new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 29

Decouple to Generalize: Context-First Self-Evolving Learning for Data-Scarce Vision-Language Reasoning

Recent vision-language models (VLMs) achieve remarkable reasoning through reinforcement learning (RL), which provides a feasible solution for realizing continuous self-evolving large vision-language models (LVLMs) in the era of experience. However, RL for VLMs requires abundant high-quality multimodal data, especially challenging in specialized domains like chemistry, earth sciences, and multimodal mathematics. Existing strategies such as synthetic data and self-rewarding mechanisms suffer from limited distributions and alignment difficulties, ultimately causing reward hacking: models exploit high-reward patterns, collapsing policy entropy and destabilizing training. We propose DoGe (Decouple to Generalize), a dual-decoupling framework that guides models to first learn from context rather than problem solving by refocusing on the problem context scenarios overlooked by synthetic data methods. By decoupling learning process into dual components (Thinker and Solver), we reasonably quantify the reward signals of this process and propose a two-stage RL post-training approach from freely exploring context to practically solving tasks. Second, to increase the diversity of training data, DoGe constructs an evolving curriculum learning pipeline: an expanded native domain knowledge corpus and an iteratively evolving seed problems pool. Experiments show that our method consistently outperforms the baseline across various benchmarks, providing a scalable pathway for realizing self-evolving LVLMs.

odl-raiser OpenRaiser
·
Dec 7 2

JanusVLN: Decoupling Semantics and Spatiality with Dual Implicit Memory for Vision-Language Navigation

Vision-and-Language Navigation requires an embodied agent to navigate through unseen environments, guided by natural language instructions and a continuous video stream. Recent advances in VLN have been driven by the powerful semantic understanding of Multimodal Large Language Models. However, these methods typically rely on explicit semantic memory, such as building textual cognitive maps or storing historical visual frames. This type of method suffers from spatial information loss, computational redundancy, and memory bloat, which impede efficient navigation. Inspired by the implicit scene representation in human navigation, analogous to the left brain's semantic understanding and the right brain's spatial cognition, we propose JanusVLN, a novel VLN framework featuring a dual implicit neural memory that models spatial-geometric and visual-semantic memory as separate, compact, and fixed-size neural representations. This framework first extends the MLLM to incorporate 3D prior knowledge from the spatial-geometric encoder, thereby enhancing the spatial reasoning capabilities of models based solely on RGB input. Then, the historical key-value caches from the spatial-geometric and visual-semantic encoders are constructed into a dual implicit memory. By retaining only the KVs of tokens in the initial and sliding window, redundant computation is avoided, enabling efficient incremental updates. Extensive experiments demonstrate that JanusVLN outperforms over 20 recent methods to achieve SOTA performance. For example, the success rate improves by 10.5-35.5 compared to methods using multiple data types as input and by 3.6-10.8 compared to methods using more RGB training data. This indicates that the proposed dual implicit neural memory, as a novel paradigm, explores promising new directions for future VLN research. Ours project page: https://miv-xjtu.github.io/JanusVLN.github.io/.

  • 9 authors
·
Sep 26 1

Temporal Self-Rewarding Language Models: Decoupling Chosen-Rejected via Past-Future

Self-Rewarding Language Models propose an architecture in which the Large Language Models(LLMs) both generates responses and evaluates its own outputs via LLM-as-a-Judge prompting, dynamically improving its generative capabilities through iterative Direct Preference Optimization (DPO). However, our analysis reveals a critical limitation in existing Self-Rewarding paradigms: the synchronized improvement of chosen and rejected responses progressively narrows the representational difference between contrasting samples, undermining effective preference learning. We propose Temporal Self-Rewarding Language Models that strategically coordinate past, present, and future model generations to sustain learning signals. Our dual-phase framework introduces: (1) Anchored Rejection - fixing rejected responses using the past initial model's outputs and (2) Future-Guided Chosen - dynamically curating chosen samples using next-generation model predictions. Extensive experiments across three model families (Llama, Qwen, Mistral) and different model sizes (Llama3B/8B/70B) demonstrate significant improvements when trained with our method compared to Self-Rewarding using same computation resources. For example, Llama3.1-8B reaches a 29.44 win rate on AlpacaEval 2.0 with our method, outperforming the Self-Rewarding baseline (19.69) by 9.75. Notably, our method also demonstrates superior out-of-distribution generalization across mathematical reasoning (GSM8K), knowledge-based QA (ARC, TruthfulQA), and code generation (HumanEval) tasks, even though we do not specifically collect such training data.

DualTAP: A Dual-Task Adversarial Protector for Mobile MLLM Agents

The reliance of mobile GUI agents on Multimodal Large Language Models (MLLMs) introduces a severe privacy vulnerability: screenshots containing Personally Identifiable Information (PII) are often sent to untrusted, third-party routers. These routers can exploit their own MLLMs to mine this data, violating user privacy. Existing privacy perturbations fail the critical dual challenge of this scenario: protecting PII from the router's MLLM while simultaneously preserving task utility for the agent's MLLM. To address this gap, we propose the Dual-Task Adversarial Protector (DualTAP), a novel framework that, for the first time, explicitly decouples these conflicting objectives. DualTAP trains a lightweight generator using two key innovations: (i) a contrastive attention module that precisely identifies and targets only the PII-sensitive regions, and (ii) a dual-task adversarial objective that simultaneously minimizes a task-preservation loss (to maintain agent utility) and a privacy-interference loss (to suppress PII leakage). To facilitate this study, we introduce PrivScreen, a new dataset of annotated mobile screenshots designed specifically for this dual-task evaluation. Comprehensive experiments on six diverse MLLMs (e.g., GPT-5) demonstrate DualTAP's state-of-the-art protection. It reduces the average privacy leakage rate by 31.6 percentage points (a 3.0x relative improvement) while, critically, maintaining an 80.8% task success rate - a negligible drop from the 83.6% unprotected baseline. DualTAP presents the first viable solution to the privacy-utility trade-off in mobile MLLM agents.

  • 9 authors
·
Nov 17

AnyMaker: Zero-shot General Object Customization via Decoupled Dual-Level ID Injection

Text-to-image based object customization, aiming to generate images with the same identity (ID) as objects of interest in accordance with text prompts and reference images, has made significant progress. However, recent customizing research is dominated by specialized tasks, such as human customization or virtual try-on, leaving a gap in general object customization. To this end, we introduce AnyMaker, an innovative zero-shot object customization framework capable of generating general objects with high ID fidelity and flexible text editability. The efficacy of AnyMaker stems from its novel general ID extraction, dual-level ID injection, and ID-aware decoupling. Specifically, the general ID extraction module extracts sufficient ID information with an ensemble of self-supervised models to tackle the diverse customization tasks for general objects. Then, to provide the diffusion UNet with the extracted ID as much while not damaging the text editability in the generation process, we design a global-local dual-level ID injection module, in which the global-level semantic ID is injected into text descriptions while the local-level ID details are injected directly into the model through newly added cross-attention modules. In addition, we propose an ID-aware decoupling module to disentangle ID-related information from non-ID elements in the extracted representations for high-fidelity generation of both identity and text descriptions. To validate our approach and boost the research of general object customization, we create the first large-scale general ID dataset, Multi-Category ID-Consistent (MC-IDC) dataset, with 315k text-image samples and 10k categories. Experiments show that AnyMaker presents remarkable performance in general object customization and outperforms specialized methods in corresponding tasks. Code and dataset will be released soon.

