moreover, a hierarchical segmenting everything strategy is proposed to accelerate the everything inference by 2times with almost no performance degradation. With all these proposed methods, our TinySAM leads to orders of magnitude computational reduction and pushes the envelope for efficient segment anything task. Extensive experiments on various zero-shot transfer tasks demonstrate the significantly advantageous performance of our TinySAM against counterpart methods. Pre-trained models and codes will be available at https://github.com/xinghaochen/TinySAM and https://gitee.com/mindspore/models/tree/master/research/cv/TinySAM.
SOHES: Self-supervised Open-world Hierarchical Entity Segmentation
Open-world entity segmentation, as an emerging computer vision task, aims at segmenting entities in images without being restricted by pre-defined classes, offering impressive generalization capabilities on unseen images and concepts. Despite its promise, existing entity segmentation methods like Segment Anything Model (SAM) rely heavily on costly expert annotators. This work presents Self-supervised Open-world Hierarchical Entity Segmentation (SOHES), a novel approach that eliminates the need for human annotations. SOHES operates in three phases: self-exploration, self-instruction, and self-correction. Given a pre-trained self-supervised representation, we produce abundant high-quality pseudo-labels through visual feature clustering. Then, we train a segmentation model on the pseudo-labels, and rectify the noises in pseudo-labels via a teacher-student mutual-learning procedure. Beyond segmenting entities, SOHES also captures their constituent parts, providing a hierarchical understanding of visual entities. Using raw images as the sole training data, our method achieves unprecedented performance in self-supervised open-world segmentation, marking a significant milestone towards high-quality open-world entity segmentation in the absence of human-annotated masks. Project page: https://SOHES.github.io.
Computer vision for liquid samples in hospitals and medical labs using hierarchical image segmentation and relations prediction
This work explores the use of computer vision for image segmentation and classification of medical fluid samples in transparent containers (for example, tubes, syringes, infusion bags). Handling fluids such as infusion fluids, blood, and urine samples is a significant part of the work carried out in medical labs and hospitals. The ability to accurately identify and segment the liquids and the vessels that contain them from images can help in automating such processes. Modern computer vision typically involves training deep neural nets on large datasets of annotated images. This work presents a new dataset containing 1,300 annotated images of medical samples involving vessels containing liquids and solid material. The images are annotated with the type of liquid (e.g., blood, urine), the phase of the material (e.g., liquid, solid, foam, suspension), the type of vessel (e.g., syringe, tube, cup, infusion bottle/bag), and the properties of the vessel (transparent, opaque). In addition, vessel parts such as corks, labels, spikes, and valves are annotated. Relations and hierarchies between vessels and materials are also annotated, such as which vessel contains which material or which vessels are linked or contain each other. Three neural networks are trained on the dataset: One network learns to detect vessels, a second net detects the materials and parts inside each vessel, and a third net identifies relationships and connectivity between vessels.
PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical Part-level 3D Object Understanding
We present PartNet: a consistent, large-scale dataset of 3D objects annotated with fine-grained, instance-level, and hierarchical 3D part information. Our dataset consists of 573,585 part instances over 26,671 3D models covering 24 object categories. This dataset enables and serves as a catalyst for many tasks such as shape analysis, dynamic 3D scene modeling and simulation, affordance analysis, and others. Using our dataset, we establish three benchmarking tasks for evaluating 3D part recognition: fine-grained semantic segmentation, hierarchical semantic segmentation, and instance segmentation. We benchmark four state-of-the-art 3D deep learning algorithms for fine-grained semantic segmentation and three baseline methods for hierarchical semantic segmentation. We also propose a novel method for part instance segmentation and demonstrate its superior performance over existing methods.
Hierarchical multi-class segmentation of glioma images using networks with multi-level activation function
For many segmentation tasks, especially for the biomedical image, the topological prior is vital information which is useful to exploit. The containment/nesting is a typical inter-class geometric relationship. In the MICCAI Brain tumor segmentation challenge, with its three hierarchically nested classes 'whole tumor', 'tumor core', 'active tumor', the nested classes relationship is introduced into the 3D-residual-Unet architecture. The network comprises a context aggregation pathway and a localization pathway, which encodes increasingly abstract representation of the input as going deeper into the network, and then recombines these representations with shallower features to precisely localize the interest domain via a localization path. The nested-class-prior is combined by proposing the multi-class activation function and its corresponding loss function. The model is trained on the training dataset of Brats2018, and 20% of the dataset is regarded as the validation dataset to determine parameters. When the parameters are fixed, we retrain the model on the whole training dataset. The performance achieved on the validation leaderboard is 86%, 77% and 72% Dice scores for the whole tumor, enhancing tumor and tumor core classes without relying on ensembles or complicated post-processing steps. Based on the same start-of-the-art network architecture, the accuracy of nested-class (enhancing tumor) is reasonably improved from 69% to 72% compared with the traditional Softmax-based method which blind to topological prior.
Adaptive Hierarchical Certification for Segmentation using Randomized Smoothing
Certification for machine learning is proving that no adversarial sample can evade a model within a range under certain conditions, a necessity for safety-critical domains. Common certification methods for segmentation use a flat set of fine-grained classes, leading to high abstain rates due to model uncertainty across many classes. We propose a novel, more practical setting, which certifies pixels within a multi-level hierarchy, and adaptively relaxes the certification to a coarser level for unstable components classic methods would abstain from, effectively lowering the abstain rate whilst providing more certified semantically meaningful information. We mathematically formulate the problem setup, introduce an adaptive hierarchical certification algorithm and prove the correctness of its guarantees. Since certified accuracy does not take the loss of information into account for coarser classes, we introduce the Certified Information Gain (CIG) metric, which is proportional to the class granularity level. Our extensive experiments on the datasets Cityscapes, PASCAL-Context, ACDC and COCO-Stuff demonstrate that our adaptive algorithm achieves a higher CIG and lower abstain rate compared to the current state-of-the-art certification method. Our code can be found here: https://github.com/AlaaAnani/adaptive-certify.
TractoEmbed: Modular Multi-level Embedding framework for white matter tract segmentation
White matter tract segmentation is crucial for studying brain structural connectivity and neurosurgical planning. However, segmentation remains challenging due to issues like class imbalance between major and minor tracts, structural similarity, subject variability, symmetric streamlines between hemispheres etc. To address these challenges, we propose TractoEmbed, a modular multi-level embedding framework, that encodes localized representations through learning tasks in respective encoders. In this paper, TractoEmbed introduces a novel hierarchical streamline data representation that captures maximum spatial information at each level i.e. individual streamlines, clusters, and patches. Experiments show that TractoEmbed outperforms state-of-the-art methods in white matter tract segmentation across different datasets, and spanning various age groups. The modular framework directly allows the integration of additional embeddings in future works.
MedSyn: Text-guided Anatomy-aware Synthesis of High-Fidelity 3D CT Images
This paper introduces an innovative methodology for producing high-quality 3D lung CT images guided by textual information. While diffusion-based generative models are increasingly used in medical imaging, current state-of-the-art approaches are limited to low-resolution outputs and underutilize radiology reports' abundant information. The radiology reports can enhance the generation process by providing additional guidance and offering fine-grained control over the synthesis of images. Nevertheless, expanding text-guided generation to high-resolution 3D images poses significant memory and anatomical detail-preserving challenges. Addressing the memory issue, we introduce a hierarchical scheme that uses a modified UNet architecture. We start by synthesizing low-resolution images conditioned on the text, serving as a foundation for subsequent generators for complete volumetric data. To ensure the anatomical plausibility of the generated samples, we provide further guidance by generating vascular, airway, and lobular segmentation masks in conjunction with the CT images. The model demonstrates the capability to use textual input and segmentation tasks to generate synthesized images. The results of comparative assessments indicate that our approach exhibits superior performance compared to the most advanced models based on GAN and diffusion techniques, especially in accurately retaining crucial anatomical features such as fissure lines, airways, and vascular structures. This innovation introduces novel possibilities. This study focuses on two main objectives: (1) the development of a method for creating images based on textual prompts and anatomical components, and (2) the capability to generate new images conditioning on anatomical elements. The advancements in image generation can be applied to enhance numerous downstream tasks.
HiMTok: Learning Hierarchical Mask Tokens for Image Segmentation with Large Multimodal Model
The remarkable performance of large multimodal models (LMMs) has attracted significant interest from the image segmentation community. To align with the next-token-prediction paradigm, current LMM-driven segmentation methods either use object boundary points to represent masks or introduce special segmentation tokens, whose hidden states are decoded by a segmentation model requiring the original image as input. However, these approaches often suffer from inadequate mask representation and complex architectures, limiting the potential of LMMs. In this work, we propose the Hierarchical Mask Tokenizer (HiMTok), which represents segmentation masks with up to 32 tokens and eliminates the need for the original image during mask de-tokenization. HiMTok allows for compact and coarse-to-fine mask representations, aligning well with the LLM next-token-prediction paradigm and facilitating the direct acquisition of segmentation capabilities. We develop a 3-stage training recipe for progressive learning of segmentation and visual capabilities, featuring a hierarchical mask loss for effective coarse-to-fine learning. Additionally, we enable bidirectional information flow, allowing conversion between bounding boxes and mask tokens to fully leverage multi-task training potential. Extensive experiments demonstrate that our method achieves state-of-the-art performance across various segmentation tasks,while also enhancing visual grounding and maintaining overall visual understanding.
Part2Object: Hierarchical Unsupervised 3D Instance Segmentation
Unsupervised 3D instance segmentation aims to segment objects from a 3D point cloud without any annotations. Existing methods face the challenge of either too loose or too tight clustering, leading to under-segmentation or over-segmentation. To address this issue, we propose Part2Object, hierarchical clustering with object guidance. Part2Object employs multi-layer clustering from points to object parts and objects, allowing objects to manifest at any layer. Additionally, it extracts and utilizes 3D objectness priors from temporally consecutive 2D RGB frames to guide the clustering process. Moreover, we propose Hi-Mask3D to support hierarchical 3D object part and instance segmentation. By training Hi-Mask3D on the objects and object parts extracted from Part2Object, we achieve consistent and superior performance compared to state-of-the-art models in various settings, including unsupervised instance segmentation, data-efficient fine-tuning, and cross-dataset generalization. Code is release at https://github.com/ChengShiest/Part2Object
Hierarchical Open-vocabulary Universal Image Segmentation
Open-vocabulary image segmentation aims to partition an image into semantic regions according to arbitrary text descriptions. However, complex visual scenes can be naturally decomposed into simpler parts and abstracted at multiple levels of granularity, introducing inherent segmentation ambiguity. Unlike existing methods that typically sidestep this ambiguity and treat it as an external factor, our approach actively incorporates a hierarchical representation encompassing different semantic-levels into the learning process. We propose a decoupled text-image fusion mechanism and representation learning modules for both "things" and "stuff". Additionally, we systematically examine the differences that exist in the textual and visual features between these types of categories. Our resulting model, named HIPIE, tackles HIerarchical, oPen-vocabulary, and unIvErsal segmentation tasks within a unified framework. Benchmarked on over 40 datasets, e.g., ADE20K, COCO, Pascal-VOC Part, RefCOCO/RefCOCOg, ODinW and SeginW, HIPIE achieves the state-of-the-art results at various levels of image comprehension, including semantic-level (e.g., semantic segmentation), instance-level (e.g., panoptic/referring segmentation and object detection), as well as part-level (e.g., part/subpart segmentation) tasks. Our code is released at https://github.com/berkeley-hipie/HIPIE.
Unleashing Hierarchical Reasoning: An LLM-Driven Framework for Training-Free Referring Video Object Segmentation
Referring Video Object Segmentation (RVOS) aims to segment an object of interest throughout a video based on a language description. The prominent challenge lies in aligning static text with dynamic visual content, particularly when objects exhibiting similar appearances with inconsistent motion and poses. However, current methods often rely on a holistic visual-language fusion that struggles with complex, compositional descriptions. In this paper, we propose PARSE-VOS, a novel, training-free framework powered by Large Language Models (LLMs), for a hierarchical, coarse-to-fine reasoning across text and video domains. Our approach begins by parsing the natural language query into structured semantic commands. Next, we introduce a spatio-temporal grounding module that generates all candidate trajectories for all potential target objects, guided by the parsed semantics. Finally, a hierarchical identification module select the correct target through a two-stage reasoning process: it first performs coarse-grained motion reasoning with an LLM to narrow down candidates; if ambiguity remains, a fine-grained pose verification stage is conditionally triggered to disambiguate. The final output is an accurate segmentation mask for the target object. PARSE-VOS achieved state-of-the-art performance on three major benchmarks: Ref-YouTube-VOS, Ref-DAVIS17, and MeViS.
