1 Self-Foveate: Enhancing Diversity and Difficulty of Synthesized Instructions from Unsupervised Text via Multi-Level Foveation Large language models (LLMs) with instruction following capabilities have demonstrated impressive problem-solving abilities. While synthesizing instructional data from unsupervised text has become a common approach for training such models, conventional methods rely heavily on human effort for data annotation. Although existing automated synthesis paradigms have alleviated this constraint, they still exhibit significant limitations in ensuring adequate diversity and difficulty of synthesized instructions. To address these challenges, we propose Self-Foveate, an innovative LLM-driven method for instruction synthesis. This approach introduces a "Micro-Scatter-Macro" multi-level foveation methodology that effectively guides the LLM to deeply excavate fine-grained information embedded in unsupervised text, thereby enhancing both the diversity and difficulty of synthesized instructions. Comprehensive experiments across multiple unsupervised corpora and diverse model architectures validate the effectiveness and superiority of our proposed method. We publicly release our data and codes: https://github.com/Mubuky/Self-Foveate 3 authors · Jul 31, 2025
- Emergent Properties of Foveated Perceptual Systems The goal of this work is to characterize the representational impact that foveation operations have for machine vision systems, inspired by the foveated human visual system, which has higher acuity at the center of gaze and texture-like encoding in the periphery. To do so, we introduce models consisting of a first-stage fixed image transform followed by a second-stage learnable convolutional neural network, and we varied the first stage component. The primary model has a foveated-textural input stage, which we compare to a model with foveated-blurred input and a model with spatially-uniform blurred input (both matched for perceptual compression), and a final reference model with minimal input-based compression. We find that: 1) the foveated-texture model shows similar scene classification accuracy as the reference model despite its compressed input, with greater i.i.d. generalization than the other models; 2) the foveated-texture model has greater sensitivity to high-spatial frequency information and greater robustness to occlusion, w.r.t the comparison models; 3) both the foveated systems, show a stronger center image-bias relative to the spatially-uniform systems even with a weight sharing constraint. Critically, these results are preserved over different classical CNN architectures throughout their learning dynamics. Altogether, this suggests that foveation with peripheral texture-based computations yields an efficient, distinct, and robust representational format of scene information, and provides symbiotic computational insight into the representational consequences that texture-based peripheral encoding may have for processing in the human visual system, while also potentially inspiring the next generation of computer vision models via spatially-adaptive computation. Code + Data available here: https://github.com/ArturoDeza/EmergentProperties 2 authors · Jun 14, 2020