  • 10 authors
·
Jun 17, 2024

RSRefSeg 2: Decoupling Referring Remote Sensing Image Segmentation with Foundation Models

Referring Remote Sensing Image Segmentation provides a flexible and fine-grained framework for remote sensing scene analysis via vision-language collaborative interpretation. Current approaches predominantly utilize a three-stage pipeline encompassing dual-modal encoding, cross-modal interaction, and pixel decoding. These methods demonstrate significant limitations in managing complex semantic relationships and achieving precise cross-modal alignment, largely due to their coupled processing mechanism that conflates target localization with boundary delineation. This architectural coupling amplifies error propagation under semantic ambiguity while restricting model generalizability and interpretability. To address these issues, we propose RSRefSeg 2, a decoupling paradigm that reformulates the conventional workflow into a collaborative dual-stage framework: coarse localization followed by fine segmentation. RSRefSeg 2 integrates CLIP's cross-modal alignment strength with SAM's segmentation generalizability through strategic foundation model collaboration. Specifically, CLIP is employed as the dual-modal encoder to activate target features within its pre-aligned semantic space and generate localization prompts. To mitigate CLIP's misactivation challenges in multi-entity scenarios described by referring texts, a cascaded second-order prompter is devised, which enhances precision through implicit reasoning via decomposition of text embeddings into complementary semantic subspaces. These optimized semantic prompts subsequently direct the SAM to generate pixel-level refined masks, thereby completing the semantic transmission pipeline. Extensive experiments (RefSegRS, RRSIS-D, and RISBench) demonstrate that RSRefSeg 2 surpasses contemporary methods in segmentation accuracy (+~3% gIoU) and complex semantic interpretation. Code is available at: https://github.com/KyanChen/RSRefSeg2.

  • 6 authors
·
Jul 8

Thinking with Drafts: Speculative Temporal Reasoning for Efficient Long Video Understanding

Long video understanding is essential for human-like intelligence, enabling coherent perception and reasoning over extended temporal contexts. While the emerging thinking-with-frames paradigm, which alternates between global temporal reasoning and local frame examination, has advanced the reasoning capabilities of video multi-modal large language models (MLLMs), it suffers from a significant efficiency bottleneck due to the progressively growing and redundant multi-modal context. To address this, we propose SpecTemp, a reinforcement learning-based Speculative Temporal reasoning framework that decouples temporal perception from reasoning via a cooperative dual-model design. In SpecTemp, a lightweight draft MLLM rapidly explores and proposes salient frames from densely sampled temporal regions, while a powerful target MLLM focuses on temporal reasoning and verifies the draft's proposals, iteratively refining its attention until convergence. This design mirrors the collaborative pathways of the human brain, balancing efficiency with accuracy. To support training, we construct the SpecTemp-80K dataset, featuring synchronized dual-level annotations for coarse evidence spans and fine-grained frame-level evidence. Experiments across multiple video understanding benchmarks demonstrate that SpecTemp not only maintains competitive accuracy but also significantly accelerates inference compared with existing thinking-with-frames methods.

  • 9 authors
·
Nov 30

NExT-OMNI: Towards Any-to-Any Omnimodal Foundation Models with Discrete Flow Matching

Next-generation multimodal foundation models capable of any-to-any cross-modal generation and multi-turn interaction will serve as core components of artificial general intelligence systems, playing a pivotal role in human-machine interaction. However, most existing multimodal models remain constrained by autoregressive architectures, whose inherent limitations prevent a balanced integration of understanding and generation capabilities. Although hybrid and decoupling strategies have been explored to address these tasks within unified frameworks separately, their redundant, non-integrated designs limit their applicability to broader scenarios, such as cross-modal retrieval. In this work, we introduce NExT-OMNI, an open-source omnimodal foundation model that achieves unified modeling through discrete flow paradigms. By leveraging metric-induced probability paths and kinetic optimal velocities, NExT-OMNI natively supports any-to-any understanding and generation with enhanced response efficiency, while enabling broader application scenarios through concise unified representations rather than task-decoupled designs. Trained on large-scale interleaved text, image, video, and audio data, NExT-OMNI delivers competitive performance on multimodal generation and understanding benchmarks, while outperforming prior unified models in multi-turn multimodal interaction and cross-modal retrieval, highlighting its architectural advantages as a next-generation multimodal foundation model. To advance further research, we release training details, data protocols, and open-source both the code and model checkpoints.

  • 8 authors
·
Oct 15

D-CTNet: A Dual-Branch Channel-Temporal Forecasting Network with Frequency-Domain Correction

Accurate Multivariate Time Series (MTS) forecasting is crucial for collaborative design of complex systems, Digital Twin building, and maintenance ahead of time. However, the collaborative industrial environment presents new challenges for MTS forecasting models: models should decouple complex inter-variable dependencies while addressing non-stationary distribution shift brought by environmental changes. To address these challenges and improve collaborative sensing reliability, we propose a Patch-Based Dual-Branch Channel-Temporal Forecasting Network (D-CTNet). Particularly, with a parallel dual-branch design incorporating linear temporal modeling layer and channel attention mechanism, our method explicitly decouples and jointly learns intra-channel temporal evolution patterns and dynamic multivariate correlations. Furthermore, a global patch attention fusion module goes beyond the local window scope to model long range dependencies. Most importantly, aiming at non-stationarity, a Frequency-Domain Stationarity Correction mechanism adaptively suppresses distribution shift impacts from environment change by spectrum alignment. Evaluations on seven benchmark datasets show that our model achieves better forecasting accuracy and robustness compared with state-of-the-art methods. Our work shows great promise as a new forecasting engine for industrial collaborative systems.

  • 6 authors
·
Nov 30

CARE Transformer: Mobile-Friendly Linear Visual Transformer via Decoupled Dual Interaction

Recently, large efforts have been made to design efficient linear-complexity visual Transformers. However, current linear attention models are generally unsuitable to be deployed in resource-constrained mobile devices, due to suffering from either few efficiency gains or significant accuracy drops. In this paper, we propose a new deCoupled duAl-interactive lineaR attEntion (CARE) mechanism, revealing that features' decoupling and interaction can fully unleash the power of linear attention. We first propose an asymmetrical feature decoupling strategy that asymmetrically decouples the learning process for local inductive bias and long-range dependencies, thereby preserving sufficient local and global information while effectively enhancing the efficiency of models. Then, a dynamic memory unit is employed to maintain critical information along the network pipeline. Moreover, we design a dual interaction module to effectively facilitate interaction between local inductive bias and long-range information as well as among features at different layers. By adopting a decoupled learning way and fully exploiting complementarity across features, our method can achieve both high efficiency and accuracy. Extensive experiments on ImageNet-1K, COCO, and ADE20K datasets demonstrate the effectiveness of our approach, e.g., achieving 78.4/82.1% top-1 accuracy on ImagegNet-1K at the cost of only 0.7/1.9 GMACs. Codes will be released on ..{github}.

  • 7 authors
·
Nov 25, 2024 1

decoupleQ: Towards 2-bit Post-Training Uniform Quantization via decoupling Parameters into Integer and Floating Points

Quantization emerges as one of the most promising compression technologies for deploying efficient large models for various real time application in recent years. Considering that the storage and IO of weights take up the vast majority of the overhead inside a large model, weight only quantization can lead to large gains. However, existing quantization schemes suffer from significant accuracy degradation at very low bits, or require some additional computational overhead when deployed, making it difficult to be applied to large-scale applications in industry. In this paper, we propose decoupleQ, achieving a substantial increase in model accuracy, especially at very low bits. decoupleQ abandons the traditional heuristic quantization paradigm and decouples the model parameters into integer and floating-point parts, thus transforming the quantization problem into a traditional mathematical optimization problem with constraints, which is then solved alternatively by off-the-shelf optimization methods. Quantization via decoupleQ is linear and uniform, making it hardware-friendlier than non-uniform counterpart, and enabling the idea to be migrated to high-bit quantization to enhance its robustness. Our method has achieved well on-line accuracy near fp16/bf16 on the 2-bit quantization of large speech models in ByteDance. The code is available at https://github.com/bytedance/decoupleQ