Hi-End-MAE: Hierarchical encoder-driven masked autoencoders are stronger vision learners for medical image segmentation
Medical image segmentation remains a formidable challenge due to the label scarcity. Pre-training Vision Transformer (ViT) through masked image modeling (MIM) on large-scale unlabeled medical datasets presents a promising solution, providing both computational efficiency and model generalization for various downstream tasks. However, current ViT-based MIM pre-training frameworks predominantly emphasize local aggregation representations in output layers and fail to exploit the rich representations across different ViT layers that better capture fine-grained semantic information needed for more precise medical downstream tasks. To fill the above gap, we hereby present Hierarchical Encoder-driven MAE (Hi-End-MAE), a simple yet effective ViT-based pre-training solution, which centers on two key innovations: (1) Encoder-driven reconstruction, which encourages the encoder to learn more informative features to guide the reconstruction of masked patches; and (2) Hierarchical dense decoding, which implements a hierarchical decoding structure to capture rich representations across different layers. We pre-train Hi-End-MAE on a large-scale dataset of 10K CT scans and evaluated its performance across seven public medical image segmentation benchmarks. Extensive experiments demonstrate that Hi-End-MAE achieves superior transfer learning capabilities across various downstream tasks, revealing the potential of ViT in medical imaging applications. The code is available at: https://github.com/FengheTan9/Hi-End-MAE
Hierarchical Point-based Active Learning for Semi-supervised Point Cloud Semantic Segmentation
Impressive performance on point cloud semantic segmentation has been achieved by fully-supervised methods with large amounts of labelled data. As it is labour-intensive to acquire large-scale point cloud data with point-wise labels, many attempts have been made to explore learning 3D point cloud segmentation with limited annotations. Active learning is one of the effective strategies to achieve this purpose but is still under-explored. The most recent methods of this kind measure the uncertainty of each pre-divided region for manual labelling but they suffer from redundant information and require additional efforts for region division. This paper aims at addressing this issue by developing a hierarchical point-based active learning strategy. Specifically, we measure the uncertainty for each point by a hierarchical minimum margin uncertainty module which considers the contextual information at multiple levels. Then, a feature-distance suppression strategy is designed to select important and representative points for manual labelling. Besides, to better exploit the unlabelled data, we build a semi-supervised segmentation framework based on our active strategy. Extensive experiments on the S3DIS and ScanNetV2 datasets demonstrate that the proposed framework achieves 96.5% and 100% performance of fully-supervised baseline with only 0.07% and 0.1% training data, respectively, outperforming the state-of-the-art weakly-supervised and active learning methods. The code will be available at https://github.com/SmiletoE/HPAL.
Mamba Goes HoME: Hierarchical Soft Mixture-of-Experts for 3D Medical Image Segmentation
In recent years, artificial intelligence has significantly advanced medical image segmentation. Nonetheless, challenges remain, including efficient 3D medical image processing across diverse modalities and handling data variability. In this work, we introduce Hierarchical Soft Mixture-of-Experts (HoME), a two-level token-routing layer for efficient long-context modeling, specifically designed for 3D medical image segmentation. Built on the Mamba Selective State Space Model (SSM) backbone, HoME enhances sequential modeling through adaptive expert routing. In the first level, a Soft Mixture-of-Experts (SMoE) layer partitions input sequences into local groups, routing tokens to specialized per-group experts for localized feature extraction. The second level aggregates these outputs through a global SMoE layer, enabling cross-group information fusion and global context refinement. This hierarchical design, combining local expert routing with global expert refinement, enhances generalizability and segmentation performance, surpassing state-of-the-art results across datasets from the three most widely used 3D medical imaging modalities and varying data qualities. The code is publicly available at https://github.com/gmum/MambaHoME.
HiFormer: Hierarchical Multi-scale Representations Using Transformers for Medical Image Segmentation
Convolutional neural networks (CNNs) have been the consensus for medical image segmentation tasks. However, they suffer from the limitation in modeling long-range dependencies and spatial correlations due to the nature of convolution operation. Although transformers were first developed to address this issue, they fail to capture low-level features. In contrast, it is demonstrated that both local and global features are crucial for dense prediction, such as segmenting in challenging contexts. In this paper, we propose HiFormer, a novel method that efficiently bridges a CNN and a transformer for medical image segmentation. Specifically, we design two multi-scale feature representations using the seminal Swin Transformer module and a CNN-based encoder. To secure a fine fusion of global and local features obtained from the two aforementioned representations, we propose a Double-Level Fusion (DLF) module in the skip connection of the encoder-decoder structure. Extensive experiments on various medical image segmentation datasets demonstrate the effectiveness of HiFormer over other CNN-based, transformer-based, and hybrid methods in terms of computational complexity, and quantitative and qualitative results. Our code is publicly available at: https://github.com/amirhossein-kz/HiFormer
EfficientSAM3: Progressive Hierarchical Distillation for Video Concept Segmentation from SAM1, 2, and 3
The Segment Anything Model 3 (SAM3) advances visual understanding with Promptable Concept Segmentation (PCS) across images and videos, but its unified architecture (shared vision backbone, DETR-style detector, dense-memory tracker) remains prohibitive for on-device use. We present EfficientSAM3, a family of efficient models built on Progressive Hierarchical Distillation (PHD) that transfers capability from SAM3 to lightweight students in three stages: (1) Encoder Distillation aligns image features via prompt-in-the-loop training on SA-1B; (2) Temporal Memory Distillation replaces dense memory with a compact Perceiver-based module trained on SA-V to compress and retrieve spatiotemporal features efficiently; and (3) End-to-End Fine-Tuning refines the full pipeline on the official SAM3 PCS data to preserve concept-level performance. PHD yields a spectrum of student variants using RepViT, TinyViT, and EfficientViT backbones, enabling on-device concept segmentation and tracking while maintaining high fidelity to teacher behavior. We benchmark on popular VOS datasets, and compare with varies of releated work, achieing strong performance-efficiency trade-offs.
MambaClinix: Hierarchical Gated Convolution and Mamba-Based U-Net for Enhanced 3D Medical Image Segmentation
Deep learning, particularly convolutional neural networks (CNNs) and Transformers, has significantly advanced 3D medical image segmentation. While CNNs are highly effective at capturing local features, their limited receptive fields may hinder performance in complex clinical scenarios. In contrast, Transformers excel at modeling long-range dependencies but are computationally intensive, making them expensive to train and deploy. Recently, the Mamba architecture, based on the State Space Model (SSM), has been proposed to efficiently model long-range dependencies while maintaining linear computational complexity. However, its application in medical image segmentation reveals shortcomings, particularly in capturing critical local features essential for accurate delineation of clinical regions. In this study, we propose MambaClinix, a novel U-shaped architecture for medical image segmentation that integrates a hierarchical gated convolutional network(HGCN) with Mamba in an adaptive stage-wise framework. This design significantly enhances computational efficiency and high-order spatial interactions, enabling the model to effectively capture both proximal and distal relationships in medical images. Specifically, our HGCN is designed to mimic the attention mechanism of Transformers by a purely convolutional structure, facilitating high-order spatial interactions in feature maps while avoiding the computational complexity typically associated with Transformer-based methods. Additionally, we introduce a region-specific Tversky loss, which emphasizes specific pixel regions to improve auto-segmentation performance, thereby optimizing the model's decision-making process. Experimental results on five benchmark datasets demonstrate that the proposed MambaClinix achieves high segmentation accuracy while maintaining low model complexity.
TransDAE: Dual Attention Mechanism in a Hierarchical Transformer for Efficient Medical Image Segmentation
In healthcare, medical image segmentation is crucial for accurate disease diagnosis and the development of effective treatment strategies. Early detection can significantly aid in managing diseases and potentially prevent their progression. Machine learning, particularly deep convolutional neural networks, has emerged as a promising approach to addressing segmentation challenges. Traditional methods like U-Net use encoding blocks for local representation modeling and decoding blocks to uncover semantic relationships. However, these models often struggle with multi-scale objects exhibiting significant variations in texture and shape, and they frequently fail to capture long-range dependencies in the input data. Transformers designed for sequence-to-sequence predictions have been proposed as alternatives, utilizing global self-attention mechanisms. Yet, they can sometimes lack precise localization due to insufficient granular details. To overcome these limitations, we introduce TransDAE: a novel approach that reimagines the self-attention mechanism to include both spatial and channel-wise associations across the entire feature space, while maintaining computational efficiency. Additionally, TransDAE enhances the skip connection pathway with an inter-scale interaction module, promoting feature reuse and improving localization accuracy. Remarkably, TransDAE outperforms existing state-of-the-art methods on the Synaps multi-organ dataset, even without relying on pre-trained weights.
Hierarchical Video-Moment Retrieval and Step-Captioning
There is growing interest in searching for information from large video corpora. Prior works have studied relevant tasks, such as text-based video retrieval, moment retrieval, video summarization, and video captioning in isolation, without an end-to-end setup that can jointly search from video corpora and generate summaries. Such an end-to-end setup would allow for many interesting applications, e.g., a text-based search that finds a relevant video from a video corpus, extracts the most relevant moment from that video, and segments the moment into important steps with captions. To address this, we present the HiREST (HIerarchical REtrieval and STep-captioning) dataset and propose a new benchmark that covers hierarchical information retrieval and visual/textual stepwise summarization from an instructional video corpus. HiREST consists of 3.4K text-video pairs from an instructional video dataset, where 1.1K videos have annotations of moment spans relevant to text query and breakdown of each moment into key instruction steps with caption and timestamps (totaling 8.6K step captions). Our hierarchical benchmark consists of video retrieval, moment retrieval, and two novel moment segmentation and step captioning tasks. In moment segmentation, models break down a video moment into instruction steps and identify start-end boundaries. In step captioning, models generate a textual summary for each step. We also present starting point task-specific and end-to-end joint baseline models for our new benchmark. While the baseline models show some promising results, there still exists large room for future improvement by the community. Project website: https://hirest-cvpr2023.github.io
GroupViT: Semantic Segmentation Emerges from Text Supervision
Grouping and recognition are important components of visual scene understanding, e.g., for object detection and semantic segmentation. With end-to-end deep learning systems, grouping of image regions usually happens implicitly via top-down supervision from pixel-level recognition labels. Instead, in this paper, we propose to bring back the grouping mechanism into deep networks, which allows semantic segments to emerge automatically with only text supervision. We propose a hierarchical Grouping Vision Transformer (GroupViT), which goes beyond the regular grid structure representation and learns to group image regions into progressively larger arbitrary-shaped segments. We train GroupViT jointly with a text encoder on a large-scale image-text dataset via contrastive losses. With only text supervision and without any pixel-level annotations, GroupViT learns to group together semantic regions and successfully transfers to the task of semantic segmentation in a zero-shot manner, i.e., without any further fine-tuning. It achieves a zero-shot accuracy of 52.3% mIoU on the PASCAL VOC 2012 and 22.4% mIoU on PASCAL Context datasets, and performs competitively to state-of-the-art transfer-learning methods requiring greater levels of supervision. We open-source our code at https://github.com/NVlabs/GroupViT .
HER-Seg: Holistically Efficient Segmentation for High-Resolution Medical Images
High-resolution segmentation is critical for precise disease diagnosis by extracting fine-grained morphological details. Existing hierarchical encoder-decoder frameworks have demonstrated remarkable adaptability across diverse medical segmentation tasks. While beneficial, they usually require the huge computation and memory cost when handling large-size segmentation, which limits their applications in foundation model building and real-world clinical scenarios. To address this limitation, we propose a holistically efficient framework for high-resolution medical image segmentation, called HER-Seg. Specifically, we first devise a computation-efficient image encoder (CE-Encoder) to model long-range dependencies with linear complexity while maintaining sufficient representations. In particular, we introduce the dual-gated linear attention (DLA) mechanism to perform cascaded token filtering, selectively retaining important tokens while ignoring irrelevant ones to enhance attention computation efficiency. Then, we introduce a memory-efficient mask decoder (ME-Decoder) to eliminate the demand for the hierarchical structure by leveraging cross-scale segmentation decoding. Extensive experiments reveal that HER-Seg outperforms state-of-the-arts in high-resolution medical 2D, 3D and video segmentation tasks. In particular, our HER-Seg requires only 0.59GB training GPU memory and 9.39G inference FLOPs per 1024times1024 image, demonstrating superior memory and computation efficiency. The code is available at https://github.com/xq141839/HER-Seg.
AttrSeg: Open-Vocabulary Semantic Segmentation via Attribute Decomposition-Aggregation
Open-vocabulary semantic segmentation is a challenging task that requires segmenting novel object categories at inference time. Recent studies have explored vision-language pre-training to handle this task, but suffer from unrealistic assumptions in practical scenarios, i.e., low-quality textual category names. For example, this paradigm assumes that new textual categories will be accurately and completely provided, and exist in lexicons during pre-training. However, exceptions often happen when encountering ambiguity for brief or incomplete names, new words that are not present in the pre-trained lexicons, and difficult-to-describe categories for users. To address these issues, this work proposes a novel attribute decomposition-aggregation framework, AttrSeg, inspired by human cognition in understanding new concepts. Specifically, in the decomposition stage, we decouple class names into diverse attribute descriptions to complement semantic contexts from multiple perspectives. Two attribute construction strategies are designed: using large language models for common categories, and involving manually labeling for human-invented categories. In the aggregation stage, we group diverse attributes into an integrated global description, to form a discriminative classifier that distinguishes the target object from others. One hierarchical aggregation architecture is further proposed to achieve multi-level aggregations, leveraging the meticulously designed clustering module. The final results are obtained by computing the similarity between aggregated attributes and images embeddings. To evaluate the effectiveness, we annotate three types of datasets with attribute descriptions, and conduct extensive experiments and ablation studies. The results show the superior performance of attribute decomposition-aggregation.
SimpleClick: Interactive Image Segmentation with Simple Vision Transformers
Click-based interactive image segmentation aims at extracting objects with a limited user clicking. A hierarchical backbone is the de-facto architecture for current methods. Recently, the plain, non-hierarchical Vision Transformer (ViT) has emerged as a competitive backbone for dense prediction tasks. This design allows the original ViT to be a foundation model that can be finetuned for downstream tasks without redesigning a hierarchical backbone for pretraining. Although this design is simple and has been proven effective, it has not yet been explored for interactive image segmentation. To fill this gap, we propose SimpleClick, the first interactive segmentation method that leverages a plain backbone. Based on the plain backbone, we introduce a symmetric patch embedding layer that encodes clicks into the backbone with minor modifications to the backbone itself. With the plain backbone pretrained as a masked autoencoder (MAE), SimpleClick achieves state-of-the-art performance. Remarkably, our method achieves 4.15 NoC@90 on SBD, improving 21.8% over the previous best result. Extensive evaluation on medical images demonstrates the generalizability of our method. We further develop an extremely tiny ViT backbone for SimpleClick and provide a detailed computational analysis, highlighting its suitability as a practical annotation tool.
