Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeReinforcing Compositional Retrieval: Retrieving Step-by-Step for Composing Informative Contexts
Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet they often rely on external context to handle complex tasks. While retrieval-augmented frameworks traditionally focus on selecting top-ranked documents in a single pass, many real-world scenarios demand compositional retrieval, where multiple sources must be combined in a coordinated manner. In this work, we propose a tri-encoder sequential retriever that models this process as a Markov Decision Process (MDP), decomposing the probability of retrieving a set of elements into a sequence of conditional probabilities and allowing each retrieval step to be conditioned on previously selected examples. We train the retriever in two stages: first, we efficiently construct supervised sequential data for initial policy training; we then refine the policy to align with the LLM's preferences using a reward grounded in the structural correspondence of generated programs. Experimental results show that our method consistently and significantly outperforms baselines, underscoring the importance of explicitly modeling inter-example dependencies. These findings highlight the potential of compositional retrieval for tasks requiring multiple pieces of evidence or examples.
Non-negative Contrastive Learning
Deep representations have shown promising performance when transferred to downstream tasks in a black-box manner. Yet, their inherent lack of interpretability remains a significant challenge, as these features are often opaque to human understanding. In this paper, we propose Non-negative Contrastive Learning (NCL), a renaissance of Non-negative Matrix Factorization (NMF) aimed at deriving interpretable features. The power of NCL lies in its enforcement of non-negativity constraints on features, reminiscent of NMF's capability to extract features that align closely with sample clusters. NCL not only aligns mathematically well with an NMF objective but also preserves NMF's interpretability attributes, resulting in a more sparse and disentangled representation compared to standard contrastive learning (CL). Theoretically, we establish guarantees on the identifiability and downstream generalization of NCL. Empirically, we show that these advantages enable NCL to outperform CL significantly on feature disentanglement, feature selection, as well as downstream classification tasks. At last, we show that NCL can be easily extended to other learning scenarios and benefit supervised learning as well. Code is available at https://github.com/PKU-ML/non_neg.
Contrastive Deep Nonnegative Matrix Factorization for Community Detection
Recently, nonnegative matrix factorization (NMF) has been widely adopted for community detection, because of its better interpretability. However, the existing NMF-based methods have the following three problems: 1) they directly transform the original network into community membership space, so it is difficult for them to capture the hierarchical information; 2) they often only pay attention to the topology of the network and ignore its node attributes; 3) it is hard for them to learn the global structure information necessary for community detection. Therefore, we propose a new community detection algorithm, named Contrastive Deep Nonnegative Matrix Factorization (CDNMF). Firstly, we deepen NMF to strengthen its capacity for information extraction. Subsequently, inspired by contrastive learning, our algorithm creatively constructs network topology and node attributes as two contrasting views. Furthermore, we utilize a debiased negative sampling layer and learn node similarity at the community level, thereby enhancing the suitability of our model for community detection. We conduct experiments on three public real graph datasets and the proposed model has achieved better results than state-of-the-art methods. Code available at https://github.com/6lyc/CDNMF.git.
Deep metric learning using Triplet network
Deep learning has proven itself as a successful set of models for learning useful semantic representations of data. These, however, are mostly implicitly learned as part of a classification task. In this paper we propose the triplet network model, which aims to learn useful representations by distance comparisons. A similar model was defined by Wang et al. (2014), tailor made for learning a ranking for image information retrieval. Here we demonstrate using various datasets that our model learns a better representation than that of its immediate competitor, the Siamese network. We also discuss future possible usage as a framework for unsupervised learning.
Multivariate Representation Learning for Information Retrieval
Dense retrieval models use bi-encoder network architectures for learning query and document representations. These representations are often in the form of a vector representation and their similarities are often computed using the dot product function. In this paper, we propose a new representation learning framework for dense retrieval. Instead of learning a vector for each query and document, our framework learns a multivariate distribution and uses negative multivariate KL divergence to compute the similarity between distributions. For simplicity and efficiency reasons, we assume that the distributions are multivariate normals and then train large language models to produce mean and variance vectors for these distributions. We provide a theoretical foundation for the proposed framework and show that it can be seamlessly integrated into the existing approximate nearest neighbor algorithms to perform retrieval efficiently. We conduct an extensive suite of experiments on a wide range of datasets, and demonstrate significant improvements compared to competitive dense retrieval models.