  • 9 authors
·
Apr 19, 2024

Architecture Decoupling Is Not All You Need For Unified Multimodal Model

Unified multimodal models for image generation and understanding represent a significant step toward AGI and have attracted widespread attention from researchers. The main challenge of this task lies in the difficulty in establishing an optimal training paradigm due to inherent conflicting targets in understanding and generation tasks. To alleviate these conflicts and pursue higher performance, many researchers adopt varying degrees of model decoupling (e.g., Double image encoders, MOE/MOT architecture, or frozen MLLM). However, excessive model decoupling can lead to the loss of interleave generation ability, undermining the original intent of unified models. In this work, we aim to explore how to mitigate task conflicts without resorting to model decoupling. Firstly, we analyze why decoupling alleviates conflicts by studying the cross-modal attention behavior of models. We observe that model decoupling essentially drives models toward task-specific multimodal interaction patterns, as seen in Qwen-VL and HunyuanImage, and that the more thorough the decoupling, the more consistent the behavior becomes. Motivated by this observation, we propose Attention Interaction Alignment (AIA) loss, which explicitly learns Task-Specific multimodal interaction patterns during training. To demonstrate the generalizability of our AIA loss, we apply it to Emu3 and Janus-Pro during SFT and post-training stage respectively. Without bells and whistles, AIA not only refines cross-modal attention patterns, but also boosts both generation and understanding performance.

  • 13 authors
·
Nov 27 4

DEYOLO: Dual-Feature-Enhancement YOLO for Cross-Modality Object Detection

Object detection in poor-illumination environments is a challenging task as objects are usually not clearly visible in RGB images. As infrared images provide additional clear edge information that complements RGB images, fusing RGB and infrared images has potential to enhance the detection ability in poor-illumination environments. However, existing works involving both visible and infrared images only focus on image fusion, instead of object detection. Moreover, they directly fuse the two kinds of image modalities, which ignores the mutual interference between them. To fuse the two modalities to maximize the advantages of cross-modality, we design a dual-enhancement-based cross-modality object detection network DEYOLO, in which semantic-spatial cross modality and novel bi-directional decoupled focus modules are designed to achieve the detection-centered mutual enhancement of RGB-infrared (RGB-IR). Specifically, a dual semantic enhancing channel weight assignment module (DECA) and a dual spatial enhancing pixel weight assignment module (DEPA) are firstly proposed to aggregate cross-modality information in the feature space to improve the feature representation ability, such that feature fusion can aim at the object detection task. Meanwhile, a dual-enhancement mechanism, including enhancements for two-modality fusion and single modality, is designed in both DECAand DEPAto reduce interference between the two kinds of image modalities. Then, a novel bi-directional decoupled focus is developed to enlarge the receptive field of the backbone network in different directions, which improves the representation quality of DEYOLO. Extensive experiments on M3FD and LLVIP show that our approach outperforms SOTA object detection algorithms by a clear margin. Our code is available at https://github.com/chips96/DEYOLO.

  • 7 authors
·
Dec 6, 2024

FilterPrompt: Guiding Image Transfer in Diffusion Models

In controllable generation tasks, flexibly manipulating the generated images to attain a desired appearance or structure based on a single input image cue remains a critical and longstanding challenge. Achieving this requires the effective decoupling of key attributes within the input image data, aiming to get representations accurately. Previous research has predominantly concentrated on disentangling image attributes within feature space. However, the complex distribution present in real-world data often makes the application of such decoupling algorithms to other datasets challenging. Moreover, the granularity of control over feature encoding frequently fails to meet specific task requirements. Upon scrutinizing the characteristics of various generative models, we have observed that the input sensitivity and dynamic evolution properties of the diffusion model can be effectively fused with the explicit decomposition operation in pixel space. This integration enables the image processing operations performed in pixel space for a specific feature distribution of the input image, and can achieve the desired control effect in the generated results. Therefore, we propose FilterPrompt, an approach to enhance the model control effect. It can be universally applied to any diffusion model, allowing users to adjust the representation of specific image features in accordance with task requirements, thereby facilitating more precise and controllable generation outcomes. In particular, our designed experiments demonstrate that the FilterPrompt optimizes feature correlation, mitigates content conflicts during the generation process, and enhances the model's control capability.

  • 6 authors
·
Apr 20, 2024

Decoupling Contrastive Decoding: Robust Hallucination Mitigation in Multimodal Large Language Models

Although multimodal large language models (MLLMs) exhibit remarkable reasoning capabilities on complex multimodal understanding tasks, they still suffer from the notorious hallucination issue: generating outputs misaligned with obvious visual or factual evidence. Currently, training-based solutions, like direct preference optimization (DPO), leverage paired preference data to suppress hallucinations. However, they risk sacrificing general reasoning capabilities due to the likelihood displacement. Meanwhile, training-free solutions, like contrastive decoding, achieve this goal by subtracting the estimated hallucination pattern from a distorted input. Yet, these handcrafted perturbations (e.g., add noise to images) may poorly capture authentic hallucination patterns. To avoid these weaknesses of existing methods, and realize robust hallucination mitigation (i.e., maintaining general reasoning performance), we propose a novel framework: Decoupling Contrastive Decoding (DCD). Specifically, DCD decouples the learning of positive and negative samples in preference datasets, and trains separate positive and negative image projections within the MLLM. The negative projection implicitly models real hallucination patterns, which enables vision-aware negative images in the contrastive decoding inference stage. Our DCD alleviates likelihood displacement by avoiding pairwise optimization and generalizes robustly without handcrafted degradation. Extensive ablations across hallucination benchmarks and general reasoning tasks demonstrate the effectiveness of DCD, i.e., it matches DPO's hallucination suppression while preserving general capabilities and outperforms the handcrafted contrastive decoding methods.

  • 7 authors
·
Apr 8

M-VAR: Decoupled Scale-wise Autoregressive Modeling for High-Quality Image Generation

There exists recent work in computer vision, named VAR, that proposes a new autoregressive paradigm for image generation. Diverging from the vanilla next-token prediction, VAR structurally reformulates the image generation into a coarse to fine next-scale prediction. In this paper, we show that this scale-wise autoregressive framework can be effectively decoupled into intra-scale modeling, which captures local spatial dependencies within each scale, and inter-scale modeling, which models cross-scale relationships progressively from coarse-to-fine scales. This decoupling structure allows to rebuild VAR in a more computationally efficient manner. Specifically, for intra-scale modeling -- crucial for generating high-fidelity images -- we retain the original bidirectional self-attention design to ensure comprehensive modeling; for inter-scale modeling, which semantically connects different scales but is computationally intensive, we apply linear-complexity mechanisms like Mamba to substantially reduce computational overhead. We term this new framework M-VAR. Extensive experiments demonstrate that our method outperforms existing models in both image quality and generation speed. For example, our 1.5B model, with fewer parameters and faster inference speed, outperforms the largest VAR-d30-2B. Moreover, our largest model M-VAR-d32 impressively registers 1.78 FID on ImageNet 256times256 and outperforms the prior-art autoregressive models LlamaGen/VAR by 0.4/0.19 and popular diffusion models LDM/DiT by 1.82/0.49, respectively. Code is avaiable at https://github.com/OliverRensu/MVAR.

  • 6 authors
·
Nov 15, 2024

DualFast: Dual-Speedup Framework for Fast Sampling of Diffusion Models

Diffusion probabilistic models (DPMs) have achieved impressive success in visual generation. While, they suffer from slow inference speed due to iterative sampling. Employing fewer sampling steps is an intuitive solution, but this will also introduces discretization error. Existing fast samplers make inspiring efforts to reduce discretization error through the adoption of high-order solvers, potentially reaching a plateau in terms of optimization. This raises the question: can the sampling process be accelerated further? In this paper, we re-examine the nature of sampling errors, discerning that they comprise two distinct elements: the widely recognized discretization error and the less explored approximation error. Our research elucidates the dynamics between these errors and the step by implementing a dual-error disentanglement strategy. Building on these foundations, we introduce an unified and training-free acceleration framework, DualFast, designed to enhance the speed of DPM sampling by concurrently accounting for both error types, thereby minimizing the total sampling error. DualFast is seamlessly compatible with existing samplers and significantly boost their sampling quality and speed, particularly in extremely few sampling steps. We substantiate the effectiveness of our framework through comprehensive experiments, spanning both unconditional and conditional sampling domains, across both pixel-space and latent-space DPMs.