Hierarchical NeuroSymbolic Approach for Action Quality Assessment
Action quality assessment (AQA) applies computer vision to quantitatively assess the performance or execution of a human action. Current AQA approaches are end-to-end neural models, which lack transparency and tend to be biased because they are trained on subjective human judgements as ground-truth. To address these issues, we introduce a neuro-symbolic paradigm for AQA, which uses neural networks to abstract interpretable symbols from video data and makes quality assessments by applying rules to those symbols. We take diving as the case study. We found that domain experts prefer our system and find it more informative than purely neural approaches to AQA in diving. Our system also achieves state-of-the-art action recognition and temporal segmentation, and automatically generates a detailed report that breaks the dive down into its elements and provides objective scoring with visual evidence. As verified by a group of domain experts, this report may be used to assist judges in scoring, help train judges, and provide feedback to divers. We will open-source all of our annotated training data and code for ease of reproducibility.
KeySG: Hierarchical Keyframe-Based 3D Scene Graphs
In recent years, 3D scene graphs have emerged as a powerful world representation, offering both geometric accuracy and semantic richness. Combining 3D scene graphs with large language models enables robots to reason, plan, and navigate in complex human-centered environments. However, current approaches for constructing 3D scene graphs are semantically limited to a predefined set of relationships, and their serialization in large environments can easily exceed an LLM's context window. We introduce KeySG, a framework that represents 3D scenes as a hierarchical graph consisting of floors, rooms, objects, and functional elements, where nodes are augmented with multi-modal information extracted from keyframes selected to optimize geometric and visual coverage. The keyframes allow us to efficiently leverage VLM to extract scene information, alleviating the need to explicitly model relationship edges between objects, enabling more general, task-agnostic reasoning and planning. Our approach can process complex and ambiguous queries while mitigating the scalability issues associated with large scene graphs by utilizing a hierarchical retrieval-augmented generation (RAG) pipeline to extract relevant context from the graph. Evaluated across four distinct benchmarks -- including 3D object segmentation and complex query retrieval -- KeySG outperforms prior approaches on most metrics, demonstrating its superior semantic richness and efficiency.
ReasonGrounder: LVLM-Guided Hierarchical Feature Splatting for Open-Vocabulary 3D Visual Grounding and Reasoning
Open-vocabulary 3D visual grounding and reasoning aim to localize objects in a scene based on implicit language descriptions, even when they are occluded. This ability is crucial for tasks such as vision-language navigation and autonomous robotics. However, current methods struggle because they rely heavily on fine-tuning with 3D annotations and mask proposals, which limits their ability to handle diverse semantics and common knowledge required for effective reasoning. In this work, we propose ReasonGrounder, an LVLM-guided framework that uses hierarchical 3D feature Gaussian fields for adaptive grouping based on physical scale, enabling open-vocabulary 3D grounding and reasoning. ReasonGrounder interprets implicit instructions using large vision-language models (LVLM) and localizes occluded objects through 3D Gaussian splatting. By incorporating 2D segmentation masks from the SAM and multi-view CLIP embeddings, ReasonGrounder selects Gaussian groups based on object scale, enabling accurate localization through both explicit and implicit language understanding, even in novel, occluded views. We also contribute ReasoningGD, a new dataset containing over 10K scenes and 2 million annotations for evaluating open-vocabulary 3D grounding and amodal perception under occlusion. Experiments show that ReasonGrounder significantly improves 3D grounding accuracy in real-world scenarios.
N2F2: Hierarchical Scene Understanding with Nested Neural Feature Fields
Understanding complex scenes at multiple levels of abstraction remains a formidable challenge in computer vision. To address this, we introduce Nested Neural Feature Fields (N2F2), a novel approach that employs hierarchical supervision to learn a single feature field, wherein different dimensions within the same high-dimensional feature encode scene properties at varying granularities. Our method allows for a flexible definition of hierarchies, tailored to either the physical dimensions or semantics or both, thereby enabling a comprehensive and nuanced understanding of scenes. We leverage a 2D class-agnostic segmentation model to provide semantically meaningful pixel groupings at arbitrary scales in the image space, and query the CLIP vision-encoder to obtain language-aligned embeddings for each of these segments. Our proposed hierarchical supervision method then assigns different nested dimensions of the feature field to distill the CLIP embeddings using deferred volumetric rendering at varying physical scales, creating a coarse-to-fine representation. Extensive experiments show that our approach outperforms the state-of-the-art feature field distillation methods on tasks such as open-vocabulary 3D segmentation and localization, demonstrating the effectiveness of the learned nested feature field.
Hybrid guiding: A multi-resolution refinement approach for semantic segmentation of gigapixel histopathological images
Histopathological cancer diagnostics has become more complex, and the increasing number of biopsies is a challenge for most pathology laboratories. Thus, development of automatic methods for evaluation of histopathological cancer sections would be of value. In this study, we used 624 whole slide images (WSIs) of breast cancer from a Norwegian cohort. We propose a cascaded convolutional neural network design, called H2G-Net, for semantic segmentation of gigapixel histopathological images. The design involves a detection stage using a patch-wise method, and a refinement stage using a convolutional autoencoder. To validate the design, we conducted an ablation study to assess the impact of selected components in the pipeline on tumour segmentation. Guiding segmentation, using hierarchical sampling and deep heatmap refinement, proved to be beneficial when segmenting the histopathological images. We found a significant improvement when using a refinement network for postprocessing the generated tumour segmentation heatmaps. The overall best design achieved a Dice score of 0.933 on an independent test set of 90 WSIs. The design outperformed single-resolution approaches, such as cluster-guided, patch-wise high-resolution classification using MobileNetV2 (0.872) and a low-resolution U-Net (0.874). In addition, segmentation on a representative x400 WSI took ~58 seconds, using only the CPU. The findings demonstrate the potential of utilizing a refinement network to improve patch-wise predictions. The solution is efficient and does not require overlapping patch inference or ensembling. Furthermore, we showed that deep neural networks can be trained using a random sampling scheme that balances on multiple different labels simultaneously, without the need of storing patches on disk. Future work should involve more efficient patch generation and sampling, as well as improved clustering.
Inter-Scale Dependency Modeling for Skin Lesion Segmentation with Transformer-based Networks
Melanoma is a dangerous form of skin cancer caused by the abnormal growth of skin cells. Fully Convolutional Network (FCN) approaches, including the U-Net architecture, can automatically segment skin lesions to aid diagnosis. The symmetrical U-Net model has shown outstanding results, but its use of a convolutional operation limits its ability to capture long-range dependencies, which are essential for accurate medical image segmentation. In addition, the U-shaped structure suffers from the semantic gaps between the encoder and decoder. In this study, we developed and evaluated a U-shaped hierarchical Transformer-based structure for skin lesion segmentation while we proposed an Inter-scale Context Fusion (ISCF) to utilize the attention correlations in each stage of the encoder to adaptively combine the contexts coming from each stage to hinder the semantic gaps. The preliminary results of the skin lesion segmentation benchmark endorse the applicability and efficacy of the ISCF module.
MHMS: Multimodal Hierarchical Multimedia Summarization
Multimedia summarization with multimodal output can play an essential role in real-world applications, i.e., automatically generating cover images and titles for news articles or providing introductions to online videos. In this work, we propose a multimodal hierarchical multimedia summarization (MHMS) framework by interacting visual and language domains to generate both video and textual summaries. Our MHMS method contains video and textual segmentation and summarization module, respectively. It formulates a cross-domain alignment objective with optimal transport distance which leverages cross-domain interaction to generate the representative keyframe and textual summary. We evaluated MHMS on three recent multimodal datasets and demonstrated the effectiveness of our method in producing high-quality multimodal summaries.
AerialFormer: Multi-resolution Transformer for Aerial Image Segmentation
Aerial Image Segmentation is a top-down perspective semantic segmentation and has several challenging characteristics such as strong imbalance in the foreground-background distribution, complex background, intra-class heterogeneity, inter-class homogeneity, and tiny objects. To handle these problems, we inherit the advantages of Transformers and propose AerialFormer, which unifies Transformers at the contracting path with lightweight Multi-Dilated Convolutional Neural Networks (MD-CNNs) at the expanding path. Our AerialFormer is designed as a hierarchical structure, in which Transformer encoder outputs multi-scale features and MD-CNNs decoder aggregates information from the multi-scales. Thus, it takes both local and global contexts into consideration to render powerful representations and high-resolution segmentation. We have benchmarked AerialFormer on three common datasets including iSAID, LoveDA, and Potsdam. Comprehensive experiments and extensive ablation studies show that our proposed AerialFormer outperforms previous state-of-the-art methods with remarkable performance. Our source code will be publicly available upon acceptance.
Designing BERT for Convolutional Networks: Sparse and Hierarchical Masked Modeling
We identify and overcome two key obstacles in extending the success of BERT-style pre-training, or the masked image modeling, to convolutional networks (convnets): (i) convolution operation cannot handle irregular, random-masked input images; (ii) the single-scale nature of BERT pre-training is inconsistent with convnet's hierarchical structure. For (i), we treat unmasked pixels as sparse voxels of 3D point clouds and use sparse convolution to encode. This is the first use of sparse convolution for 2D masked modeling. For (ii), we develop a hierarchical decoder to reconstruct images from multi-scale encoded features. Our method called Sparse masKed modeling (SparK) is general: it can be used directly on any convolutional model without backbone modifications. We validate it on both classical (ResNet) and modern (ConvNeXt) models: on three downstream tasks, it surpasses both state-of-the-art contrastive learning and transformer-based masked modeling by similarly large margins (around +1.0%). Improvements on object detection and instance segmentation are more substantial (up to +3.5%), verifying the strong transferability of features learned. We also find its favorable scaling behavior by observing more gains on larger models. All this evidence reveals a promising future of generative pre-training on convnets. Codes and models are released at https://github.com/keyu-tian/SparK.
MACMD: Multi-dilated Contextual Attention and Channel Mixer Decoding for Medical Image Segmentation
Medical image segmentation faces challenges due to variations in anatomical structures. While convolutional neural networks (CNNs) effectively capture local features, they struggle with modeling long-range dependencies. Transformers mitigate this issue with self-attention mechanisms but lack the ability to preserve local contextual information. State-of-the-art models primarily follow an encoder-decoder architecture, achieving notable success. However, two key limitations remain: (1) Shallow layers, which are closer to the input, capture fine-grained details but suffer from information loss as data propagates through deeper layers. (2) Inefficient integration of local details and global context between the encoder and decoder stages. To address these challenges, we propose the MACMD-based decoder, which enhances attention mechanisms and facilitates channel mixing between encoder and decoder stages via skip connections. This design leverages hierarchical dilated convolutions, attention-driven modulation, and a cross channel-mixing module to capture long-range dependencies while preserving local contextual details, essential for precise medical image segmentation. We evaluated our approach using multiple transformer encoders on both binary and multi-organ segmentation tasks. The results demonstrate that our method outperforms state-of-the-art approaches in terms of Dice score and computational efficiency, highlighting its effectiveness in achieving accurate and robust segmentation performance. The code available at https://github.com/lalitmaurya47/MACMD
ECHO: Frequency-aware Hierarchical Encoding for Variable-length Signal
Pre-trained foundation models have demonstrated remarkable success in vision and language, yet their potential for general machine signal modeling-covering acoustic, vibration, and other industrial sensor data-remains under-explored. Existing approach using sub-band-based encoders has achieved competitive results but are limited by fixed input lengths, and the absence of explicit frequency positional encoding. In this work, we propose a novel foundation model that integrates an advanced band-split architecture with relative frequency positional embeddings, enabling precise spectral localization across arbitrary sampling configurations. The model supports inputs of arbitrary length without padding or segmentation, producing a concise embedding that retains both temporal and spectral fidelity. We evaluate our method on SIREN (https://github.com/yucongzh/SIREN), a newly introduced large-scale benchmark for machine signal encoding that unifies multiple datasets, including all DCASE task 2 challenges (2020-2025) and widely-used industrial signal corpora. Experimental results demonstrate consistent state-of-the-art performance in anomaly detection and fault identification, confirming the effectiveness and generalization capability of the proposed model. We open-sourced ECHO on https://github.com/yucongzh/ECHO.
Scene4U: Hierarchical Layered 3D Scene Reconstruction from Single Panoramic Image for Your Immerse Exploration
The reconstruction of immersive and realistic 3D scenes holds significant practical importance in various fields of computer vision and computer graphics. Typically, immersive and realistic scenes should be free from obstructions by dynamic objects, maintain global texture consistency, and allow for unrestricted exploration. The current mainstream methods for image-driven scene construction involves iteratively refining the initial image using a moving virtual camera to generate the scene. However, previous methods struggle with visual discontinuities due to global texture inconsistencies under varying camera poses, and they frequently exhibit scene voids caused by foreground-background occlusions. To this end, we propose a novel layered 3D scene reconstruction framework from panoramic image, named Scene4U. Specifically, Scene4U integrates an open-vocabulary segmentation model with a large language model to decompose a real panorama into multiple layers. Then, we employs a layered repair module based on diffusion model to restore occluded regions using visual cues and depth information, generating a hierarchical representation of the scene. The multi-layer panorama is then initialized as a 3D Gaussian Splatting representation, followed by layered optimization, which ultimately produces an immersive 3D scene with semantic and structural consistency that supports free exploration. Scene4U outperforms state-of-the-art method, improving by 24.24% in LPIPS and 24.40% in BRISQUE, while also achieving the fastest training speed. Additionally, to demonstrate the robustness of Scene4U and allow users to experience immersive scenes from various landmarks, we build WorldVista3D dataset for 3D scene reconstruction, which contains panoramic images of globally renowned sites. The implementation code and dataset will be released at https://github.com/LongHZ140516/Scene4U .
