Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCrossing the Linguistic Causeway: Ethnonational Differences on Soundscape Attributes in Bahasa Melayu
Despite being neighbouring countries and sharing the language of Bahasa Melayu (ISO 639-3:ZSM), cultural and language education policy differences between Singapore and Malaysia led to differences in the translation of the "annoying" perceived affective quality (PAQ) attribute from English (ISO 639-3:ENG) to ZSM. This study expands upon the translation of the PAQ attributes from eng to ZSM in Stage 1 of the Soundscapes Attributes Translation Project (SATP) initiative, and presents the findings of Stage 2 listening tests that investigated ethnonational differences in the translated ZSM PAQ attributes and explored their circumplexity. A cross-cultural listening test was conducted with 100 ZSM speakers from Malaysia and Singapore using the common SATP protocol. The analysis revealed that Malaysian participants from non-native ethnicities (my:o) showed PAQ perceptions more similar to Singapore (sg) participants than native ethnic Malays (MY:M) in Malaysia. Differences between Singapore and Malaysian groups were primarily observed in stimuli related to water features, reflecting cultural and geographical variations. Besides variations in water source-dominant stimuli perception, disparities between MY:M and SG could be mainly attributed to vibrant scores. The findings also suggest that the adoption of region-specific translations, such as membingitkan in Singapore and menjengkelkan in Malaysia, adequately addressed differences in the annoying attribute, as significant differences were observed in one or fewer stimuli across ethnonational groups The circumplexity analysis indicated that the quasi-circumplex model better fit the data compared to the assumed equal angle quasi-circumplex model in ISO/TS 12913-3, although deviations were observed possibly due to respondents' unfamiliarity with the United Kingdom-centric context of the stimulus dataset...
FEDD -- Fair, Efficient, and Diverse Diffusion-based Lesion Segmentation and Malignancy Classification
Skin diseases affect millions of people worldwide, across all ethnicities. Increasing diagnosis accessibility requires fair and accurate segmentation and classification of dermatology images. However, the scarcity of annotated medical images, especially for rare diseases and underrepresented skin tones, poses a challenge to the development of fair and accurate models. In this study, we introduce a Fair, Efficient, and Diverse Diffusion-based framework for skin lesion segmentation and malignancy classification. FEDD leverages semantically meaningful feature embeddings learned through a denoising diffusion probabilistic backbone and processes them via linear probes to achieve state-of-the-art performance on Diverse Dermatology Images (DDI). We achieve an improvement in intersection over union of 0.18, 0.13, 0.06, and 0.07 while using only 5%, 10%, 15%, and 20% labeled samples, respectively. Additionally, FEDD trained on 10% of DDI demonstrates malignancy classification accuracy of 81%, 14% higher compared to the state-of-the-art. We showcase high efficiency in data-constrained scenarios while providing fair performance for diverse skin tones and rare malignancy conditions. Our newly annotated DDI segmentation masks and training code can be found on https://github.com/hectorcarrion/fedd.
Group Robust Preference Optimization in Reward-free RLHF
Adapting large language models (LLMs) for specific tasks usually involves fine-tuning through reinforcement learning with human feedback (RLHF) on preference data. While these data often come from diverse labelers' groups (e.g., different demographics, ethnicities, company teams, etc.), traditional RLHF approaches adopt a "one-size-fits-all" approach, i.e., they indiscriminately assume and optimize a single preference model, thus not being robust to unique characteristics and needs of the various groups. To address this limitation, we propose a novel Group Robust Preference Optimization (GRPO) method to align LLMs to individual groups' preferences robustly. Our approach builds upon reward-free direct preference optimization methods, but unlike previous approaches, it seeks a robust policy which maximizes the worst-case group performance. To achieve this, GRPO adaptively and sequentially weights the importance of different groups, prioritizing groups with worse cumulative loss. We theoretically study the feasibility of GRPO and analyze its convergence for the log-linear policy class. By fine-tuning LLMs with GRPO using diverse group-based global opinion data, we significantly improved performance for the worst-performing groups, reduced loss imbalances across groups, and improved probability accuracies compared to non-robust baselines.