  • 4 authors
·
Jun 15

Extrapolating and Decoupling Image-to-Video Generation Models: Motion Modeling is Easier Than You Think

Image-to-Video (I2V) generation aims to synthesize a video clip according to a given image and condition (e.g., text). The key challenge of this task lies in simultaneously generating natural motions while preserving the original appearance of the images. However, current I2V diffusion models (I2V-DMs) often produce videos with limited motion degrees or exhibit uncontrollable motion that conflicts with the textual condition. To address these limitations, we propose a novel Extrapolating and Decoupling framework, which introduces model merging techniques to the I2V domain for the first time. Specifically, our framework consists of three separate stages: (1) Starting with a base I2V-DM, we explicitly inject the textual condition into the temporal module using a lightweight, learnable adapter and fine-tune the integrated model to improve motion controllability. (2) We introduce a training-free extrapolation strategy to amplify the dynamic range of the motion, effectively reversing the fine-tuning process to enhance the motion degree significantly. (3) With the above two-stage models excelling in motion controllability and degree, we decouple the relevant parameters associated with each type of motion ability and inject them into the base I2V-DM. Since the I2V-DM handles different levels of motion controllability and dynamics at various denoising time steps, we adjust the motion-aware parameters accordingly over time. Extensive qualitative and quantitative experiments have been conducted to demonstrate the superiority of our framework over existing methods.

  • 6 authors
·
Mar 2

Simple Semi-supervised Knowledge Distillation from Vision-Language Models via texttt{D}ual-texttt{H}ead texttt{O}ptimization

Vision-language models (VLMs) have achieved remarkable success across diverse tasks by leveraging rich textual information with minimal labeled data. However, deploying such large models remains challenging, particularly in resource-constrained environments. Knowledge distillation (KD) offers a well-established solution to this problem; however, recent KD approaches from VLMs often involve multi-stage training or additional tuning, increasing computational overhead and optimization complexity. In this paper, we propose texttt{D}ual-texttt{H}ead texttt{O}ptimization (texttt{DHO}) -- a simple yet effective KD framework that transfers knowledge from VLMs to compact, task-specific models in semi-supervised settings. Specifically, we introduce dual prediction heads that independently learn from labeled data and teacher predictions, and propose to linearly combine their outputs during inference. We observe that DHO mitigates gradient conflicts between supervised and distillation signals, enabling more effective feature learning than single-head KD baselines. As a result, extensive experiments show that DHO consistently outperforms baselines across multiple domains and fine-grained datasets. Notably, on ImageNet, it achieves state-of-the-art performance, improving accuracy by 3% and 0.1% with 1% and 10% labeled data, respectively, while using fewer parameters.

  • 4 authors
·
May 12 3

DualTune: Decoupled Fine-Tuning for On-Device Agentic Systems

The deployment of Large Language Models (LLMs) as agentic orchestrators has revolutionized task automation, but the need for privacy-preserving, cost-effective solutions demands on-device inference capabilities. However, local LLMs consistently underperform compared to frontier models in tool calling scenarios, struggling with both tool selection from large tool sets and accurate argument generation for complex parameter structures. We introduce a methodology that disaggregates a tool-calling task into two distinct subtasks: tool selection and argument generation. We propose "decoupled fine-tuning", a novel post-training approach that employs LoRA fine-tuning to create dedicated LoRA adapters for tool selection and tool-specific argument generation using separate loss masking for each of the subtasks. Furthermore, we present DualTune, an inference framework that leverages the LoRA adapters created using decoupled fine-tuning to perform efficient agent orchestration with the help of local models on end-user devices. DualTune decomposes the tool-call generation step into tool selection and argument generation, and dynamically loads the corresponding LoRA adapters to generate tool calls. Additionally, DualTune implements hierarchical orchestration to restrict the number of tools required for tool selection. Our experiments on the MCP-Bench benchmark demonstrate that the Qwen-2.5-7B model trained using decoupled fine-tuning improves the tool calling accuracy of the base model by 46%, and outperforms other local reasoning, non-reasoning and fine-tuned models of similar size in all cases, and models that are 2x larger, in most cases.

  • 8 authors
·
Sep 30

EDTalk: Efficient Disentanglement for Emotional Talking Head Synthesis

Achieving disentangled control over multiple facial motions and accommodating diverse input modalities greatly enhances the application and entertainment of the talking head generation. This necessitates a deep exploration of the decoupling space for facial features, ensuring that they a) operate independently without mutual interference and b) can be preserved to share with different modal input, both aspects often neglected in existing methods. To address this gap, this paper proposes a novel Efficient Disentanglement framework for Talking head generation (EDTalk). Our framework enables individual manipulation of mouth shape, head pose, and emotional expression, conditioned on video or audio inputs. Specifically, we employ three lightweight modules to decompose the facial dynamics into three distinct latent spaces representing mouth, pose, and expression, respectively. Each space is characterized by a set of learnable bases whose linear combinations define specific motions. To ensure independence and accelerate training, we enforce orthogonality among bases and devise an efficient training strategy to allocate motion responsibilities to each space without relying on external knowledge. The learned bases are then stored in corresponding banks, enabling shared visual priors with audio input. Furthermore, considering the properties of each space, we propose an Audio-to-Motion module for audio-driven talking head synthesis. Experiments are conducted to demonstrate the effectiveness of EDTalk. We recommend watching the project website: https://tanshuai0219.github.io/EDTalk/

  • 4 authors
·
Apr 2, 2024

DCI: Dual-Conditional Inversion for Boosting Diffusion-Based Image Editing

Diffusion models have achieved remarkable success in image generation and editing tasks. Inversion within these models aims to recover the latent noise representation for a real or generated image, enabling reconstruction, editing, and other downstream tasks. However, to date, most inversion approaches suffer from an intrinsic trade-off between reconstruction accuracy and editing flexibility. This limitation arises from the difficulty of maintaining both semantic alignment and structural consistency during the inversion process. In this work, we introduce Dual-Conditional Inversion (DCI), a novel framework that jointly conditions on the source prompt and reference image to guide the inversion process. Specifically, DCI formulates the inversion process as a dual-condition fixed-point optimization problem, minimizing both the latent noise gap and the reconstruction error under the joint guidance. This design anchors the inversion trajectory in both semantic and visual space, leading to more accurate and editable latent representations. Our novel setup brings new understanding to the inversion process. Extensive experiments demonstrate that DCI achieves state-of-the-art performance across multiple editing tasks, significantly improving both reconstruction quality and editing precision. Furthermore, we also demonstrate that our method achieves strong results in reconstruction tasks, implying a degree of robustness and generalizability approaching the ultimate goal of the inversion process.

