- MediaPipe Hands: On-device Real-time Hand Tracking We present a real-time on-device hand tracking pipeline that predicts hand skeleton from single RGB camera for AR/VR applications. The pipeline consists of two models: 1) a palm detector, 2) a hand landmark model. It's implemented via MediaPipe, a framework for building cross-platform ML solutions. The proposed model and pipeline architecture demonstrates real-time inference speed on mobile GPUs and high prediction quality. MediaPipe Hands is open sourced at https://mediapipe.dev. 7 authors · Jun 17, 2020
- PianoVAM: A Multimodal Piano Performance Dataset The multimodal nature of music performance has driven increasing interest in data beyond the audio domain within the music information retrieval (MIR) community. This paper introduces PianoVAM, a comprehensive piano performance dataset that includes videos, audio, MIDI, hand landmarks, fingering labels, and rich metadata. The dataset was recorded using a Disklavier piano, capturing audio and MIDI from amateur pianists during their daily practice sessions, alongside synchronized top-view videos in realistic and varied performance conditions. Hand landmarks and fingering labels were extracted using a pretrained hand pose estimation model and a semi-automated fingering annotation algorithm. We discuss the challenges encountered during data collection and the alignment process across different modalities. Additionally, we describe our fingering annotation method based on hand landmarks extracted from videos. Finally, we present benchmarking results for both audio-only and audio-visual piano transcription using the PianoVAM dataset and discuss additional potential applications. 7 authors · Sep 10, 2025
- Gestura: A LVLM-Powered System Bridging Motion and Semantics for Real-Time Free-Form Gesture Understanding Free-form gesture understanding is highly appealing for human-computer interaction, as it liberates users from the constraints of predefined gesture categories. However, the sole existing solution GestureGPT suffers from limited recognition accuracy and slow response times. In this paper, we propose Gestura, an end-to-end system for free-form gesture understanding. Gestura harnesses a pre-trained Large Vision-Language Model (LVLM) to align the highly dynamic and diverse patterns of free-form gestures with high-level semantic concepts. To better capture subtle hand movements across different styles, we introduce a Landmark Processing Module that compensate for LVLMs' lack of fine-grained domain knowledge by embedding anatomical hand priors. Further, a Chain-of-Thought (CoT) reasoning strategy enables step-by-step semantic inference, transforming shallow knowledge into deep semantic understanding and significantly enhancing the model's ability to interpret ambiguous or unconventional gestures. Together, these components allow Gestura to achieve robust and adaptable free-form gesture comprehension. Additionally, we have developed the first open-source dataset for free-form gesture intention reasoning and understanding with over 300,000 annotated QA pairs. 8 authors · Oct 21, 2025
- TSLFormer: A Lightweight Transformer Model for Turkish Sign Language Recognition Using Skeletal Landmarks This study presents TSLFormer, a light and robust word-level Turkish Sign Language (TSL) recognition model that treats sign gestures as ordered, string-like language. Instead of using raw RGB or depth videos, our method only works with 3D joint positions - articulation points - extracted using Google's Mediapipe library, which focuses on the hand and torso skeletal locations. This creates efficient input dimensionality reduction while preserving important semantic gesture information. Our approach revisits sign language recognition as sequence-to-sequence translation, inspired by the linguistic nature of sign languages and the success of transformers in natural language processing. Since TSLFormer uses the self-attention mechanism, it effectively captures temporal co-occurrence within gesture sequences and highlights meaningful motion patterns as words unfold. Evaluated on the AUTSL dataset with over 36,000 samples and 227 different words, TSLFormer achieves competitive performance with minimal computational cost. These results show that joint-based input is sufficient for enabling real-time, mobile, and assistive communication systems for hearing-impaired individuals. 4 authors · May 11, 2025