Dynamic Pseudo Label Optimization in Point-Supervised Nuclei Segmentation
Deep learning has achieved impressive results in nuclei segmentation, but the massive requirement for pixel-wise labels remains a significant challenge. To alleviate the annotation burden, existing methods generate pseudo masks for model training using point labels. However, the generated masks are inevitably different from the ground truth, and these dissimilarities are not handled reasonably during the network training, resulting in the subpar performance of the segmentation model. To tackle this issue, we propose a framework named DoNuSeg, enabling Dynamic pseudo label Optimization in point-supervised Nuclei Segmentation. Specifically, DoNuSeg takes advantage of class activation maps (CAMs) to adaptively capture regions with semantics similar to annotated points. To leverage semantic diversity in the hierarchical feature levels, we design a dynamic selection module to choose the optimal one among CAMs from different encoder blocks as pseudo masks. Meanwhile, a CAM-guided contrastive module is proposed to further enhance the accuracy of pseudo masks. In addition to exploiting the semantic information provided by CAMs, we consider location priors inherent to point labels, developing a task-decoupled structure for effectively differentiating nuclei. Extensive experiments demonstrate that DoNuSeg outperforms state-of-the-art point-supervised methods. The code is available at https://github.com/shinning0821/MICCAI24-DoNuSeg.
SAIP-Net: Enhancing Remote Sensing Image Segmentation via Spectral Adaptive Information Propagation
Semantic segmentation of remote sensing imagery demands precise spatial boundaries and robust intra-class consistency, challenging conventional hierarchical models. To address limitations arising from spatial domain feature fusion and insufficient receptive fields, this paper introduces SAIP-Net, a novel frequency-aware segmentation framework that leverages Spectral Adaptive Information Propagation. SAIP-Net employs adaptive frequency filtering and multi-scale receptive field enhancement to effectively suppress intra-class feature inconsistencies and sharpen boundary lines. Comprehensive experiments demonstrate significant performance improvements over state-of-the-art methods, highlighting the effectiveness of spectral-adaptive strategies combined with expanded receptive fields for remote sensing image segmentation.
Hierarchical Side-Tuning for Vision Transformers
Fine-tuning pre-trained Vision Transformers (ViT) has consistently demonstrated promising performance in the realm of visual recognition. However, adapting large pre-trained models to various tasks poses a significant challenge. This challenge arises from the need for each model to undergo an independent and comprehensive fine-tuning process, leading to substantial computational and memory demands. While recent advancements in Parameter-efficient Transfer Learning (PETL) have demonstrated their ability to achieve superior performance compared to full fine-tuning with a smaller subset of parameter updates, they tend to overlook dense prediction tasks such as object detection and segmentation. In this paper, we introduce Hierarchical Side-Tuning (HST), a novel PETL approach that enables ViT transfer to various downstream tasks effectively. Diverging from existing methods that exclusively fine-tune parameters within input spaces or certain modules connected to the backbone, we tune a lightweight and hierarchical side network (HSN) that leverages intermediate activations extracted from the backbone and generates multi-scale features to make predictions. To validate HST, we conducted extensive experiments encompassing diverse visual tasks, including classification, object detection, instance segmentation, and semantic segmentation. Notably, our method achieves state-of-the-art average Top-1 accuracy of 76.0% on VTAB-1k, all while fine-tuning a mere 0.78M parameters. When applied to object detection tasks on COCO testdev benchmark, HST even surpasses full fine-tuning and obtains better performance with 49.7 box AP and 43.2 mask AP using Cascade Mask R-CNN.
Hierarchical Feature Learning for Medical Point Clouds via State Space Model
Deep learning-based point cloud modeling has been widely investigated as an indispensable component of general shape analysis. Recently, transformer and state space model (SSM) have shown promising capacities in point cloud learning. However, limited research has been conducted on medical point clouds, which have great potential in disease diagnosis and treatment. This paper presents an SSM-based hierarchical feature learning framework for medical point cloud understanding. Specifically, we down-sample input into multiple levels through the farthest point sampling. At each level, we perform a series of k-nearest neighbor (KNN) queries to aggregate multi-scale structural information. To assist SSM in processing point clouds, we introduce coordinate-order and inside-out scanning strategies for efficient serialization of irregular points. Point features are calculated progressively from short neighbor sequences and long point sequences through vanilla and group Point SSM blocks, to capture both local patterns and long-range dependencies. To evaluate the proposed method, we build a large-scale medical point cloud dataset named MedPointS for anatomy classification, completion, and segmentation. Extensive experiments conducted on MedPointS demonstrate that our method achieves superior performance across all tasks. The dataset is available at https://flemme-docs.readthedocs.io/en/latest/medpoints.html. Code is merged to a public medical imaging platform: https://github.com/wlsdzyzl/flemme.
Seg-HGNN: Unsupervised and Light-Weight Image Segmentation with Hyperbolic Graph Neural Networks
Image analysis in the euclidean space through linear hyperspaces is well studied. However, in the quest for more effective image representations, we turn to hyperbolic manifolds. They provide a compelling alternative to capture complex hierarchical relationships in images with remarkably small dimensionality. To demonstrate hyperbolic embeddings' competence, we introduce a light-weight hyperbolic graph neural network for image segmentation, encompassing patch-level features in a very small embedding size. Our solution, Seg-HGNN, surpasses the current best unsupervised method by 2.5\%, 4\% on VOC-07, VOC-12 for localization, and by 0.8\%, 1.3\% on CUB-200, ECSSD for segmentation, respectively. With less than 7.5k trainable parameters, Seg-HGNN delivers effective and fast (approx 2 images/second) results on very standard GPUs like the GTX1650. This empirical evaluation presents compelling evidence of the efficacy and potential of hyperbolic representations for vision tasks.
SegFormer3D: an Efficient Transformer for 3D Medical Image Segmentation
The adoption of Vision Transformers (ViTs) based architectures represents a significant advancement in 3D Medical Image (MI) segmentation, surpassing traditional Convolutional Neural Network (CNN) models by enhancing global contextual understanding. While this paradigm shift has significantly enhanced 3D segmentation performance, state-of-the-art architectures require extremely large and complex architectures with large scale computing resources for training and deployment. Furthermore, in the context of limited datasets, often encountered in medical imaging, larger models can present hurdles in both model generalization and convergence. In response to these challenges and to demonstrate that lightweight models are a valuable area of research in 3D medical imaging, we present SegFormer3D, a hierarchical Transformer that calculates attention across multiscale volumetric features. Additionally, SegFormer3D avoids complex decoders and uses an all-MLP decoder to aggregate local and global attention features to produce highly accurate segmentation masks. The proposed memory efficient Transformer preserves the performance characteristics of a significantly larger model in a compact design. SegFormer3D democratizes deep learning for 3D medical image segmentation by offering a model with 33x less parameters and a 13x reduction in GFLOPS compared to the current state-of-the-art (SOTA). We benchmark SegFormer3D against the current SOTA models on three widely used datasets Synapse, BRaTs, and ACDC, achieving competitive results. Code: https://github.com/OSUPCVLab/SegFormer3D.git
Retro-FPN: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation
Learning per-point semantic features from the hierarchical feature pyramid is essential for point cloud semantic segmentation. However, most previous methods suffered from ambiguous region features or failed to refine per-point features effectively, which leads to information loss and ambiguous semantic identification. To resolve this, we propose Retro-FPN to model the per-point feature prediction as an explicit and retrospective refining process, which goes through all the pyramid layers to extract semantic features explicitly for each point. Its key novelty is a retro-transformer for summarizing semantic contexts from the previous layer and accordingly refining the features in the current stage. In this way, the categorization of each point is conditioned on its local semantic pattern. Specifically, the retro-transformer consists of a local cross-attention block and a semantic gate unit. The cross-attention serves to summarize the semantic pattern retrospectively from the previous layer. And the gate unit carefully incorporates the summarized contexts and refines the current semantic features. Retro-FPN is a pluggable neural network that applies to hierarchical decoders. By integrating Retro-FPN with three representative backbones, including both point-based and voxel-based methods, we show that Retro-FPN can significantly improve performance over state-of-the-art backbones. Comprehensive experiments on widely used benchmarks can justify the effectiveness of our design. The source is available at https://github.com/AllenXiangX/Retro-FPN
Efficient 3D Semantic Segmentation with Superpoint Transformer
We introduce a novel superpoint-based transformer architecture for efficient semantic segmentation of large-scale 3D scenes. Our method incorporates a fast algorithm to partition point clouds into a hierarchical superpoint structure, which makes our preprocessing 7 times faster than existing superpoint-based approaches. Additionally, we leverage a self-attention mechanism to capture the relationships between superpoints at multiple scales, leading to state-of-the-art performance on three challenging benchmark datasets: S3DIS (76.0% mIoU 6-fold validation), KITTI-360 (63.5% on Val), and DALES (79.6%). With only 212k parameters, our approach is up to 200 times more compact than other state-of-the-art models while maintaining similar performance. Furthermore, our model can be trained on a single GPU in 3 hours for a fold of the S3DIS dataset, which is 7x to 70x fewer GPU-hours than the best-performing methods. Our code and models are accessible at github.com/drprojects/superpoint_transformer.
Structural Text Segmentation of Legal Documents
The growing complexity of legal cases has lead to an increasing interest in legal information retrieval systems that can effectively satisfy user-specific information needs. However, such downstream systems typically require documents to be properly formatted and segmented, which is often done with relatively simple pre-processing steps, disregarding topical coherence of segments. Systems generally rely on representations of individual sentences or paragraphs, which may lack crucial context, or document-level representations, which are too long for meaningful search results. To address this issue, we propose a segmentation system that can predict topical coherence of sequential text segments spanning several paragraphs, effectively segmenting a document and providing a more balanced representation for downstream applications. We build our model on top of popular transformer networks and formulate structural text segmentation as topical change detection, by performing a series of independent classifications that allow for efficient fine-tuning on task-specific data. We crawl a novel dataset consisting of roughly 74,000 online Terms-of-Service documents, including hierarchical topic annotations, which we use for training. Results show that our proposed system significantly outperforms baselines, and adapts well to structural peculiarities of legal documents. We release both data and trained models to the research community for future work.https://github.com/dennlinger/TopicalChange
PartNeXt: A Next-Generation Dataset for Fine-Grained and Hierarchical 3D Part Understanding
Understanding objects at the level of their constituent parts is fundamental to advancing computer vision, graphics, and robotics. While datasets like PartNet have driven progress in 3D part understanding, their reliance on untextured geometries and expert-dependent annotation limits scalability and usability. We introduce PartNeXt, a next-generation dataset addressing these gaps with over 23,000 high-quality, textured 3D models annotated with fine-grained, hierarchical part labels across 50 categories. We benchmark PartNeXt on two tasks: (1) class-agnostic part segmentation, where state-of-the-art methods (e.g., PartField, SAMPart3D) struggle with fine-grained and leaf-level parts, and (2) 3D part-centric question answering, a new benchmark for 3D-LLMs that reveals significant gaps in open-vocabulary part grounding. Additionally, training Point-SAM on PartNeXt yields substantial gains over PartNet, underscoring the dataset's superior quality and diversity. By combining scalable annotation, texture-aware labels, and multi-task evaluation, PartNeXt opens new avenues for research in structured 3D understanding.
Bilateral Reference for High-Resolution Dichotomous Image Segmentation
We introduce a novel bilateral reference framework (BiRefNet) for high-resolution dichotomous image segmentation (DIS). It comprises two essential components: the localization module (LM) and the reconstruction module (RM) with our proposed bilateral reference (BiRef). The LM aids in object localization using global semantic information. Within the RM, we utilize BiRef for the reconstruction process, where hierarchical patches of images provide the source reference and gradient maps serve as the target reference. These components collaborate to generate the final predicted maps. We also introduce auxiliary gradient supervision to enhance focus on regions with finer details. Furthermore, we outline practical training strategies tailored for DIS to improve map quality and training process. To validate the general applicability of our approach, we conduct extensive experiments on four tasks to evince that BiRefNet exhibits remarkable performance, outperforming task-specific cutting-edge methods across all benchmarks. Our codes are available at https://github.com/ZhengPeng7/BiRefNet.