  • 6 authors
·
Jun 3

Enhancing Vision-Language Model Training with Reinforcement Learning in Synthetic Worlds for Real-World Success

Interactive multimodal agents must convert raw visual observations into coherent sequences of language-conditioned actions -- a capability that current vision-language models (VLMs) still lack. Earlier reinforcement-learning (RL) efforts could, in principle, endow VLMs with such skills, but they have seldom tested whether the learned behaviours generalize beyond their training simulators, and they depend either on brittle hyperparameter tuning or on dense-reward environments with low state variability. We introduce Vision-Language Decoupled Actor-Critic (VL-DAC), a lightweight, hyperparameter-free RL algorithm. VL-DAC applies PPO updates to action tokens while learning value only at the environment-step level: an arrangement, to our knowledge, not previously explored for large VLMs or LLMs. This simple decoupling removes unstable weighting terms and yields faster, more reliable convergence. Training a single VLM with VL-DAC in one inexpensive simulator at a time (MiniWorld, Gym-Cards, ALFWorld, or WebShop) already produces policies that generalize widely: +50\% relative on BALROG (game-centric agentic control), +5\% relative on the hardest part of VSI-Bench (spatial planning), and +2\% on VisualWebBench (web navigation), all without degrading general image understanding accuracy. These results provide the first evidence that a simple RL algorithm can train VLMs entirely in cheap synthetic worlds while delivering measurable gains on real-image agentic, spatial-reasoning, and web-navigation benchmarks.

  • 5 authors
·
Aug 6 2

Harnessing Hard Mixed Samples with Decoupled Regularizer

Mixup is an efficient data augmentation approach that improves the generalization of neural networks by smoothing the decision boundary with mixed data. Recently, dynamic mixup methods have improved previous static policies effectively (e.g., linear interpolation) by maximizing target-related salient regions in mixed samples, but excessive additional time costs are not acceptable. These additional computational overheads mainly come from optimizing the mixed samples according to the mixed labels. However, we found that the extra optimizing step may be redundant because label-mismatched mixed samples are informative hard mixed samples for deep models to localize discriminative features. In this paper, we thus are not trying to propose a more complicated dynamic mixup policy but rather an efficient mixup objective function with a decoupled regularizer named Decoupled Mixup (DM). The primary effect is that DM can adaptively utilize those hard mixed samples to mine discriminative features without losing the original smoothness of mixup. As a result, DM enables static mixup methods to achieve comparable or even exceed the performance of dynamic methods without any extra computation. This also leads to an interesting objective design problem for mixup training that we need to focus on both smoothing the decision boundaries and identifying discriminative features. Extensive experiments on supervised and semi-supervised learning benchmarks across seven datasets validate the effectiveness of DM as a plug-and-play module. Source code and models are available at https://github.com/Westlake-AI/openmixup

  • 6 authors
·
Mar 21, 2022

DDT: Decoupled Diffusion Transformer

Diffusion transformers have demonstrated remarkable generation quality, albeit requiring longer training iterations and numerous inference steps. In each denoising step, diffusion transformers encode the noisy inputs to extract the lower-frequency semantic component and then decode the higher frequency with identical modules. This scheme creates an inherent optimization dilemma: encoding low-frequency semantics necessitates reducing high-frequency components, creating tension between semantic encoding and high-frequency decoding. To resolve this challenge, we propose a new \color{ddtD}ecoupled \color{ddtD}iffusion \color{ddtT}ransformer~(\color{ddtDDT}), with a decoupled design of a dedicated condition encoder for semantic extraction alongside a specialized velocity decoder. Our experiments reveal that a more substantial encoder yields performance improvements as model size increases. For ImageNet 256times256, Our DDT-XL/2 achieves a new state-of-the-art performance of {1.31 FID}~(nearly 4times faster training convergence compared to previous diffusion transformers). For ImageNet 512times512, Our DDT-XL/2 achieves a new state-of-the-art FID of 1.28. Additionally, as a beneficial by-product, our decoupled architecture enhances inference speed by enabling the sharing self-condition between adjacent denoising steps. To minimize performance degradation, we propose a novel statistical dynamic programming approach to identify optimal sharing strategies.

  • 4 authors
·
Apr 8 3

Dual-Encoders for Extreme Multi-Label Classification

Dual-encoder (DE) models are widely used in retrieval tasks, most commonly studied on open QA benchmarks that are often characterized by multi-class and limited training data. In contrast, their performance in multi-label and data-rich retrieval settings like extreme multi-label classification (XMC), remains under-explored. Current empirical evidence indicates that DE models fall significantly short on XMC benchmarks, where SOTA methods linearly scale the number of learnable parameters with the total number of classes (documents in the corpus) by employing per-class classification head. To this end, we first study and highlight that existing multi-label contrastive training losses are not appropriate for training DE models on XMC tasks. We propose decoupled softmax loss - a simple modification to the InfoNCE loss - that overcomes the limitations of existing contrastive losses. We further extend our loss design to a soft top-k operator-based loss which is tailored to optimize top-k prediction performance. When trained with our proposed loss functions, standard DE models alone can match or outperform SOTA methods by up to 2% at Precision@1 even on the largest XMC datasets while being 20x smaller in terms of the number of trainable parameters. This leads to more parameter-efficient and universally applicable solutions for retrieval tasks. Our code and models are publicly available at https://github.com/nilesh2797/dexml.

  • 6 authors
·
Oct 16, 2023

Combo: Co-speech holistic 3D human motion generation and efficient customizable adaptation in harmony

In this paper, we propose a novel framework, Combo, for harmonious co-speech holistic 3D human motion generation and efficient customizable adaption. In particular, we identify that one fundamental challenge as the multiple-input-multiple-output (MIMO) nature of the generative model of interest. More concretely, on the input end, the model typically consumes both speech signals and character guidance (e.g., identity and emotion), which not only poses challenge on learning capacity but also hinders further adaptation to varying guidance; on the output end, holistic human motions mainly consist of facial expressions and body movements, which are inherently correlated but non-trivial to coordinate in current data-driven generation process. In response to the above challenge, we propose tailored designs to both ends. For the former, we propose to pre-train on data regarding a fixed identity with neutral emotion, and defer the incorporation of customizable conditions (identity and emotion) to fine-tuning stage, which is boosted by our novel X-Adapter for parameter-efficient fine-tuning. For the latter, we propose a simple yet effective transformer design, DU-Trans, which first divides into two branches to learn individual features of face expression and body movements, and then unites those to learn a joint bi-directional distribution and directly predicts combined coefficients. Evaluated on BEAT2 and SHOW datasets, Combo is highly effective in generating high-quality motions but also efficient in transferring identity and emotion. Project website: https://xc-csc101.github.io/combo/{Combo}.

  • 8 authors
·
Aug 18, 2024

Unlasting: Unpaired Single-Cell Multi-Perturbation Estimation by Dual Conditional Diffusion Implicit Bridges

Estimating single-cell responses across various perturbations facilitates the identification of key genes and enhances drug screening, significantly boosting experimental efficiency. However, single-cell sequencing is a destructive process, making it impossible to capture the same cell's phenotype before and after perturbation. Consequently, data collected under perturbed and unperturbed conditions are inherently unpaired. Existing methods either attempt to forcibly pair unpaired data using random sampling, or neglect the inherent relationship between unperturbed and perturbed cells during the modeling. In this work, we propose a framework based on Dual Diffusion Implicit Bridges (DDIB) to learn the mapping between different data distributions, effectively addressing the challenge of unpaired data. We further interpret this framework as a form of data augmentation. We integrate gene regulatory network (GRN) information to propagate perturbation signals in a biologically meaningful way, and further incorporate a masking mechanism to predict silent genes, improving the quality of generated profiles. Moreover, gene expression under the same perturbation often varies significantly across cells, frequently exhibiting a bimodal distribution that reflects intrinsic heterogeneity. To capture this, we introduce a more suitable evaluation metric. We propose Unlasting, dual conditional diffusion models that overcome the problem of unpaired single-cell perturbation data and strengthen the model's insight into perturbations under the guidance of the GRN, with a dedicated mask model designed to improve generation quality by predicting silent genes. In addition, we introduce a biologically grounded evaluation metric that better reflects the inherent heterogeneity in single-cell responses.