Improving Composed Image Retrieval via Contrastive Learning with Scaling Positives and Negatives
The Composed Image Retrieval (CIR) task aims to retrieve target images using a composed query consisting of a reference image and a modified text. Advanced methods often utilize contrastive learning as the optimization objective, which benefits from adequate positive and negative examples. However, the triplet for CIR incurs high manual annotation costs, resulting in limited positive examples. Furthermore, existing methods commonly use in-batch negative sampling, which reduces the negative number available for the model. To address the problem of lack of positives, we propose a data generation method by leveraging a multi-modal large language model to construct triplets for CIR. To introduce more negatives during fine-tuning, we design a two-stage fine-tuning framework for CIR, whose second stage introduces plenty of static representations of negatives to optimize the representation space rapidly. The above two improvements can be effectively stacked and designed to be plug-and-play, easily applied to existing CIR models without changing their original architectures. Extensive experiments and ablation analysis demonstrate that our method effectively scales positives and negatives and achieves state-of-the-art results on both FashionIQ and CIRR datasets. In addition, our method also performs well in zero-shot composed image retrieval, providing a new CIR solution for the low-resources scenario. Our code and data are released at https://github.com/BUAADreamer/SPN4CIR.
Graph-Based Tri-Attention Network for Answer Ranking in CQA
In community-based question answering (CQA) platforms, automatic answer ranking for a given question is critical for finding potentially popular answers in early times. The mainstream approaches learn to generate answer ranking scores based on the matching degree between question and answer representations as well as the influence of respondents. However, they encounter two main limitations: (1) Correlations between answers in the same question are often overlooked. (2) Question and respondent representations are built independently of specific answers before affecting answer representations. To address the limitations, we devise a novel graph-based tri-attention network, namely GTAN, which has two innovations. First, GTAN proposes to construct a graph for each question and learn answer correlations from each graph through graph neural networks (GNNs). Second, based on the representations learned from GNNs, an alternating tri-attention method is developed to alternatively build target-aware respondent representations, answer-specific question representations, and context-aware answer representations by attention computation. GTAN finally integrates the above representations to generate answer ranking scores. Experiments on three real-world CQA datasets demonstrate GTAN significantly outperforms state-of-the-art answer ranking methods, validating the rationality of the network architecture.
Modeling Relational Data with Graph Convolutional Networks
Knowledge graphs enable a wide variety of applications, including question answering and information retrieval. Despite the great effort invested in their creation and maintenance, even the largest (e.g., Yago, DBPedia or Wikidata) remain incomplete. We introduce Relational Graph Convolutional Networks (R-GCNs) and apply them to two standard knowledge base completion tasks: Link prediction (recovery of missing facts, i.e. subject-predicate-object triples) and entity classification (recovery of missing entity attributes). R-GCNs are related to a recent class of neural networks operating on graphs, and are developed specifically to deal with the highly multi-relational data characteristic of realistic knowledge bases. We demonstrate the effectiveness of R-GCNs as a stand-alone model for entity classification. We further show that factorization models for link prediction such as DistMult can be significantly improved by enriching them with an encoder model to accumulate evidence over multiple inference steps in the relational graph, demonstrating a large improvement of 29.8% on FB15k-237 over a decoder-only baseline.
Compact Trilinear Interaction for Visual Question Answering
In Visual Question Answering (VQA), answers have a great correlation with question meaning and visual contents. Thus, to selectively utilize image, question and answer information, we propose a novel trilinear interaction model which simultaneously learns high level associations between these three inputs. In addition, to overcome the interaction complexity, we introduce a multimodal tensor-based PARALIND decomposition which efficiently parameterizes trilinear interaction between the three inputs. Moreover, knowledge distillation is first time applied in Free-form Opened-ended VQA. It is not only for reducing the computational cost and required memory but also for transferring knowledge from trilinear interaction model to bilinear interaction model. The extensive experiments on benchmarking datasets TDIUC, VQA-2.0, and Visual7W show that the proposed compact trilinear interaction model achieves state-of-the-art results when using a single model on all three datasets.
Invertible Concept-based Explanations for CNN Models with Non-negative Concept Activation Vectors
Convolutional neural network (CNN) models for computer vision are powerful but lack explainability in their most basic form. This deficiency remains a key challenge when applying CNNs in important domains. Recent work on explanations through feature importance of approximate linear models has moved from input-level features (pixels or segments) to features from mid-layer feature maps in the form of concept activation vectors (CAVs). CAVs contain concept-level information and could be learned via clustering. In this work, we rethink the ACE algorithm of Ghorbani et~al., proposing an alternative invertible concept-based explanation (ICE) framework to overcome its shortcomings. Based on the requirements of fidelity (approximate models to target models) and interpretability (being meaningful to people), we design measurements and evaluate a range of matrix factorization methods with our framework. We find that non-negative concept activation vectors (NCAVs) from non-negative matrix factorization provide superior performance in interpretability and fidelity based on computational and human subject experiments. Our framework provides both local and global concept-level explanations for pre-trained CNN models.