PlainMamba: Improving Non-Hierarchical Mamba in Visual Recognition
We present PlainMamba: a simple non-hierarchical state space model (SSM) designed for general visual recognition. The recent Mamba model has shown how SSMs can be highly competitive with other architectures on sequential data and initial attempts have been made to apply it to images. In this paper, we further adapt the selective scanning process of Mamba to the visual domain, enhancing its ability to learn features from two-dimensional images by (i) a continuous 2D scanning process that improves spatial continuity by ensuring adjacency of tokens in the scanning sequence, and (ii) direction-aware updating which enables the model to discern the spatial relations of tokens by encoding directional information. Our architecture is designed to be easy to use and easy to scale, formed by stacking identical PlainMamba blocks, resulting in a model with constant width throughout all layers. The architecture is further simplified by removing the need for special tokens. We evaluate PlainMamba on a variety of visual recognition tasks including image classification, semantic segmentation, object detection, and instance segmentation. Our method achieves performance gains over previous non-hierarchical models and is competitive with hierarchical alternatives. For tasks requiring high-resolution inputs, in particular, PlainMamba requires much less computing while maintaining high performance. Code and models are available at https://github.com/ChenhongyiYang/PlainMamba
PARTFIELD: Learning 3D Feature Fields for Part Segmentation and Beyond
We propose PartField, a feedforward approach for learning part-based 3D features, which captures the general concept of parts and their hierarchy without relying on predefined templates or text-based names, and can be applied to open-world 3D shapes across various modalities. PartField requires only a 3D feedforward pass at inference time, significantly improving runtime and robustness compared to prior approaches. Our model is trained by distilling 2D and 3D part proposals from a mix of labeled datasets and image segmentations on large unsupervised datasets, via a contrastive learning formulation. It produces a continuous feature field which can be clustered to yield a hierarchical part decomposition. Comparisons show that PartField is up to 20% more accurate and often orders of magnitude faster than other recent class-agnostic part-segmentation methods. Beyond single-shape part decomposition, consistency in the learned field emerges across shapes, enabling tasks such as co-segmentation and correspondence, which we demonstrate in several applications of these general-purpose, hierarchical, and consistent 3D feature fields. Check our Webpage! https://research.nvidia.com/labs/toronto-ai/partfield-release/
WISE-TTT:Worldwide Information Segmentation Enhancement
Video multi-target segmentation remains a major challenge in long sequences, mainly due to the inherent limitations of existing architectures in capturing global temporal dependencies. We introduce WISE-TTT, a synergistic architecture integrating Test-Time Training (TTT) mechanisms with the Transformer architecture through co-design. The TTT layer systematically compresses historical temporal data to generate hidden states containing worldwide information(Lossless memory to maintain long contextual integrity), while achieving multi-stage contextual aggregation through splicing. Crucially, our framework provides the first empirical validation that implementing worldwide information across multiple network layers is essential for optimal dependency utilization.Ablation studies show TTT modules at high-level features boost global modeling. This translates to 3.1% accuracy improvement(J&F metric) on Davis2017 long-term benchmarks -- the first proof of hierarchical context superiority in video segmentation. We provide the first systematic evidence that worldwide information critically impacts segmentation performance.
ContextFormer: Redefining Efficiency in Semantic Segmentation
Semantic segmentation assigns labels to pixels in images, a critical yet challenging task in computer vision. Convolutional methods, although capturing local dependencies well, struggle with long-range relationships. Vision Transformers (ViTs) excel in global context capture but are hindered by high computational demands, especially for high-resolution inputs. Most research optimizes the encoder architecture, leaving the bottleneck underexplored - a key area for enhancing performance and efficiency. We propose ContextFormer, a hybrid framework leveraging the strengths of CNNs and ViTs in the bottleneck to balance efficiency, accuracy, and robustness for real-time semantic segmentation. The framework's efficiency is driven by three synergistic modules: the Token Pyramid Extraction Module (TPEM) for hierarchical multi-scale representation, the Transformer and Branched DepthwiseConv (Trans-BDC) block for dynamic scale-aware feature modeling, and the Feature Merging Module (FMM) for robust integration with enhanced spatial and contextual consistency. Extensive experiments on ADE20K, Pascal Context, CityScapes, and COCO-Stuff datasets show ContextFormer significantly outperforms existing models, achieving state-of-the-art mIoU scores, setting a new benchmark for efficiency and performance. The codes will be made publicly available upon acceptance.
CLIPer: Hierarchically Improving Spatial Representation of CLIP for Open-Vocabulary Semantic Segmentation
Contrastive Language-Image Pre-training (CLIP) exhibits strong zero-shot classification ability on various image-level tasks, leading to the research to adapt CLIP for pixel-level open-vocabulary semantic segmentation without additional training. The key is to improve spatial representation of image-level CLIP, such as replacing self-attention map at last layer with self-self attention map or vision foundation model based attention map. In this paper, we present a novel hierarchical framework, named CLIPer, that hierarchically improves spatial representation of CLIP. The proposed CLIPer includes an early-layer fusion module and a fine-grained compensation module. We observe that, the embeddings and attention maps at early layers can preserve spatial structural information. Inspired by this, we design the early-layer fusion module to generate segmentation map with better spatial coherence. Afterwards, we employ a fine-grained compensation module to compensate the local details using the self-attention maps of diffusion model. We conduct the experiments on seven segmentation datasets. Our proposed CLIPer achieves the state-of-the-art performance on these datasets. For instance, using ViT-L, CLIPer has the mIoU of 69.8% and 43.3% on VOC and COCO Object, outperforming ProxyCLIP by 9.2% and 4.1% respectively.
Enhancing Long Video Understanding via Hierarchical Event-Based Memory
Recently, integrating visual foundation models into large language models (LLMs) to form video understanding systems has attracted widespread attention. Most of the existing models compress diverse semantic information within the whole video and feed it into LLMs for content comprehension. While this method excels in short video understanding, it may result in a blend of multiple event information in long videos due to coarse compression, which causes information redundancy. Consequently, the semantics of key events might be obscured within the vast information that hinders the model's understanding capabilities. To address this issue, we propose a Hierarchical Event-based Memory-enhanced LLM (HEM-LLM) for better understanding of long videos. Firstly, we design a novel adaptive sequence segmentation scheme to divide multiple events within long videos. In this way, we can perform individual memory modeling for each event to establish intra-event contextual connections, thereby reducing information redundancy. Secondly, while modeling current event, we compress and inject the information of the previous event to enhance the long-term inter-event dependencies in videos. Finally, we perform extensive experiments on various video understanding tasks and the results show that our model achieves state-of-the-art performances.
FasterViT: Fast Vision Transformers with Hierarchical Attention
We design a new family of hybrid CNN-ViT neural networks, named FasterViT, with a focus on high image throughput for computer vision (CV) applications. FasterViT combines the benefits of fast local representation learning in CNNs and global modeling properties in ViT. Our newly introduced Hierarchical Attention (HAT) approach decomposes global self-attention with quadratic complexity into a multi-level attention with reduced computational costs. We benefit from efficient window-based self-attention. Each window has access to dedicated carrier tokens that participate in local and global representation learning. At a high level, global self-attentions enable the efficient cross-window communication at lower costs. FasterViT achieves a SOTA Pareto-front in terms of accuracy \vs image throughput. We have extensively validated its effectiveness on various CV tasks including classification, object detection and segmentation. We also show that HAT can be used as a plug-and-play module for existing networks and enhance them. We further demonstrate significantly faster and more accurate performance than competitive counterparts for images with high resolution. Code is available at https://github.com/NVlabs/FasterViT.
Dynamic Chunking for End-to-End Hierarchical Sequence Modeling
Despite incredible progress in language models (LMs) in recent years, largely resulting from moving away from specialized models designed for specific tasks to general models based on powerful architectures (e.g. the Transformer) that learn everything from raw data, pre-processing steps such as tokenization remain a barrier to true end-to-end foundation models. We introduce a collection of new techniques that enable a dynamic chunking mechanism which automatically learns content -- and context -- dependent segmentation strategies learned jointly with the rest of the model. Incorporating this into an explicit hierarchical network (H-Net) allows replacing the (implicitly hierarchical) tokenization-LM-detokenization pipeline with a single model learned fully end-to-end. When compute- and data- matched, an H-Net with one stage of hierarchy operating at the byte level outperforms a strong Transformer language model operating over BPE tokens. Iterating the hierarchy to multiple stages further increases its performance by modeling multiple levels of abstraction, demonstrating significantly better scaling with data and matching a token-based Transformer of twice its size. H-Nets pretrained on English show significantly increased character-level robustness, and qualitatively learn meaningful data-dependent chunking strategies without any heuristics or explicit supervision. Finally, the H-Net's improvement over tokenized pipelines is further increased in languages and modalities with weaker tokenization heuristics, such as Chinese and code, or DNA sequences (nearly 4x improvement in data efficiency over baselines), showing the potential of true end-to-end models that learn and scale better from unprocessed data.
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures. The code and models are publicly available at~https://github.com/microsoft/Swin-Transformer.
Iwin Transformer: Hierarchical Vision Transformer using Interleaved Windows
We introduce Iwin Transformer, a novel position-embedding-free hierarchical vision transformer, which can be fine-tuned directly from low to high resolution, through the collaboration of innovative interleaved window attention and depthwise separable convolution. This approach uses attention to connect distant tokens and applies convolution to link neighboring tokens, enabling global information exchange within a single module, overcoming Swin Transformer's limitation of requiring two consecutive blocks to approximate global attention. Extensive experiments on visual benchmarks demonstrate that Iwin Transformer exhibits strong competitiveness in tasks such as image classification (87.4 top-1 accuracy on ImageNet-1K), semantic segmentation and video action recognition. We also validate the effectiveness of the core component in Iwin as a standalone module that can seamlessly replace the self-attention module in class-conditional image generation. The concepts and methods introduced by the Iwin Transformer have the potential to inspire future research, like Iwin 3D Attention in video generation. The code and models are available at https://github.com/cominder/Iwin-Transformer.
Few-shot Structure-Informed Machinery Part Segmentation with Foundation Models and Graph Neural Networks
This paper proposes a novel approach to few-shot semantic segmentation for machinery with multiple parts that exhibit spatial and hierarchical relationships. Our method integrates the foundation models CLIPSeg and Segment Anything Model (SAM) with the interest point detector SuperPoint and a graph convolutional network (GCN) to accurately segment machinery parts. By providing 1 to 25 annotated samples, our model, evaluated on a purely synthetic dataset depicting a truck-mounted loading crane, achieves effective segmentation across various levels of detail. Training times are kept under five minutes on consumer GPUs. The model demonstrates robust generalization to real data, achieving a qualitative synthetic-to-real generalization with a J&F score of 92.2 on real data using 10 synthetic support samples. When benchmarked on the DAVIS 2017 dataset, it achieves a J&F score of 71.5 in semi-supervised video segmentation with three support samples. This method's fast training times and effective generalization to real data make it a valuable tool for autonomous systems interacting with machinery and infrastructure, and illustrate the potential of combined and orchestrated foundation models for few-shot segmentation tasks.
SegLLM: Multi-round Reasoning Segmentation
We present SegLLM, a novel multi-round interactive reasoning segmentation model that enhances LLM-based segmentation by exploiting conversational memory of both visual and textual outputs. By leveraging a mask-aware multimodal LLM, SegLLM re-integrates previous segmentation results into its input stream, enabling it to reason about complex user intentions and segment objects in relation to previously identified entities, including positional, interactional, and hierarchical relationships, across multiple interactions. This capability allows SegLLM to respond to visual and text queries in a chat-like manner. Evaluated on the newly curated MRSeg benchmark, SegLLM outperforms existing methods in multi-round interactive reasoning segmentation by over 20%. Additionally, we observed that training on multi-round reasoning segmentation data enhances performance on standard single-round referring segmentation and localization tasks, resulting in a 5.5% increase in cIoU for referring expression segmentation and a 4.5% improvement in [email protected] for referring expression localization.
Adapting Segment Anything Model for Unseen Object Instance Segmentation
Unseen Object Instance Segmentation (UOIS) is crucial for autonomous robots operating in unstructured environments. Previous approaches require full supervision on large-scale tabletop datasets for effective pretraining. In this paper, we propose UOIS-SAM, a data-efficient solution for the UOIS task that leverages SAM's high accuracy and strong generalization capabilities. UOIS-SAM integrates two key components: (i) a Heatmap-based Prompt Generator (HPG) to generate class-agnostic point prompts with precise foreground prediction, and (ii) a Hierarchical Discrimination Network (HDNet) that adapts SAM's mask decoder, mitigating issues introduced by the SAM baseline, such as background confusion and over-segmentation, especially in scenarios involving occlusion and texture-rich objects. Extensive experimental results on OCID, OSD, and additional photometrically challenging datasets including PhoCAL and HouseCat6D, demonstrate that, even using only 10% of the training samples compared to previous methods, UOIS-SAM achieves state-of-the-art performance in unseen object segmentation, highlighting its effectiveness and robustness in various tabletop scenes.
FeatEnHancer: Enhancing Hierarchical Features for Object Detection and Beyond Under Low-Light Vision
Extracting useful visual cues for the downstream tasks is especially challenging under low-light vision. Prior works create enhanced representations by either correlating visual quality with machine perception or designing illumination-degrading transformation methods that require pre-training on synthetic datasets. We argue that optimizing enhanced image representation pertaining to the loss of the downstream task can result in more expressive representations. Therefore, in this work, we propose a novel module, FeatEnHancer, that hierarchically combines multiscale features using multiheaded attention guided by task-related loss function to create suitable representations. Furthermore, our intra-scale enhancement improves the quality of features extracted at each scale or level, as well as combines features from different scales in a way that reflects their relative importance for the task at hand. FeatEnHancer is a general-purpose plug-and-play module and can be incorporated into any low-light vision pipeline. We show with extensive experimentation that the enhanced representation produced with FeatEnHancer significantly and consistently improves results in several low-light vision tasks, including dark object detection (+5.7 mAP on ExDark), face detection (+1.5 mAPon DARK FACE), nighttime semantic segmentation (+5.1 mIoU on ACDC ), and video object detection (+1.8 mAP on DarkVision), highlighting the effectiveness of enhancing hierarchical features under low-light vision.