  • 8 authors
·
Jun 26

One4D: Unified 4D Generation and Reconstruction via Decoupled LoRA Control

We present One4D, a unified framework for 4D generation and reconstruction that produces dynamic 4D content as synchronized RGB frames and pointmaps. By consistently handling varying sparsities of conditioning frames through a Unified Masked Conditioning (UMC) mechanism, One4D can seamlessly transition between 4D generation from a single image, 4D reconstruction from a full video, and mixed generation and reconstruction from sparse frames. Our framework adapts a powerful video generation model for joint RGB and pointmap generation, with carefully designed network architectures. The commonly used diffusion finetuning strategies for depthmap or pointmap reconstruction often fail on joint RGB and pointmap generation, quickly degrading the base video model. To address this challenge, we introduce Decoupled LoRA Control (DLC), which employs two modality-specific LoRA adapters to form decoupled computation branches for RGB frames and pointmaps, connected by lightweight, zero-initialized control links that gradually learn mutual pixel-level consistency. Trained on a mixture of synthetic and real 4D datasets under modest computational budgets, One4D produces high-quality RGB frames and accurate pointmaps across both generation and reconstruction tasks. This work represents a step toward general, high-quality geometry-based 4D world modeling using video diffusion models. Project page: https://mizhenxing.github.io/One4D

  • 3 authors
·
Nov 24 2

Real-Time Prediction of Gas Flow Dynamics in Diesel Engines using a Deep Neural Operator Framework

We develop a data-driven deep neural operator framework to approximate multiple output states for a diesel engine and generate real-time predictions with reasonable accuracy. As emission norms become more stringent, the need for fast and accurate models that enable analysis of system behavior have become an essential requirement for system development. The fast transient processes involved in the operation of a combustion engine make it difficult to develop accurate physics-based models for such systems. As an alternative to physics based models, we develop an operator-based regression model (DeepONet) to learn the relevant output states for a mean-value gas flow engine model using the engine operating conditions as input variables. We have adopted a mean-value model as a benchmark for comparison, simulated using Simulink. The developed approach necessitates using the initial conditions of the output states to predict the accurate sequence over the temporal domain. To this end, a sequence-to-sequence approach is embedded into the proposed framework. The accuracy of the model is evaluated by comparing the prediction output to ground truth generated from Simulink model. The maximum mathcal L_2 relative error observed was approximately 6.5%. The sensitivity of the DeepONet model is evaluated under simulated noise conditions and the model shows relatively low sensitivity to noise. The uncertainty in model prediction is further assessed by using a mean ensemble approach. The worst-case error at the (mu + 2sigma) boundary was found to be 12%. The proposed framework provides the ability to predict output states in real-time and enables data-driven learning of complex input-output operator mapping. As a result, this model can be applied during initial development stages, where accurate models may not be available.

  • 4 authors
·
Apr 2, 2023

DualDiff+: Dual-Branch Diffusion for High-Fidelity Video Generation with Reward Guidance

Accurate and high-fidelity driving scene reconstruction demands the effective utilization of comprehensive scene information as conditional inputs. Existing methods predominantly rely on 3D bounding boxes and BEV road maps for foreground and background control, which fail to capture the full complexity of driving scenes and adequately integrate multimodal information. In this work, we present DualDiff, a dual-branch conditional diffusion model designed to enhance driving scene generation across multiple views and video sequences. Specifically, we introduce Occupancy Ray-shape Sampling (ORS) as a conditional input, offering rich foreground and background semantics alongside 3D spatial geometry to precisely control the generation of both elements. To improve the synthesis of fine-grained foreground objects, particularly complex and distant ones, we propose a Foreground-Aware Mask (FGM) denoising loss function. Additionally, we develop the Semantic Fusion Attention (SFA) mechanism to dynamically prioritize relevant information and suppress noise, enabling more effective multimodal fusion. Finally, to ensure high-quality image-to-video generation, we introduce the Reward-Guided Diffusion (RGD) framework, which maintains global consistency and semantic coherence in generated videos. Extensive experiments demonstrate that DualDiff achieves state-of-the-art (SOTA) performance across multiple datasets. On the NuScenes dataset, DualDiff reduces the FID score by 4.09% compared to the best baseline. In downstream tasks, such as BEV segmentation, our method improves vehicle mIoU by 4.50% and road mIoU by 1.70%, while in BEV 3D object detection, the foreground mAP increases by 1.46%. Code will be made available at https://github.com/yangzhaojason/DualDiff.

  • 8 authors
·
Mar 5

DreamClear: High-Capacity Real-World Image Restoration with Privacy-Safe Dataset Curation

Image restoration (IR) in real-world scenarios presents significant challenges due to the lack of high-capacity models and comprehensive datasets. To tackle these issues, we present a dual strategy: GenIR, an innovative data curation pipeline, and DreamClear, a cutting-edge Diffusion Transformer (DiT)-based image restoration model. GenIR, our pioneering contribution, is a dual-prompt learning pipeline that overcomes the limitations of existing datasets, which typically comprise only a few thousand images and thus offer limited generalizability for larger models. GenIR streamlines the process into three stages: image-text pair construction, dual-prompt based fine-tuning, and data generation & filtering. This approach circumvents the laborious data crawling process, ensuring copyright compliance and providing a cost-effective, privacy-safe solution for IR dataset construction. The result is a large-scale dataset of one million high-quality images. Our second contribution, DreamClear, is a DiT-based image restoration model. It utilizes the generative priors of text-to-image (T2I) diffusion models and the robust perceptual capabilities of multi-modal large language models (MLLMs) to achieve photorealistic restoration. To boost the model's adaptability to diverse real-world degradations, we introduce the Mixture of Adaptive Modulator (MoAM). It employs token-wise degradation priors to dynamically integrate various restoration experts, thereby expanding the range of degradations the model can address. Our exhaustive experiments confirm DreamClear's superior performance, underlining the efficacy of our dual strategy for real-world image restoration. Code and pre-trained models will be available at: https://github.com/shallowdream204/DreamClear.

  • 7 authors
·
Oct 24, 2024 3

A Simple Approach to Unifying Diffusion-based Conditional Generation

Recent progress in image generation has sparked research into controlling these models through condition signals, with various methods addressing specific challenges in conditional generation. Instead of proposing another specialized technique, we introduce a simple, unified framework to handle diverse conditional generation tasks involving a specific image-condition correlation. By learning a joint distribution over a correlated image pair (e.g. image and depth) with a diffusion model, our approach enables versatile capabilities via different inference-time sampling schemes, including controllable image generation (e.g. depth to image), estimation (e.g. image to depth), signal guidance, joint generation (image & depth), and coarse control. Previous attempts at unification often introduce significant complexity through multi-stage training, architectural modification, or increased parameter counts. In contrast, our simple formulation requires a single, computationally efficient training stage, maintains the standard model input, and adds minimal learned parameters (15% of the base model). Moreover, our model supports additional capabilities like non-spatially aligned and coarse conditioning. Extensive results show that our single model can produce comparable results with specialized methods and better results than prior unified methods. We also demonstrate that multiple models can be effectively combined for multi-signal conditional generation.

  • 7 authors
·
Oct 15, 2024

Learning Semilinear Neural Operators : A Unified Recursive Framework For Prediction And Data Assimilation

Recent advances in the theory of Neural Operators (NOs) have enabled fast and accurate computation of the solutions to complex systems described by partial differential equations (PDEs). Despite their great success, current NO-based solutions face important challenges when dealing with spatio-temporal PDEs over long time scales. Specifically, the current theory of NOs does not present a systematic framework to perform data assimilation and efficiently correct the evolution of PDE solutions over time based on sparsely sampled noisy measurements. In this paper, we propose a learning-based state-space approach to compute the solution operators to infinite-dimensional semilinear PDEs. Exploiting the structure of semilinear PDEs and the theory of nonlinear observers in function spaces, we develop a flexible recursive method that allows for both prediction and data assimilation by combining prediction and correction operations. The proposed framework is capable of producing fast and accurate predictions over long time horizons, dealing with irregularly sampled noisy measurements to correct the solution, and benefits from the decoupling between the spatial and temporal dynamics of this class of PDEs. We show through experiments on the Kuramoto-Sivashinsky, Navier-Stokes and Korteweg-de Vries equations that the proposed model is robust to noise and can leverage arbitrary amounts of measurements to correct its prediction over a long time horizon with little computational overhead.