How Are LLMs Mitigating Stereotyping Harms? Learning from Search Engine Studies
With the widespread availability of LLMs since the release of ChatGPT and increased public scrutiny, commercial model development appears to have focused their efforts on 'safety' training concerning legal liabilities at the expense of social impact evaluation. This mimics a similar trend which we could observe for search engine autocompletion some years prior. We draw on scholarship from NLP and search engine auditing and present a novel evaluation task in the style of autocompletion prompts to assess stereotyping in LLMs. We assess LLMs by using four metrics, namely refusal rates, toxicity, sentiment and regard, with and without safety system prompts. Our findings indicate an improvement to stereotyping outputs with the system prompt, but overall a lack of attention by LLMs under study to certain harms classified as toxic, particularly for prompts about peoples/ethnicities and sexual orientation. Mentions of intersectional identities trigger a disproportionate amount of stereotyping. Finally, we discuss the implications of these findings about stereotyping harms in light of the coming intermingling of LLMs and search and the choice of stereotyping mitigation policy to adopt. We address model builders, academics, NLP practitioners and policy makers, calling for accountability and awareness concerning stereotyping harms, be it for training data curation, leader board design and usage, or social impact measurement.
SingingHead: A Large-scale 4D Dataset for Singing Head Animation
Singing, as a common facial movement second only to talking, can be regarded as a universal language across ethnicities and cultures, plays an important role in emotional communication, art, and entertainment. However, it is often overlooked in the field of audio-driven facial animation due to the lack of singing head datasets and the domain gap between singing and talking in rhythm and amplitude. To this end, we collect a high-quality large-scale singing head dataset, SingingHead, which consists of more than 27 hours of synchronized singing video, 3D facial motion, singing audio, and background music from 76 individuals and 8 types of music. Along with the SingingHead dataset, we benchmark existing audio-driven 3D facial animation methods and 2D talking head methods on the singing task. Furthermore, we argue that 3D and 2D facial animation tasks can be solved together, and propose a unified singing head animation framework named UniSinger to achieve both singing audio-driven 3D singing head animation and 2D singing portrait video synthesis, which achieves competitive results on both 3D and 2D benchmarks. Extensive experiments demonstrate the significance of the proposed singing-specific dataset in promoting the development of singing head animation tasks, as well as the promising performance of our unified facial animation framework.
What Do Llamas Really Think? Revealing Preference Biases in Language Model Representations
Do large language models (LLMs) exhibit sociodemographic biases, even when they decline to respond? To bypass their refusal to "speak," we study this research question by probing contextualized embeddings and exploring whether this bias is encoded in its latent representations. We propose a logistic Bradley-Terry probe which predicts word pair preferences of LLMs from the words' hidden vectors. We first validate our probe on three pair preference tasks and thirteen LLMs, where we outperform the word embedding association test (WEAT), a standard approach in testing for implicit association, by a relative 27% in error rate. We also find that word pair preferences are best represented in the middle layers. Next, we transfer probes trained on harmless tasks (e.g., pick the larger number) to controversial ones (compare ethnicities) to examine biases in nationality, politics, religion, and gender. We observe substantial bias for all target classes: for instance, the Mistral model implicitly prefers Europe to Africa, Christianity to Judaism, and left-wing to right-wing politics, despite declining to answer. This suggests that instruction fine-tuning does not necessarily debias contextualized embeddings. Our codebase is at https://github.com/castorini/biasprobe.
How to Boost Face Recognition with StyleGAN?
State-of-the-art face recognition systems require vast amounts of labeled training data. Given the priority of privacy in face recognition applications, the data is limited to celebrity web crawls, which have issues such as limited numbers of identities. On the other hand, self-supervised revolution in the industry motivates research on the adaptation of related techniques to facial recognition. One of the most popular practical tricks is to augment the dataset by the samples drawn from generative models while preserving the identity. We show that a simple approach based on fine-tuning pSp encoder for StyleGAN allows us to improve upon the state-of-the-art facial recognition and performs better compared to training on synthetic face identities. We also collect large-scale unlabeled datasets with controllable ethnic constitution -- AfricanFaceSet-5M (5 million images of different people) and AsianFaceSet-3M (3 million images of different people) -- and we show that pretraining on each of them improves recognition of the respective ethnicities (as well as others), while combining all unlabeled datasets results in the biggest performance increase. Our self-supervised strategy is the most useful with limited amounts of labeled training data, which can be beneficial for more tailored face recognition tasks and when facing privacy concerns. Evaluation is based on a standard RFW dataset and a new large-scale RB-WebFace benchmark. The code and data are made publicly available at https://github.com/seva100/stylegan-for-facerec.