Adversarial Retriever-Ranker for dense text retrieval
Current dense text retrieval models face two typical challenges. First, they adopt a siamese dual-encoder architecture to encode queries and documents independently for fast indexing and searching, while neglecting the finer-grained term-wise interactions. This results in a sub-optimal recall performance. Second, their model training highly relies on a negative sampling technique to build up the negative documents in their contrastive losses. To address these challenges, we present Adversarial Retriever-Ranker (AR2), which consists of a dual-encoder retriever plus a cross-encoder ranker. The two models are jointly optimized according to a minimax adversarial objective: the retriever learns to retrieve negative documents to cheat the ranker, while the ranker learns to rank a collection of candidates including both the ground-truth and the retrieved ones, as well as providing progressive direct feedback to the dual-encoder retriever. Through this adversarial game, the retriever gradually produces harder negative documents to train a better ranker, whereas the cross-encoder ranker provides progressive feedback to improve retriever. We evaluate AR2 on three benchmarks. Experimental results show that AR2 consistently and significantly outperforms existing dense retriever methods and achieves new state-of-the-art results on all of them. This includes the improvements on Natural Questions R@5 to 77.9%(+2.1%), TriviaQA R@5 to 78.2%(+1.4), and MS-MARCO MRR@10 to 39.5%(+1.3%). Code and models are available at https://github.com/microsoft/AR2.
Improving Knowledge Graph Embedding Using Simple Constraints
Embedding knowledge graphs (KGs) into continuous vector spaces is a focus of current research. Early works performed this task via simple models developed over KG triples. Recent attempts focused on either designing more complicated triple scoring models, or incorporating extra information beyond triples. This paper, by contrast, investigates the potential of using very simple constraints to improve KG embedding. We examine non-negativity constraints on entity representations and approximate entailment constraints on relation representations. The former help to learn compact and interpretable representations for entities. The latter further encode regularities of logical entailment between relations into their distributed representations. These constraints impose prior beliefs upon the structure of the embedding space, without negative impacts on efficiency or scalability. Evaluation on WordNet, Freebase, and DBpedia shows that our approach is simple yet surprisingly effective, significantly and consistently outperforming competitive baselines. The constraints imposed indeed improve model interpretability, leading to a substantially increased structuring of the embedding space. Code and data are available at https://github.com/iieir-km/ComplEx-NNE_AER.
Multi-modal Retrieval of Tables and Texts Using Tri-encoder Models
Open-domain extractive question answering works well on textual data by first retrieving candidate texts and then extracting the answer from those candidates. However, some questions cannot be answered by text alone but require information stored in tables. In this paper, we present an approach for retrieving both texts and tables relevant to a question by jointly encoding texts, tables and questions into a single vector space. To this end, we create a new multi-modal dataset based on text and table datasets from related work and compare the retrieval performance of different encoding schemata. We find that dense vector embeddings of transformer models outperform sparse embeddings on four out of six evaluation datasets. Comparing different dense embedding models, tri-encoders with one encoder for each question, text and table, increase retrieval performance compared to bi-encoders with one encoder for the question and one for both text and tables. We release the newly created multi-modal dataset to the community so that it can be used for training and evaluation.
Variational Autoencoders for Collaborative Filtering
We extend variational autoencoders (VAEs) to collaborative filtering for implicit feedback. This non-linear probabilistic model enables us to go beyond the limited modeling capacity of linear factor models which still largely dominate collaborative filtering research.We introduce a generative model with multinomial likelihood and use Bayesian inference for parameter estimation. Despite widespread use in language modeling and economics, the multinomial likelihood receives less attention in the recommender systems literature. We introduce a different regularization parameter for the learning objective, which proves to be crucial for achieving competitive performance. Remarkably, there is an efficient way to tune the parameter using annealing. The resulting model and learning algorithm has information-theoretic connections to maximum entropy discrimination and the information bottleneck principle. Empirically, we show that the proposed approach significantly outperforms several state-of-the-art baselines, including two recently-proposed neural network approaches, on several real-world datasets. We also provide extended experiments comparing the multinomial likelihood with other commonly used likelihood functions in the latent factor collaborative filtering literature and show favorable results. Finally, we identify the pros and cons of employing a principled Bayesian inference approach and characterize settings where it provides the most significant improvements.