  • 4 authors
·
Feb 23, 2024

TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting

Time series forecasting is widely used in extensive applications, such as traffic planning and weather forecasting. However, real-world time series usually present intricate temporal variations, making forecasting extremely challenging. Going beyond the mainstream paradigms of plain decomposition and multiperiodicity analysis, we analyze temporal variations in a novel view of multiscale-mixing, which is based on an intuitive but important observation that time series present distinct patterns in different sampling scales. The microscopic and the macroscopic information are reflected in fine and coarse scales respectively, and thereby complex variations can be inherently disentangled. Based on this observation, we propose TimeMixer as a fully MLP-based architecture with Past-Decomposable-Mixing (PDM) and Future-Multipredictor-Mixing (FMM) blocks to take full advantage of disentangled multiscale series in both past extraction and future prediction phases. Concretely, PDM applies the decomposition to multiscale series and further mixes the decomposed seasonal and trend components in fine-to-coarse and coarse-to-fine directions separately, which successively aggregates the microscopic seasonal and macroscopic trend information. FMM further ensembles multiple predictors to utilize complementary forecasting capabilities in multiscale observations. Consequently, TimeMixer is able to achieve consistent state-of-the-art performances in both long-term and short-term forecasting tasks with favorable run-time efficiency.

  • 8 authors
·
May 23, 2024

DeCoT: Decomposing Complex Instructions for Enhanced Text-to-Image Generation with Large Language Models

Despite remarkable advancements, current Text-to-Image (T2I) models struggle with complex, long-form textual instructions, frequently failing to accurately render intricate details, spatial relationships, or specific constraints. This limitation is highlighted by benchmarks such as LongBench-T2I, which reveal deficiencies in handling composition, specific text, and fine textures. To address this, we propose DeCoT (Decomposition-CoT), a novel framework that leverages Large Language Models (LLMs) to significantly enhance T2I models' understanding and execution of complex instructions. DeCoT operates in two core stages: first, Complex Instruction Decomposition and Semantic Enhancement, where an LLM breaks down raw instructions into structured, actionable semantic units and clarifies ambiguities; second, Multi-Stage Prompt Integration and Adaptive Generation, which transforms these units into a hierarchical or optimized single prompt tailored for existing T2I models. Extensive experiments on the LongBench-T2I dataset demonstrate that DeCoT consistently and substantially improves the performance of leading T2I models across all evaluated dimensions, particularly in challenging aspects like "Text" and "Composition". Quantitative results, validated by multiple MLLM evaluators (Gemini-2.0-Flash and InternVL3-78B), show that DeCoT, when integrated with Infinity-8B, achieves an average score of 3.52, outperforming the baseline Infinity-8B (3.44). Ablation studies confirm the critical contribution of each DeCoT component and the importance of sophisticated LLM prompting. Furthermore, human evaluations corroborate these findings, indicating superior perceptual quality and instruction fidelity. DeCoT effectively bridges the gap between high-level user intent and T2I model requirements, leading to more faithful and accurate image generation.

  • 4 authors
·
Aug 17

BIVDiff: A Training-Free Framework for General-Purpose Video Synthesis via Bridging Image and Video Diffusion Models

Diffusion models have made tremendous progress in text-driven image and video generation. Now text-to-image foundation models are widely applied to various downstream image synthesis tasks, such as controllable image generation and image editing, while downstream video synthesis tasks are less explored for several reasons. First, it requires huge memory and compute overhead to train a video generation foundation model. Even with video foundation models, additional costly training is still required for downstream video synthesis tasks. Second, although some works extend image diffusion models into videos in a training-free manner, temporal consistency cannot be well kept. Finally, these adaption methods are specifically designed for one task and fail to generalize to different downstream video synthesis tasks. To mitigate these issues, we propose a training-free general-purpose video synthesis framework, coined as BIVDiff, via bridging specific image diffusion models and general text-to-video foundation diffusion models. Specifically, we first use an image diffusion model (like ControlNet, Instruct Pix2Pix) for frame-wise video generation, then perform Mixed Inversion on the generated video, and finally input the inverted latents into the video diffusion model for temporal smoothing. Decoupling image and video models enables flexible image model selection for different purposes, which endows the framework with strong task generalization and high efficiency. To validate the effectiveness and general use of BIVDiff, we perform a wide range of video generation tasks, including controllable video generation video editing, video inpainting and outpainting. Our project page is available at https://bivdiff.github.io.

  • 6 authors
·
Dec 5, 2023

Mirasol3B: A Multimodal Autoregressive model for time-aligned and contextual modalities

One of the main challenges of multimodal learning is the need to combine heterogeneous modalities (e.g., video, audio, text). For example, video and audio are obtained at much higher rates than text and are roughly aligned in time. They are often not synchronized with text, which comes as a global context, e.g., a title, or a description. Furthermore, video and audio inputs are of much larger volumes, and grow as the video length increases, which naturally requires more compute dedicated to these modalities and makes modeling of long-range dependencies harder. We here decouple the multimodal modeling, dividing it into separate, focused autoregressive models, processing the inputs according to the characteristics of the modalities. We propose a multimodal model, called Mirasol3B, consisting of an autoregressive component for the time-synchronized modalities (audio and video), and an autoregressive component for the context modalities which are not necessarily aligned in time but are still sequential. To address the long-sequences of the video-audio inputs, we propose to further partition the video and audio sequences in consecutive snippets and autoregressively process their representations. To that end, we propose a Combiner mechanism, which models the audio-video information jointly within a timeframe. The Combiner learns to extract audio and video features from raw spatio-temporal signals, and then learns to fuse these features producing compact but expressive representations per snippet. Our approach achieves the state-of-the-art on well established multimodal benchmarks, outperforming much larger models. It effectively addresses the high computational demand of media inputs by both learning compact representations, controlling the sequence length of the audio-video feature representations, and modeling their dependencies in time.

  • 6 authors
·
Nov 9, 2023 1

OWL: Optimized Workforce Learning for General Multi-Agent Assistance in Real-World Task Automation

Large Language Model (LLM)-based multi-agent systems show promise for automating real-world tasks but struggle to transfer across domains due to their domain-specific nature. Current approaches face two critical shortcomings: they require complete architectural redesign and full retraining of all components when applied to new domains. We introduce Workforce, a hierarchical multi-agent framework that decouples strategic planning from specialized execution through a modular architecture comprising: (i) a domain-agnostic Planner for task decomposition, (ii) a Coordinator for subtask management, and (iii) specialized Workers with domain-specific tool-calling capabilities. This decoupling enables cross-domain transferability during both inference and training phases: During inference, Workforce seamlessly adapts to new domains by adding or modifying worker agents; For training, we introduce Optimized Workforce Learning (OWL), which improves generalization across domains by optimizing a domain-agnostic planner with reinforcement learning from real-world feedback. To validate our approach, we evaluate Workforce on the GAIA benchmark, covering various realistic, multi-domain agentic tasks. Experimental results demonstrate Workforce achieves open-source state-of-the-art performance (69.70%), outperforming commercial systems like OpenAI's Deep Research by 2.34%. More notably, our OWL-trained 32B model achieves 52.73% accuracy (+16.37%) and demonstrates performance comparable to GPT-4o on challenging tasks. To summarize, by enabling scalable generalization and modular domain transfer, our work establishes a foundation for the next generation of general-purpose AI assistants.