Multi-interactive Feature Learning and a Full-time Multi-modality Benchmark for Image Fusion and Segmentation
Multi-modality image fusion and segmentation play a vital role in autonomous driving and robotic operation. Early efforts focus on boosting the performance for only one task, e.g., fusion or segmentation, making it hard to reach~`Best of Both Worlds'. To overcome this issue, in this paper, we propose a Multi-interactive Feature learning architecture for image fusion and Segmentation, namely SegMiF, and exploit dual-task correlation to promote the performance of both tasks. The SegMiF is of a cascade structure, containing a fusion sub-network and a commonly used segmentation sub-network. By slickly bridging intermediate features between two components, the knowledge learned from the segmentation task can effectively assist the fusion task. Also, the benefited fusion network supports the segmentation one to perform more pretentiously. Besides, a hierarchical interactive attention block is established to ensure fine-grained mapping of all the vital information between two tasks, so that the modality/semantic features can be fully mutual-interactive. In addition, a dynamic weight factor is introduced to automatically adjust the corresponding weights of each task, which can balance the interactive feature correspondence and break through the limitation of laborious tuning. Furthermore, we construct a smart multi-wave binocular imaging system and collect a full-time multi-modality benchmark with 15 annotated pixel-level categories for image fusion and segmentation. Extensive experiments on several public datasets and our benchmark demonstrate that the proposed method outputs visually appealing fused images and perform averagely 7.66% higher segmentation mIoU in the real-world scene than the state-of-the-art approaches. The source code and benchmark are available at https://github.com/JinyuanLiu-CV/SegMiF.
Active Coarse-to-Fine Segmentation of Moveable Parts from Real Images
We introduce the first active learning (AL) model for high-accuracy instance segmentation of moveable parts from RGB images of real indoor scenes. Specifically, our goal is to obtain fully validated segmentation results by humans while minimizing manual effort. To this end, we employ a transformer that utilizes a masked-attention mechanism to supervise the active segmentation. To enhance the network tailored to moveable parts, we introduce a coarse-to-fine AL approach which first uses an object-aware masked attention and then a pose-aware one, leveraging the hierarchical nature of the problem and a correlation between moveable parts and object poses and interaction directions. When applying our AL model to 2,000 real images, we obtain fully validated moveable part segmentations with semantic labels, by only needing to manually annotate 11.45% of the images. This translates to significant (60%) time saving over manual effort required by the best non-AL model to attain the same segmentation accuracy. At last, we contribute a dataset of 2,550 real images with annotated moveable parts, demonstrating its superior quality and diversity over the best alternatives.
OPERA: Omni-Supervised Representation Learning with Hierarchical Supervisions
The pretrain-finetune paradigm in modern computer vision facilitates the success of self-supervised learning, which tends to achieve better transferability than supervised learning. However, with the availability of massive labeled data, a natural question emerges: how to train a better model with both self and full supervision signals? In this paper, we propose Omni-suPErvised Representation leArning with hierarchical supervisions (OPERA) as a solution. We provide a unified perspective of supervisions from labeled and unlabeled data and propose a unified framework of fully supervised and self-supervised learning. We extract a set of hierarchical proxy representations for each image and impose self and full supervisions on the corresponding proxy representations. Extensive experiments on both convolutional neural networks and vision transformers demonstrate the superiority of OPERA in image classification, segmentation, and object detection. Code is available at: https://github.com/wangck20/OPERA.
DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation
Automatic organ segmentation is an important yet challenging problem for medical image analysis. The pancreas is an abdominal organ with very high anatomical variability. This inhibits previous segmentation methods from achieving high accuracies, especially compared to other organs such as the liver, heart or kidneys. In this paper, we present a probabilistic bottom-up approach for pancreas segmentation in abdominal computed tomography (CT) scans, using multi-level deep convolutional networks (ConvNets). We propose and evaluate several variations of deep ConvNets in the context of hierarchical, coarse-to-fine classification on image patches and regions, i.e. superpixels. We first present a dense labeling of local image patches via P{-}ConvNet and nearest neighbor fusion. Then we describe a regional ConvNet (R_1{-}ConvNet) that samples a set of bounding boxes around each image superpixel at different scales of contexts in a "zoom-out" fashion. Our ConvNets learn to assign class probabilities for each superpixel region of being pancreas. Last, we study a stacked R_2{-}ConvNet leveraging the joint space of CT intensities and the P{-}ConvNet dense probability maps. Both 3D Gaussian smoothing and 2D conditional random fields are exploited as structured predictions for post-processing. We evaluate on CT images of 82 patients in 4-fold cross-validation. We achieve a Dice Similarity Coefficient of 83.6pm6.3% in training and 71.8pm10.7% in testing.
Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images
Semantic segmentation of brain tumors is a fundamental medical image analysis task involving multiple MRI imaging modalities that can assist clinicians in diagnosing the patient and successively studying the progression of the malignant entity. In recent years, Fully Convolutional Neural Networks (FCNNs) approaches have become the de facto standard for 3D medical image segmentation. The popular "U-shaped" network architecture has achieved state-of-the-art performance benchmarks on different 2D and 3D semantic segmentation tasks and across various imaging modalities. However, due to the limited kernel size of convolution layers in FCNNs, their performance of modeling long-range information is sub-optimal, and this can lead to deficiencies in the segmentation of tumors with variable sizes. On the other hand, transformer models have demonstrated excellent capabilities in capturing such long-range information in multiple domains, including natural language processing and computer vision. Inspired by the success of vision transformers and their variants, we propose a novel segmentation model termed Swin UNEt TRansformers (Swin UNETR). Specifically, the task of 3D brain tumor semantic segmentation is reformulated as a sequence to sequence prediction problem wherein multi-modal input data is projected into a 1D sequence of embedding and used as an input to a hierarchical Swin transformer as the encoder. The swin transformer encoder extracts features at five different resolutions by utilizing shifted windows for computing self-attention and is connected to an FCNN-based decoder at each resolution via skip connections. We have participated in BraTS 2021 segmentation challenge, and our proposed model ranks among the top-performing approaches in the validation phase. Code: https://monai.io/research/swin-unetr
TransKD: Transformer Knowledge Distillation for Efficient Semantic Segmentation
Large pre-trained transformers are on top of contemporary semantic segmentation benchmarks, but come with high computational cost and a lengthy training. To lift this constraint, we look at efficient semantic segmentation from a perspective of comprehensive knowledge distillation and consider to bridge the gap between multi-source knowledge extractions and transformer-specific patch embeddings. We put forward the Transformer-based Knowledge Distillation (TransKD) framework which learns compact student transformers by distilling both feature maps and patch embeddings of large teacher transformers, bypassing the long pre-training process and reducing the FLOPs by >85.0%. Specifically, we propose two fundamental and two optimization modules: (1) Cross Selective Fusion (CSF) enables knowledge transfer between cross-stage features via channel attention and feature map distillation within hierarchical transformers; (2) Patch Embedding Alignment (PEA) performs dimensional transformation within the patchifying process to facilitate the patch embedding distillation; (3) Global-Local Context Mixer (GL-Mixer) extracts both global and local information of a representative embedding; (4) Embedding Assistant (EA) acts as an embedding method to seamlessly bridge teacher and student models with the teacher's number of channels. Experiments on Cityscapes, ACDC, and NYUv2 datasets show that TransKD outperforms state-of-the-art distillation frameworks and rivals the time-consuming pre-training method. Code is available at https://github.com/RuipingL/TransKD.
HBFormer: A Hybrid-Bridge Transformer for Microtumor and Miniature Organ Segmentation
Medical image segmentation is a cornerstone of modern clinical diagnostics. While Vision Transformers that leverage shifted window-based self-attention have established new benchmarks in this field, they are often hampered by a critical limitation: their localized attention mechanism struggles to effectively fuse local details with global context. This deficiency is particularly detrimental to challenging tasks such as the segmentation of microtumors and miniature organs, where both fine-grained boundary definition and broad contextual understanding are paramount. To address this gap, we propose HBFormer, a novel Hybrid-Bridge Transformer architecture. The 'Hybrid' design of HBFormer synergizes a classic U-shaped encoder-decoder framework with a powerful Swin Transformer backbone for robust hierarchical feature extraction. The core innovation lies in its 'Bridge' mechanism, a sophisticated nexus for multi-scale feature integration. This bridge is architecturally embodied by our novel Multi-Scale Feature Fusion (MFF) decoder. Departing from conventional symmetric designs, the MFF decoder is engineered to fuse multi-scale features from the encoder with global contextual information. It achieves this through a synergistic combination of channel and spatial attention modules, which are constructed from a series of dilated and depth-wise convolutions. These components work in concert to create a powerful feature bridge that explicitly captures long-range dependencies and refines object boundaries with exceptional precision. Comprehensive experiments on challenging medical image segmentation datasets, including multi-organ, liver tumor, and bladder tumor benchmarks, demonstrate that HBFormer achieves state-of-the-art results, showcasing its outstanding capabilities in microtumor and miniature organ segmentation. Code and models are available at: https://github.com/lzeeorno/HBFormer.
MSDNet: Multi-Scale Decoder for Few-Shot Semantic Segmentation via Transformer-Guided Prototyping
Few-shot Semantic Segmentation addresses the challenge of segmenting objects in query images with only a handful of annotated examples. However, many previous state-of-the-art methods either have to discard intricate local semantic features or suffer from high computational complexity. To address these challenges, we propose a new Few-shot Semantic Segmentation framework based on the Transformer architecture. Our approach introduces the spatial transformer decoder and the contextual mask generation module to improve the relational understanding between support and query images. Moreover, we introduce a multi scale decoder to refine the segmentation mask by incorporating features from different resolutions in a hierarchical manner. Additionally, our approach integrates global features from intermediate encoder stages to improve contextual understanding, while maintaining a lightweight structure to reduce complexity. This balance between performance and efficiency enables our method to achieve competitive results on benchmark datasets such as PASCAL-5^i and COCO-20^i in both 1-shot and 5-shot settings. Notably, our model with only 1.5 million parameters demonstrates competitive performance while overcoming limitations of existing methodologies. https://github.com/amirrezafateh/MSDNet
Lester: rotoscope animation through video object segmentation and tracking
This article introduces Lester, a novel method to automatically synthetise retro-style 2D animations from videos. The method approaches the challenge mainly as an object segmentation and tracking problem. Video frames are processed with the Segment Anything Model (SAM) and the resulting masks are tracked through subsequent frames with DeAOT, a method of hierarchical propagation for semi-supervised video object segmentation. The geometry of the masks' contours is simplified with the Douglas-Peucker algorithm. Finally, facial traits, pixelation and a basic shadow effect can be optionally added. The results show that the method exhibits an excellent temporal consistency and can correctly process videos with different poses and appearances, dynamic shots, partial shots and diverse backgrounds. The proposed method provides a more simple and deterministic approach than diffusion models based video-to-video translation pipelines, which suffer from temporal consistency problems and do not cope well with pixelated and schematic outputs. The method is also much most practical than techniques based on 3D human pose estimation, which require custom handcrafted 3D models and are very limited with respect to the type of scenes they can process.
Betrayed by Attention: A Simple yet Effective Approach for Self-supervised Video Object Segmentation
In this paper, we propose a simple yet effective approach for self-supervised video object segmentation (VOS). Our key insight is that the inherent structural dependencies present in DINO-pretrained Transformers can be leveraged to establish robust spatio-temporal correspondences in videos. Furthermore, simple clustering on this correspondence cue is sufficient to yield competitive segmentation results. Previous self-supervised VOS techniques majorly resort to auxiliary modalities or utilize iterative slot attention to assist in object discovery, which restricts their general applicability and imposes higher computational requirements. To deal with these challenges, we develop a simplified architecture that capitalizes on the emerging objectness from DINO-pretrained Transformers, bypassing the need for additional modalities or slot attention. Specifically, we first introduce a single spatio-temporal Transformer block to process the frame-wise DINO features and establish spatio-temporal dependencies in the form of self-attention. Subsequently, utilizing these attention maps, we implement hierarchical clustering to generate object segmentation masks. To train the spatio-temporal block in a fully self-supervised manner, we employ semantic and dynamic motion consistency coupled with entropy normalization. Our method demonstrates state-of-the-art performance across multiple unsupervised VOS benchmarks and particularly excels in complex real-world multi-object video segmentation tasks such as DAVIS-17-Unsupervised and YouTube-VIS-19. The code and model checkpoints will be released at https://github.com/shvdiwnkozbw/SSL-UVOS.
D-Former: A U-shaped Dilated Transformer for 3D Medical Image Segmentation
Computer-aided medical image segmentation has been applied widely in diagnosis and treatment to obtain clinically useful information of shapes and volumes of target organs and tissues. In the past several years, convolutional neural network (CNN) based methods (e.g., U-Net) have dominated this area, but still suffered from inadequate long-range information capturing. Hence, recent work presented computer vision Transformer variants for medical image segmentation tasks and obtained promising performances. Such Transformers model long-range dependency by computing pair-wise patch relations. However, they incur prohibitive computational costs, especially on 3D medical images (e.g., CT and MRI). In this paper, we propose a new method called Dilated Transformer, which conducts self-attention for pair-wise patch relations captured alternately in local and global scopes. Inspired by dilated convolution kernels, we conduct the global self-attention in a dilated manner, enlarging receptive fields without increasing the patches involved and thus reducing computational costs. Based on this design of Dilated Transformer, we construct a U-shaped encoder-decoder hierarchical architecture called D-Former for 3D medical image segmentation. Experiments on the Synapse and ACDC datasets show that our D-Former model, trained from scratch, outperforms various competitive CNN-based or Transformer-based segmentation models at a low computational cost without time-consuming per-training process.