Learning Diverse Document Representations with Deep Query Interactions for Dense Retrieval
In this paper, we propose a new dense retrieval model which learns diverse document representations with deep query interactions. Our model encodes each document with a set of generated pseudo-queries to get query-informed, multi-view document representations. It not only enjoys high inference efficiency like the vanilla dual-encoder models, but also enables deep query-document interactions in document encoding and provides multi-faceted representations to better match different queries. Experiments on several benchmarks demonstrate the effectiveness of the proposed method, out-performing strong dual encoder baselines.The code is available at \url{https://github.com/jordane95/dual-cross-encoder
Deep Learning Applied to Image and Text Matching
The ability to describe images with natural language sentences is the hallmark for image and language understanding. Such a system has wide ranging applications such as annotating images and using natural sentences to search for images.In this project we focus on the task of bidirectional image retrieval: such asystem is capable of retrieving an image based on a sentence (image search) andretrieve sentence based on an image query (image annotation). We present asystem based on a global ranking objective function which uses a combinationof convolutional neural networks (CNN) and multi layer perceptrons (MLP).It takes a pair of image and sentence and processes them in different channels,finally embedding it into a common multimodal vector space. These embeddingsencode abstract semantic information about the two inputs and can be comparedusing traditional information retrieval approaches. For each such pair, the modelreturns a score which is interpretted as a similarity metric. If this score is high,the image and sentence are likely to convey similar meaning, and if the score is low then they are likely not to. The visual input is modeled via deep convolutional neural network. On theother hand we explore three models for the textual module. The first one isbag of words with an MLP. The second one uses n-grams (bigram, trigrams,and a combination of trigram & skip-grams) with an MLP. The third is morespecialized deep network specific for modeling variable length sequences (SSE).We report comparable performance to recent work in the field, even though ouroverall model is simpler. We also show that the training time choice of how wecan generate our negative samples has a significant impact on performance, and can be used to specialize the bi-directional system in one particular task.
Blending Learning to Rank and Dense Representations for Efficient and Effective Cascades
We investigate the exploitation of both lexical and neural relevance signals for ad-hoc passage retrieval. Our exploration involves a large-scale training dataset in which dense neural representations of MS-MARCO queries and passages are complemented and integrated with 253 hand-crafted lexical features extracted from the same corpus. Blending of the relevance signals from the two different groups of features is learned by a classical Learning-to-Rank (LTR) model based on a forest of decision trees. To evaluate our solution, we employ a pipelined architecture where a dense neural retriever serves as the first stage and performs a nearest-neighbor search over the neural representations of the documents. Our LTR model acts instead as the second stage that re-ranks the set of candidates retrieved by the first stage to enhance effectiveness. The results of reproducible experiments conducted with state-of-the-art dense retrievers on publicly available resources show that the proposed solution significantly enhances the end-to-end ranking performance while relatively minimally impacting efficiency. Specifically, we achieve a boost in nDCG@10 of up to 11% with an increase in average query latency of only 4.3%. This confirms the advantage of seamlessly combining two distinct families of signals that mutually contribute to retrieval effectiveness.
Multivector Reranking in the Era of Strong First-Stage Retrievers
Learned multivector representations power modern search systems with strong retrieval effectiveness, but their real-world use is limited by the high cost of exhaustive token-level retrieval. Therefore, most systems adopt a gather-and-refine strategy, where a lightweight gather phase selects candidates for full scoring. However, this approach requires expensive searches over large token-level indexes and often misses the documents that would rank highest under full similarity. In this paper, we reproduce several state-of-the-art multivector retrieval methods on two publicly available datasets, providing a clear picture of the current multivector retrieval field and observing the inefficiency of token-level gathering. Building on top of that, we show that replacing the token-level gather phase with a single-vector document retriever -- specifically, a learned sparse retriever (LSR) -- produces a smaller and more semantically coherent candidate set. This recasts the gather-and-refine pipeline into the well-established two-stage retrieval architecture. As retrieval latency decreases, query encoding with two neural encoders becomes the dominant computational bottleneck. To mitigate this, we integrate recent inference-free LSR methods, demonstrating that they preserve the retrieval effectiveness of the dual-encoder pipeline while substantially reducing query encoding time. Finally, we investigate multiple reranking configurations that balance efficiency, memory, and effectiveness, and we introduce two optimization techniques that prune low-quality candidates early. Empirical results show that these techniques improve retrieval efficiency by up to 1.8times with no loss in quality. Overall, our two-stage approach achieves over 24times speedup over the state-of-the-art multivector retrieval systems, while maintaining comparable or superior retrieval quality.