  • 16 authors
·
May 29

FaceChain-FACT: Face Adapter with Decoupled Training for Identity-preserved Personalization

In the field of human-centric personalized image generation, the adapter-based method obtains the ability to customize and generate portraits by text-to-image training on facial data. This allows for identity-preserved personalization without additional fine-tuning in inference. Although there are improvements in efficiency and fidelity, there is often a significant performance decrease in test following ability, controllability, and diversity of generated faces compared to the base model. In this paper, we analyze that the performance degradation is attributed to the failure to decouple identity features from other attributes during extraction, as well as the failure to decouple the portrait generation training from the overall generation task. To address these issues, we propose the Face Adapter with deCoupled Training (FACT) framework, focusing on both model architecture and training strategy. To decouple identity features from others, we leverage a transformer-based face-export encoder and harness fine-grained identity features. To decouple the portrait generation training, we propose Face Adapting Increment Regularization~(FAIR), which effectively constrains the effect of face adapters on the facial region, preserving the generative ability of the base model. Additionally, we incorporate a face condition drop and shuffle mechanism, combined with curriculum learning, to enhance facial controllability and diversity. As a result, FACT solely learns identity preservation from training data, thereby minimizing the impact on the original text-to-image capabilities of the base model. Extensive experiments show that FACT has both controllability and fidelity in both text-to-image generation and inpainting solutions for portrait generation.

  • 7 authors
·
Oct 16, 2024

DVIS++: Improved Decoupled Framework for Universal Video Segmentation

We present the Decoupled VIdeo Segmentation (DVIS) framework, a novel approach for the challenging task of universal video segmentation, including video instance segmentation (VIS), video semantic segmentation (VSS), and video panoptic segmentation (VPS). Unlike previous methods that model video segmentation in an end-to-end manner, our approach decouples video segmentation into three cascaded sub-tasks: segmentation, tracking, and refinement. This decoupling design allows for simpler and more effective modeling of the spatio-temporal representations of objects, especially in complex scenes and long videos. Accordingly, we introduce two novel components: the referring tracker and the temporal refiner. These components track objects frame by frame and model spatio-temporal representations based on pre-aligned features. To improve the tracking capability of DVIS, we propose a denoising training strategy and introduce contrastive learning, resulting in a more robust framework named DVIS++. Furthermore, we evaluate DVIS++ in various settings, including open vocabulary and using a frozen pre-trained backbone. By integrating CLIP with DVIS++, we present OV-DVIS++, the first open-vocabulary universal video segmentation framework. We conduct extensive experiments on six mainstream benchmarks, including the VIS, VSS, and VPS datasets. Using a unified architecture, DVIS++ significantly outperforms state-of-the-art specialized methods on these benchmarks in both close- and open-vocabulary settings. Code:~https://github.com/zhang-tao-whu/DVIS_Plus.

  • 10 authors
·
Dec 19, 2023

Diffusion Models as Optimizers for Efficient Planning in Offline RL

Diffusion models have shown strong competitiveness in offline reinforcement learning tasks by formulating decision-making as sequential generation. However, the practicality of these methods is limited due to the lengthy inference processes they require. In this paper, we address this problem by decomposing the sampling process of diffusion models into two decoupled subprocesses: 1) generating a feasible trajectory, which is a time-consuming process, and 2) optimizing the trajectory. With this decomposition approach, we are able to partially separate efficiency and quality factors, enabling us to simultaneously gain efficiency advantages and ensure quality assurance. We propose the Trajectory Diffuser, which utilizes a faster autoregressive model to handle the generation of feasible trajectories while retaining the trajectory optimization process of diffusion models. This allows us to achieve more efficient planning without sacrificing capability. To evaluate the effectiveness and efficiency of the Trajectory Diffuser, we conduct experiments on the D4RL benchmarks. The results demonstrate that our method achieves it 3-it 10 times faster inference speed compared to previous sequence modeling methods, while also outperforming them in terms of overall performance. https://github.com/RenMing-Huang/TrajectoryDiffuser Keywords: Reinforcement Learning and Efficient Planning and Diffusion Model

  • 7 authors
·
Jul 22, 2024

Generalizing to Unseen Domains in Diabetic Retinopathy with Disentangled Representations

Diabetic Retinopathy (DR), induced by diabetes, poses a significant risk of visual impairment. Accurate and effective grading of DR aids in the treatment of this condition. Yet existing models experience notable performance degradation on unseen domains due to domain shifts. Previous methods address this issue by simulating domain style through simple visual transformation and mitigating domain noise via learning robust representations. However, domain shifts encompass more than image styles. They overlook biases caused by implicit factors such as ethnicity, age, and diagnostic criteria. In our work, we propose a novel framework where representations of paired data from different domains are decoupled into semantic features and domain noise. The resulting augmented representation comprises original retinal semantics and domain noise from other domains, aiming to generate enhanced representations aligned with real-world clinical needs, incorporating rich information from diverse domains. Subsequently, to improve the robustness of the decoupled representations, class and domain prototypes are employed to interpolate the disentangled representations while data-aware weights are designed to focus on rare classes and domains. Finally, we devise a robust pixel-level semantic alignment loss to align retinal semantics decoupled from features, maintaining a balance between intra-class diversity and dense class features. Experimental results on multiple benchmarks demonstrate the effectiveness of our method on unseen domains. The code implementations are accessible on https://github.com/richard-peng-xia/DECO.

  • 9 authors
·
Jun 10, 2024

Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation

Despite diffusion models having shown powerful abilities to generate photorealistic images, generating videos that are realistic and diverse still remains in its infancy. One of the key reasons is that current methods intertwine spatial content and temporal dynamics together, leading to a notably increased complexity of text-to-video generation (T2V). In this work, we propose HiGen, a diffusion model-based method that improves performance by decoupling the spatial and temporal factors of videos from two perspectives, i.e., structure level and content level. At the structure level, we decompose the T2V task into two steps, including spatial reasoning and temporal reasoning, using a unified denoiser. Specifically, we generate spatially coherent priors using text during spatial reasoning and then generate temporally coherent motions from these priors during temporal reasoning. At the content level, we extract two subtle cues from the content of the input video that can express motion and appearance changes, respectively. These two cues then guide the model's training for generating videos, enabling flexible content variations and enhancing temporal stability. Through the decoupled paradigm, HiGen can effectively reduce the complexity of this task and generate realistic videos with semantics accuracy and motion stability. Extensive experiments demonstrate the superior performance of HiGen over the state-of-the-art T2V methods.

  • 8 authors
·
Dec 7, 2023 1

Dual-Stream Diffusion for World-Model Augmented Vision-Language-Action Model

Recently, augmenting Vision-Language-Action models (VLAs) with world modeling has shown promise in improving robotic policy learning. However, it remains challenging to jointly predict next-state observations and action sequences because of the inherent difference between the two modalities. To address this, we propose DUal-STream diffusion (DUST), a world-model augmented VLA framework that handles the modality conflict and enhances the performance of VLAs across diverse tasks. Specifically, we propose a multimodal diffusion transformer architecture that explicitly maintains separate modality streams while still enabling cross-modal knowledge sharing. In addition, we introduce independent noise perturbations for each modality and a decoupled flow-matching loss. This design enables the model to learn the joint distribution in a bidirectional manner while avoiding the need for a unified latent space. Based on the decoupling of modalities during training, we also introduce a joint sampling method that supports test-time scaling, where action and vision tokens evolve asynchronously at different rates. Through experiments on simulated benchmarks such as RoboCasa and GR-1, DUST achieves up to 6% gains over baseline methods, while our test-time scaling approach provides an additional 2-5% boost. On real-world tasks with the Franka Research 3, DUST improves success rates by 13%, confirming its effectiveness beyond simulation. Furthermore, pre-training on action-free videos from BridgeV2 yields significant transfer gains on RoboCasa, underscoring DUST's potential for large-scale VLA pretraining.

  • 5 authors
·
Oct 31 1