Learning to Aggregate Multi-Scale Context for Instance Segmentation in Remote Sensing Images
The task of instance segmentation in remote sensing images, aiming at performing per-pixel labeling of objects at instance level, is of great importance for various civil applications. Despite previous successes, most existing instance segmentation methods designed for natural images encounter sharp performance degradations when they are directly applied to top-view remote sensing images. Through careful analysis, we observe that the challenges mainly come from the lack of discriminative object features due to severe scale variations, low contrasts, and clustered distributions. In order to address these problems, a novel context aggregation network (CATNet) is proposed to improve the feature extraction process. The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid (SCP), and hierarchical region of interest extractor (HRoIE), to aggregate global visual context at feature, spatial, and instance domains, respectively. DenseFPN is a multi-scale feature propagation module that establishes more flexible information flows by adopting inter-level residual connections, cross-level dense connections, and feature re-weighting strategy. Leveraging the attention mechanism, SCP further augments the features by aggregating global spatial context into local regions. For each instance, HRoIE adaptively generates RoI features for different downstream tasks. Extensive evaluations of the proposed scheme on iSAID, DIOR, NWPU VHR-10, and HRSID datasets demonstrate that the proposed approach outperforms state-of-the-arts under similar computational costs. Source code and pre-trained models are available at https://github.com/yeliudev/CATNet.
RadDiagSeg-M: A Vision Language Model for Joint Diagnosis and Multi-Target Segmentation in Radiology
Most current medical vision language models struggle to jointly generate diagnostic text and pixel-level segmentation masks in response to complex visual questions. This represents a major limitation towards clinical application, as assistive systems that fail to provide both modalities simultaneously offer limited value to medical practitioners. To alleviate this limitation, we first introduce RadDiagSeg-D, a dataset combining abnormality detection, diagnosis, and multi-target segmentation into a unified and hierarchical task. RadDiagSeg-D covers multiple imaging modalities and is precisely designed to support the development of models that produce descriptive text and corresponding segmentation masks in tandem. Subsequently, we leverage the dataset to propose a novel vision-language model, RadDiagSeg-M, capable of joint abnormality detection, diagnosis, and flexible segmentation. RadDiagSeg-M provides highly informative and clinically useful outputs, effectively addressing the need to enrich contextual information for assistive diagnosis. Finally, we benchmark RadDiagSeg-M and showcase its strong performance across all components involved in the task of multi-target text-and-mask generation, establishing a robust and competitive baseline.
SRMA-Mamba: Spatial Reverse Mamba Attention Network for Pathological Liver Segmentation in MRI Volumes
Liver Cirrhosis plays a critical role in the prognosis of chronic liver disease. Early detection and timely intervention are critical in significantly reducing mortality rates. However, the intricate anatomical architecture and diverse pathological changes of liver tissue complicate the accurate detection and characterization of lesions in clinical settings. Existing methods underutilize the spatial anatomical details in volumetric MRI data, thereby hindering their clinical effectiveness and explainability. To address this challenge, we introduce a novel Mamba-based network, SRMA-Mamba, designed to model the spatial relationships within the complex anatomical structures of MRI volumes. By integrating the Spatial Anatomy-Based Mamba module (SABMamba), SRMA-Mamba performs selective Mamba scans within liver cirrhotic tissues and combines anatomical information from the sagittal, coronal, and axial planes to construct a global spatial context representation, enabling efficient volumetric segmentation of pathological liver structures. Furthermore, we introduce the Spatial Reverse Attention module (SRMA), designed to progressively refine cirrhotic details in the segmentation map, utilizing both the coarse segmentation map and hierarchical encoding features. Extensive experiments demonstrate that SRMA-Mamba surpasses state-of-the-art methods, delivering exceptional performance in 3D pathological liver segmentation. Our code is available for public: https://github.com/JunZengz/SRMA-Mamba.
PromptTSS: A Prompting-Based Approach for Interactive Multi-Granularity Time Series Segmentation
Multivariate time series data, collected across various fields such as manufacturing and wearable technology, exhibit states at multiple levels of granularity, from coarse-grained system behaviors to fine-grained, detailed events. Effectively segmenting and integrating states across these different granularities is crucial for tasks like predictive maintenance and performance optimization. However, existing time series segmentation methods face two key challenges: (1) the inability to handle multiple levels of granularity within a unified model, and (2) limited adaptability to new, evolving patterns in dynamic environments. To address these challenges, we propose PromptTSS, a novel framework for time series segmentation with multi-granularity states. PromptTSS uses a unified model with a prompting mechanism that leverages label and boundary information to guide segmentation, capturing both coarse- and fine-grained patterns while adapting dynamically to unseen patterns. Experiments show PromptTSS improves accuracy by 24.49% in multi-granularity segmentation, 17.88% in single-granularity segmentation, and up to 599.24% in transfer learning, demonstrating its adaptability to hierarchical states and evolving time series dynamics. Our code is available at https://github.com/blacksnail789521/PromptTSS.
A Large Convolutional Neural Network for Clinical Target and Multi-organ Segmentation in Gynecologic Brachytherapy with Multi-stage Learning
Purpose: Accurate segmentation of clinical target volumes (CTV) and organs-at-risk is crucial for optimizing gynecologic brachytherapy (GYN-BT) treatment planning. However, anatomical variability, low soft-tissue contrast in CT imaging, and limited annotated datasets pose significant challenges. This study presents GynBTNet, a novel multi-stage learning framework designed to enhance segmentation performance through self-supervised pretraining and hierarchical fine-tuning strategies. Methods: GynBTNet employs a three-stage training strategy: (1) self-supervised pretraining on large-scale CT datasets using sparse submanifold convolution to capture robust anatomical representations, (2) supervised fine-tuning on a comprehensive multi-organ segmentation dataset to refine feature extraction, and (3) task-specific fine-tuning on a dedicated GYN-BT dataset to optimize segmentation performance for clinical applications. The model was evaluated against state-of-the-art methods using the Dice Similarity Coefficient (DSC), 95th percentile Hausdorff Distance (HD95), and Average Surface Distance (ASD). Results: Our GynBTNet achieved superior segmentation performance, significantly outperforming nnU-Net and Swin-UNETR. Notably, it yielded a DSC of 0.837 +/- 0.068 for CTV, 0.940 +/- 0.052 for the bladder, 0.842 +/- 0.070 for the rectum, and 0.871 +/- 0.047 for the uterus, with reduced HD95 and ASD compared to baseline models. Self-supervised pretraining led to consistent performance improvements, particularly for structures with complex boundaries. However, segmentation of the sigmoid colon remained challenging, likely due to anatomical ambiguities and inter-patient variability. Statistical significance analysis confirmed that GynBTNet's improvements were significant compared to baseline models.
The Devil is in Temporal Token: High Quality Video Reasoning Segmentation
Existing methods for Video Reasoning Segmentation rely heavily on a single special token to represent the object in the keyframe or the entire video, inadequately capturing spatial complexity and inter-frame motion. To overcome these challenges, we propose VRS-HQ, an end-to-end video reasoning segmentation approach that leverages Multimodal Large Language Models (MLLMs) to inject rich spatiotemporal features into hierarchical tokens.Our key innovations include a Temporal Dynamic Aggregation (TDA) and a Token-driven Keyframe Selection (TKS). Specifically, we design frame-level <SEG> and temporal-level <TAK> tokens that utilize MLLM's autoregressive learning to effectively capture both local and global information. Subsequently, we apply a similarity-based weighted fusion and frame selection strategy, then utilize SAM2 to perform keyframe segmentation and propagation. To enhance keyframe localization accuracy, the TKS filters keyframes based on SAM2's occlusion scores during inference. VRS-HQ achieves state-of-the-art performance on ReVOS, surpassing VISA by 5.9%/12.5%/9.1% in J&F scores across the three subsets. These results highlight the strong temporal reasoning and segmentation capabilities of our method. Code and model weights will be released at VRS-HQ.
MSVM-UNet: Multi-Scale Vision Mamba UNet for Medical Image Segmentation
State Space Models (SSMs), especially Mamba, have shown great promise in medical image segmentation due to their ability to model long-range dependencies with linear computational complexity. However, accurate medical image segmentation requires the effective learning of both multi-scale detailed feature representations and global contextual dependencies. Although existing works have attempted to address this issue by integrating CNNs and SSMs to leverage their respective strengths, they have not designed specialized modules to effectively capture multi-scale feature representations, nor have they adequately addressed the directional sensitivity problem when applying Mamba to 2D image data. To overcome these limitations, we propose a Multi-Scale Vision Mamba UNet model for medical image segmentation, termed MSVM-UNet. Specifically, by introducing multi-scale convolutions in the VSS blocks, we can more effectively capture and aggregate multi-scale feature representations from the hierarchical features of the VMamba encoder and better handle 2D visual data. Additionally, the large kernel patch expanding (LKPE) layers achieve more efficient upsampling of feature maps by simultaneously integrating spatial and channel information. Extensive experiments on the Synapse and ACDC datasets demonstrate that our approach is more effective than some state-of-the-art methods in capturing and aggregating multi-scale feature representations and modeling long-range dependencies between pixels.
FineBio: A Fine-Grained Video Dataset of Biological Experiments with Hierarchical Annotation
In the development of science, accurate and reproducible documentation of the experimental process is crucial. Automatic recognition of the actions in experiments from videos would help experimenters by complementing the recording of experiments. Towards this goal, we propose FineBio, a new fine-grained video dataset of people performing biological experiments. The dataset consists of multi-view videos of 32 participants performing mock biological experiments with a total duration of 14.5 hours. One experiment forms a hierarchical structure, where a protocol consists of several steps, each further decomposed into a set of atomic operations. The uniqueness of biological experiments is that while they require strict adherence to steps described in each protocol, there is freedom in the order of atomic operations. We provide hierarchical annotation on protocols, steps, atomic operations, object locations, and their manipulation states, providing new challenges for structured activity understanding and hand-object interaction recognition. To find out challenges on activity understanding in biological experiments, we introduce baseline models and results on four different tasks, including (i) step segmentation, (ii) atomic operation detection (iii) object detection, and (iv) manipulated/affected object detection. Dataset and code are available from https://github.com/aistairc/FineBio.
Multi-Granularity Distillation Scheme Towards Lightweight Semi-Supervised Semantic Segmentation
Albeit with varying degrees of progress in the field of Semi-Supervised Semantic Segmentation, most of its recent successes are involved in unwieldy models and the lightweight solution is still not yet explored. We find that existing knowledge distillation techniques pay more attention to pixel-level concepts from labeled data, which fails to take more informative cues within unlabeled data into account. Consequently, we offer the first attempt to provide lightweight SSSS models via a novel multi-granularity distillation (MGD) scheme, where multi-granularity is captured from three aspects: i) complementary teacher structure; ii) labeled-unlabeled data cooperative distillation; iii) hierarchical and multi-levels loss setting. Specifically, MGD is formulated as a labeled-unlabeled data cooperative distillation scheme, which helps to take full advantage of diverse data characteristics that are essential in the semi-supervised setting. Image-level semantic-sensitive loss, region-level content-aware loss, and pixel-level consistency loss are set up to enrich hierarchical distillation abstraction via structurally complementary teachers. Experimental results on PASCAL VOC2012 and Cityscapes reveal that MGD can outperform the competitive approaches by a large margin under diverse partition protocols. For example, the performance of ResNet-18 and MobileNet-v2 backbone is boosted by 11.5% and 4.6% respectively under 1/16 partition protocol on Cityscapes. Although the FLOPs of the model backbone is compressed by 3.4-5.3x (ResNet-18) and 38.7-59.6x (MobileNetv2), the model manages to achieve satisfactory segmentation results.
Towards a Single Unified Model for Effective Detection, Segmentation, and Diagnosis of Eight Major Cancers Using a Large Collection of CT Scans
Human readers or radiologists routinely perform full-body multi-organ multi-disease detection and diagnosis in clinical practice, while most medical AI systems are built to focus on single organs with a narrow list of a few diseases. This might severely limit AI's clinical adoption. A certain number of AI models need to be assembled non-trivially to match the diagnostic process of a human reading a CT scan. In this paper, we construct a Unified Tumor Transformer (UniT) model to detect (tumor existence and location) and diagnose (tumor characteristics) eight major cancer-prevalent organs in CT scans. UniT is a query-based Mask Transformer model with the output of multi-organ and multi-tumor semantic segmentation. We decouple the object queries into organ queries, detection queries and diagnosis queries, and further establish hierarchical relationships among the three groups. This clinically-inspired architecture effectively assists inter- and intra-organ representation learning of tumors and facilitates the resolution of these complex, anatomically related multi-organ cancer image reading tasks. UniT is trained end-to-end using a curated large-scale CT images of 10,042 patients including eight major types of cancers and occurring non-cancer tumors (all are pathology-confirmed with 3D tumor masks annotated by radiologists). On the test set of 631 patients, UniT has demonstrated strong performance under a set of clinically relevant evaluation metrics, substantially outperforming both multi-organ segmentation methods and an assembly of eight single-organ expert models in tumor detection, segmentation, and diagnosis. Such a unified multi-cancer image reading model (UniT) can significantly reduce the number of false positives produced by combined multi-system models. This moves one step closer towards a universal high-performance cancer screening tool.
Open-NeRF: Towards Open Vocabulary NeRF Decomposition
In this paper, we address the challenge of decomposing Neural Radiance Fields (NeRF) into objects from an open vocabulary, a critical task for object manipulation in 3D reconstruction and view synthesis. Current techniques for NeRF decomposition involve a trade-off between the flexibility of processing open-vocabulary queries and the accuracy of 3D segmentation. We present, Open-vocabulary Embedded Neural Radiance Fields (Open-NeRF), that leverage large-scale, off-the-shelf, segmentation models like the Segment Anything Model (SAM) and introduce an integrate-and-distill paradigm with hierarchical embeddings to achieve both the flexibility of open-vocabulary querying and 3D segmentation accuracy. Open-NeRF first utilizes large-scale foundation models to generate hierarchical 2D mask proposals from varying viewpoints. These proposals are then aligned via tracking approaches and integrated within the 3D space and subsequently distilled into the 3D field. This process ensures consistent recognition and granularity of objects from different viewpoints, even in challenging scenarios involving occlusion and indistinct features. Our experimental results show that the proposed Open-NeRF outperforms state-of-the-art methods such as LERF lerf and FFD ffd in open-vocabulary scenarios. Open-NeRF offers a promising solution to NeRF decomposition, guided by open-vocabulary queries, enabling novel applications in robotics and vision-language interaction in open-world 3D scenes.