Image Representations Learned With Unsupervised Pre-Training Contain Human-like Biases
Recent advances in machine learning leverage massive datasets of unlabeled images from the web to learn general-purpose image representations for tasks from image classification to face recognition. But do unsupervised computer vision models automatically learn implicit patterns and embed social biases that could have harmful downstream effects? We develop a novel method for quantifying biased associations between representations of social concepts and attributes in images. We find that state-of-the-art unsupervised models trained on ImageNet, a popular benchmark image dataset curated from internet images, automatically learn racial, gender, and intersectional biases. We replicate 8 previously documented human biases from social psychology, from the innocuous, as with insects and flowers, to the potentially harmful, as with race and gender. Our results closely match three hypotheses about intersectional bias from social psychology. For the first time in unsupervised computer vision, we also quantify implicit human biases about weight, disabilities, and several ethnicities. When compared with statistical patterns in online image datasets, our findings suggest that machine learning models can automatically learn bias from the way people are stereotypically portrayed on the web.
When Tom Eats Kimchi: Evaluating Cultural Bias of Multimodal Large Language Models in Cultural Mixture Contexts
In a highly globalized world, it is important for multi-modal large language models (MLLMs) to recognize and respond correctly to mixed-cultural inputs. For example, a model should correctly identify kimchi (Korean food) in an image both when an Asian woman is eating it, as well as an African man is eating it. However, current MLLMs show an over-reliance on the visual features of the person, leading to misclassification of the entities. To examine the robustness of MLLMs to different ethnicity, we introduce MixCuBe, a cross-cultural bias benchmark, and study elements from five countries and four ethnicities. Our findings reveal that MLLMs achieve both higher accuracy and lower sensitivity to such perturbation for high-resource cultures, but not for low-resource cultures. GPT-4o, the best-performing model overall, shows up to 58% difference in accuracy between the original and perturbed cultural settings in low-resource cultures. Our dataset is publicly available at: https://huggingface.co/datasets/kyawyethu/MixCuBe.
A Dataless FaceSwap Detection Approach Using Synthetic Images
Face swapping technology used to create "Deepfakes" has advanced significantly over the past few years and now enables us to create realistic facial manipulations. Current deep learning algorithms to detect deepfakes have shown promising results, however, they require large amounts of training data, and as we show they are biased towards a particular ethnicity. We propose a deepfake detection methodology that eliminates the need for any real data by making use of synthetically generated data using StyleGAN3. This not only performs at par with the traditional training methodology of using real data but it shows better generalization capabilities when finetuned with a small amount of real data. Furthermore, this also reduces biases created by facial image datasets that might have sparse data from particular ethnicities.
The ND-IRIS-0405 Iris Image Dataset
The Computer Vision Research Lab at the University of Notre Dame began collecting iris images in the spring semester of 2004. The initial data collections used an LG 2200 iris imaging system for image acquisition. Image datasets acquired in 2004-2005 at Notre Dame with this LG 2200 have been used in the ICE 2005 and ICE 2006 iris biometric evaluations. The ICE 2005 iris image dataset has been distributed to over 100 research groups around the world. The purpose of this document is to describe the content of the ND-IRIS-0405 iris image dataset. This dataset is a superset of the iris image datasets used in ICE 2005 and ICE 2006. The ND 2004-2005 iris image dataset contains 64,980 images corresponding to 356 unique subjects, and 712 unique irises. The age range of the subjects is 18 to 75 years old. 158 of the subjects are female, and 198 are male. 250 of the subjects are Caucasian, 82 are Asian, and 24 are other ethnicities.