Image Embedding Sampling Method for Diverse Captioning
Image Captioning for state-of-the-art VLMs has significantly improved over time; however, this comes at the cost of increased computational complexity, making them less accessible for resource-constrained applications such as mobile devices and assistive technologies. Alternatively, smaller VLMs prioritize high-level scene descriptions, overlooking finer details that contribute to a richer understanding of an image. In this paper, we introduce a training-free framework that enhances caption diversity and informativeness by explicitly attending to distinct image regions using a comparably small VLM, BLIP, as the backbone. Our approach leverages structured segmentation to produce hierarchical representations that capture both global and localized semantics. Without requiring additional model training, we demonstrate that our method allows smaller VLMs to achieve performance comparable to larger models in terms of image-caption alignment, semantic integrity, and diversity. We evaluate our framework on MSCOCO, Flickr30k, and Nocaps test datasets, achieving a Div-2 score of 0.735, 0.750, and 0.748 for each dataset respectively, while maintaining strong image-caption relevancy and semantic integrity with the human-annotated captions.
Med-GLIP: Advancing Medical Language-Image Pre-training with Large-scale Grounded Dataset
Medical image grounding aims to align natural language phrases with specific regions in medical images, serving as a foundational task for intelligent diagnosis, visual question answering (VQA), and automated report generation (MRG). However, existing research is constrained by limited modality coverage, coarse-grained annotations, and the absence of a unified, generalizable grounding framework. To address these challenges, we construct a large-scale medical grounding dataset Med-GLIP-5M comprising over 5.3 million region-level annotations across seven imaging modalities, covering diverse anatomical structures and pathological findings. The dataset supports both segmentation and grounding tasks with hierarchical region labels, ranging from organ-level boundaries to fine-grained lesions. Based on this foundation, we propose Med-GLIP, a modality-aware grounding framework trained on Med-GLIP-5M. Rather than relying on explicitly designed expert modules, Med-GLIP implicitly acquires hierarchical semantic understanding from diverse training data -- enabling it to recognize multi-granularity structures, such as distinguishing lungs from pneumonia lesions. Extensive experiments demonstrate that Med-GLIP consistently outperforms state-of-the-art baselines across multiple grounding benchmarks. Furthermore, integrating its spatial outputs into downstream tasks, including medical VQA and report generation, leads to substantial performance gains. Our dataset will be released soon.
Machine learning approach for segmenting glands in colon histology images using local intensity and texture features
Colon Cancer is one of the most common types of cancer. The treatment is planned to depend on the grade or stage of cancer. One of the preconditions for grading of colon cancer is to segment the glandular structures of tissues. Manual segmentation method is very time-consuming, and it leads to life risk for the patients. The principal objective of this project is to assist the pathologist to accurate detection of colon cancer. In this paper, the authors have proposed an algorithm for an automatic segmentation of glands in colon histology using local intensity and texture features. Here the dataset images are cropped into patches with different window sizes and taken the intensity of those patches, and also calculated texture-based features. Random forest classifier has been used to classify this patch into different labels. A multilevel random forest technique in a hierarchical way is proposed. This solution is fast, accurate and it is very much applicable in a clinical setup.
LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and Reasoning
Current high-performance semantic segmentation models are purely data-driven sub-symbolic approaches and blind to the structured nature of the visual world. This is in stark contrast to human cognition which abstracts visual perceptions at multiple levels and conducts symbolic reasoning with such structured abstraction. To fill these fundamental gaps, we devise LOGICSEG, a holistic visual semantic parser that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge. In particular, the semantic concepts of interest are structured as a hierarchy, from which a set of constraints are derived for describing the symbolic relations and formalized as first-order logic rules. After fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training. During inference, logical constraints are packaged into an iterative process and injected into the network in a form of several matrix multiplications, so as to achieve hierarchy-coherent prediction with logic reasoning. These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models. Extensive experiments over four datasets with various segmentation models and backbones verify the effectiveness and generality of LOGICSEG. We believe this study opens a new avenue for visual semantic parsing.
Deep Feature Factorization For Concept Discovery
We propose Deep Feature Factorization (DFF), a method capable of localizing similar semantic concepts within an image or a set of images. We use DFF to gain insight into a deep convolutional neural network's learned features, where we detect hierarchical cluster structures in feature space. This is visualized as heat maps, which highlight semantically matching regions across a set of images, revealing what the network `perceives' as similar. DFF can also be used to perform co-segmentation and co-localization, and we report state-of-the-art results on these tasks.
Segment Anything without Supervision
The Segmentation Anything Model (SAM) requires labor-intensive data labeling. We present Unsupervised SAM (UnSAM) for promptable and automatic whole-image segmentation that does not require human annotations. UnSAM utilizes a divide-and-conquer strategy to "discover" the hierarchical structure of visual scenes. We first leverage top-down clustering methods to partition an unlabeled image into instance/semantic level segments. For all pixels within a segment, a bottom-up clustering method is employed to iteratively merge them into larger groups, thereby forming a hierarchical structure. These unsupervised multi-granular masks are then utilized to supervise model training. Evaluated across seven popular datasets, UnSAM achieves competitive results with the supervised counterpart SAM, and surpasses the previous state-of-the-art in unsupervised segmentation by 11% in terms of AR. Moreover, we show that supervised SAM can also benefit from our self-supervised labels. By integrating our unsupervised pseudo masks into SA-1B's ground-truth masks and training UnSAM with only 1% of SA-1B, a lightly semi-supervised UnSAM can often segment entities overlooked by supervised SAM, exceeding SAM's AR by over 6.7% and AP by 3.9% on SA-1B.
VesSAM: Efficient Multi-Prompting for Segmenting Complex Vessel
Accurate vessel segmentation is critical for clinical applications such as disease diagnosis and surgical planning, yet remains challenging due to thin, branching structures and low texture contrast. While foundation models like the Segment Anything Model (SAM) have shown promise in generic segmentation, they perform sub-optimally on vascular structures. In this work, we present VesSAM, a powerful and efficient framework tailored for 2D vessel segmentation. VesSAM integrates (1) a convolutional adapter to enhance local texture features, (2) a multi-prompt encoder that fuses anatomical prompts, including skeletons, bifurcation points, and segment midpoints, via hierarchical cross-attention, and (3) a lightweight mask decoder to reduce jagged artifacts. We also introduce an automated pipeline to generate structured multi-prompt annotations, and curate a diverse benchmark dataset spanning 8 datasets across 5 imaging modalities. Experimental results demonstrate that VesSAM consistently outperforms state-of-the-art PEFT-based SAM variants by over 10% Dice and 13% IoU, and achieves competitive performance compared to fully fine-tuned methods, with significantly fewer parameters. VesSAM also generalizes well to out-of-distribution (OoD) settings, outperforming all baselines in average OoD Dice and IoU.
UniVA: Universal Video Agent towards Open-Source Next-Generation Video Generalist
While specialized AI models excel at isolated video tasks like generation or understanding, real-world applications demand complex, iterative workflows that combine these capabilities. To bridge this gap, we introduce UniVA, an open-source, omni-capable multi-agent framework for next-generation video generalists that unifies video understanding, segmentation, editing, and generation into cohesive workflows. UniVA employs a Plan-and-Act dual-agent architecture that drives a highly automated and proactive workflow: a planner agent interprets user intentions and decomposes them into structured video-processing steps, while executor agents execute these through modular, MCP-based tool servers (for analysis, generation, editing, tracking, etc.). Through a hierarchical multi-level memory (global knowledge, task context, and user-specific preferences), UniVA sustains long-horizon reasoning, contextual continuity, and inter-agent communication, enabling interactive and self-reflective video creation with full traceability. This design enables iterative and any-conditioned video workflows (e.g., text/image/video-conditioned generation rightarrow multi-round editing rightarrow object segmentation rightarrow compositional synthesis) that were previously cumbersome to achieve with single-purpose models or monolithic video-language models. We also introduce UniVA-Bench, a benchmark suite of multi-step video tasks spanning understanding, editing, segmentation, and generation, to rigorously evaluate such agentic video systems. Both UniVA and UniVA-Bench are fully open-sourced, aiming to catalyze research on interactive, agentic, and general-purpose video intelligence for the next generation of multimodal AI systems. (https://univa.online/)
Emma-X: An Embodied Multimodal Action Model with Grounded Chain of Thought and Look-ahead Spatial Reasoning
Traditional reinforcement learning-based robotic control methods are often task-specific and fail to generalize across diverse environments or unseen objects and instructions. Visual Language Models (VLMs) demonstrate strong scene understanding and planning capabilities but lack the ability to generate actionable policies tailored to specific robotic embodiments. To address this, Visual-Language-Action (VLA) models have emerged, yet they face challenges in long-horizon spatial reasoning and grounded task planning. In this work, we propose the Embodied Multimodal Action Model with Grounded Chain of Thought and Look-ahead Spatial Reasoning, Emma-X. Emma-X leverages our constructed hierarchical embodiment dataset based on BridgeV2, containing 60,000 robot manipulation trajectories auto-annotated with grounded task reasoning and spatial guidance. Additionally, we introduce a trajectory segmentation strategy based on gripper states and motion trajectories, which can help mitigate hallucination in grounding subtask reasoning generation. Experimental results demonstrate that Emma-X achieves superior performance over competitive baselines, particularly in real-world robotic tasks requiring spatial reasoning.
SegEarth-R1: Geospatial Pixel Reasoning via Large Language Model
Remote sensing has become critical for understanding environmental dynamics, urban planning, and disaster management. However, traditional remote sensing workflows often rely on explicit segmentation or detection methods, which struggle to handle complex, implicit queries that require reasoning over spatial context, domain knowledge, and implicit user intent. Motivated by this, we introduce a new task, \ie, geospatial pixel reasoning, which allows implicit querying and reasoning and generates the mask of the target region. To advance this task, we construct and release the first large-scale benchmark dataset called EarthReason, which comprises 5,434 manually annotated image masks with over 30,000 implicit question-answer pairs. Moreover, we propose SegEarth-R1, a simple yet effective language-guided segmentation baseline that integrates a hierarchical visual encoder, a large language model (LLM) for instruction parsing, and a tailored mask generator for spatial correlation. The design of SegEarth-R1 incorporates domain-specific adaptations, including aggressive visual token compression to handle ultra-high-resolution remote sensing images, a description projection module to fuse language and multi-scale features, and a streamlined mask prediction pipeline that directly queries description embeddings. Extensive experiments demonstrate that SegEarth-R1 achieves state-of-the-art performance on both reasoning and referring segmentation tasks, significantly outperforming traditional and LLM-based segmentation methods. Our data and code will be released at https://github.com/earth-insights/SegEarth-R1.
LayerAnimate: Layer-specific Control for Animation
Animated video separates foreground and background elements into layers, with distinct processes for sketching, refining, coloring, and in-betweening. Existing video generation methods typically treat animation as a monolithic data domain, lacking fine-grained control over individual layers. In this paper, we introduce LayerAnimate, a novel architectural approach that enhances fine-grained control over individual animation layers within a video diffusion model, allowing users to independently manipulate foreground and background elements in distinct layers. To address the challenge of limited layer-specific data, we propose a data curation pipeline that features automated element segmentation, motion-state hierarchical merging, and motion coherence refinement. Through quantitative and qualitative comparisons, and user study, we demonstrate that LayerAnimate outperforms current methods in terms of animation quality, control precision, and usability, making it an ideal tool for both professional animators and amateur enthusiasts. This framework opens up new possibilities for layer-specific animation applications and creative flexibility. Our code is available at https://layeranimate.github.io.
RPG: Learning Recursive Point Cloud Generation
In this paper we propose a novel point cloud generator that is able to reconstruct and generate 3D point clouds composed of semantic parts. Given a latent representation of the target 3D model, the generation starts from a single point and gets expanded recursively to produce the high-resolution point cloud via a sequence of point expansion stages. During the recursive procedure of generation, we not only obtain the coarse-to-fine point clouds for the target 3D model from every expansion stage, but also unsupervisedly discover the semantic segmentation of the target model according to the hierarchical/parent-child relation between the points across expansion stages. Moreover, the expansion modules and other elements used in our recursive generator are mostly sharing weights thus making the overall framework light and efficient. Extensive experiments are conducted to demonstrate that our proposed point cloud generator has comparable or even superior performance on both generation and reconstruction tasks in comparison to various baselines, as well as provides the consistent co-segmentation among 3D instances of the same object class.
Advancing Semantic Future Prediction through Multimodal Visual Sequence Transformers
Semantic future prediction is important for autonomous systems navigating dynamic environments. This paper introduces FUTURIST, a method for multimodal future semantic prediction that uses a unified and efficient visual sequence transformer architecture. Our approach incorporates a multimodal masked visual modeling objective and a novel masking mechanism designed for multimodal training. This allows the model to effectively integrate visible information from various modalities, improving prediction accuracy. Additionally, we propose a VAE-free hierarchical tokenization process, which reduces computational complexity, streamlines the training pipeline, and enables end-to-end training with high-resolution, multimodal inputs. We validate FUTURIST on the Cityscapes dataset, demonstrating state-of-the-art performance in future semantic segmentation for both short- and mid-term forecasting. We provide the implementation code at https://github.com/Sta8is/FUTURIST .