A Deep Look into Neural Ranking Models for Information Retrieval
Ranking models lie at the heart of research on information retrieval (IR). During the past decades, different techniques have been proposed for constructing ranking models, from traditional heuristic methods, probabilistic methods, to modern machine learning methods. Recently, with the advance of deep learning technology, we have witnessed a growing body of work in applying shallow or deep neural networks to the ranking problem in IR, referred to as neural ranking models in this paper. The power of neural ranking models lies in the ability to learn from the raw text inputs for the ranking problem to avoid many limitations of hand-crafted features. Neural networks have sufficient capacity to model complicated tasks, which is needed to handle the complexity of relevance estimation in ranking. Since there have been a large variety of neural ranking models proposed, we believe it is the right time to summarize the current status, learn from existing methodologies, and gain some insights for future development. In contrast to existing reviews, in this survey, we will take a deep look into the neural ranking models from different dimensions to analyze their underlying assumptions, major design principles, and learning strategies. We compare these models through benchmark tasks to obtain a comprehensive empirical understanding of the existing techniques. We will also discuss what is missing in the current literature and what are the promising and desired future directions.
Enhanced Cross-modal 3D Retrieval via Tri-modal Reconstruction
Cross-modal 3D retrieval is a critical yet challenging task, aiming to achieve bi-directional retrieval between 3D and text modalities. Current methods predominantly rely on a certain 3D representation (e.g., point cloud), with few exploiting the 2D-3D consistency and complementary relationships, which constrains their performance. To bridge this gap, we propose to adopt multi-view images and point clouds to jointly represent 3D shapes, facilitating tri-modal alignment (i.e., image, point, text) for enhanced cross-modal 3D retrieval. Notably, we introduce tri-modal reconstruction to improve the generalization ability of encoders. Given point features, we reconstruct image features under the guidance of text features, and vice versa. With well-aligned point cloud and multi-view image features, we aggregate them as multimodal embeddings through fine-grained 2D-3D fusion to enhance geometric and semantic understanding. Recognizing the significant noise in current datasets where many 3D shapes and texts share similar semantics, we employ hard negative contrastive training to emphasize harder negatives with greater significance, leading to robust discriminative embeddings. Extensive experiments on the Text2Shape dataset demonstrate that our method significantly outperforms previous state-of-the-art methods in both shape-to-text and text-to-shape retrieval tasks by a substantial margin.
Multi-task Retrieval for Knowledge-Intensive Tasks
Retrieving relevant contexts from a large corpus is a crucial step for tasks such as open-domain question answering and fact checking. Although neural retrieval outperforms traditional methods like tf-idf and BM25, its performance degrades considerably when applied to out-of-domain data. Driven by the question of whether a neural retrieval model can be universal and perform robustly on a wide variety of problems, we propose a multi-task trained model. Our approach not only outperforms previous methods in the few-shot setting, but also rivals specialised neural retrievers, even when in-domain training data is abundant. With the help of our retriever, we improve existing models for downstream tasks and closely match or improve the state of the art on multiple benchmarks.
Mr. TyDi: A Multi-lingual Benchmark for Dense Retrieval
We present Mr. TyDi, a multi-lingual benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages, designed to evaluate ranking with learned dense representations. The goal of this resource is to spur research in dense retrieval techniques in non-English languages, motivated by recent observations that existing techniques for representation learning perform poorly when applied to out-of-distribution data. As a starting point, we provide zero-shot baselines for this new dataset based on a multi-lingual adaptation of DPR that we call "mDPR". Experiments show that although the effectiveness of mDPR is much lower than BM25, dense representations nevertheless appear to provide valuable relevance signals, improving BM25 results in sparse-dense hybrids. In addition to analyses of our results, we also discuss future challenges and present a research agenda in multi-lingual dense retrieval. Mr. TyDi can be downloaded at https://github.com/castorini/mr.tydi.
Improving Recall of Large Language Models: A Model Collaboration Approach for Relational Triple Extraction
Relation triple extraction, which outputs a set of triples from long sentences, plays a vital role in knowledge acquisition. Large language models can accurately extract triples from simple sentences through few-shot learning or fine-tuning when given appropriate instructions. However, they often miss out when extracting from complex sentences. In this paper, we design an evaluation-filtering framework that integrates large language models with small models for relational triple extraction tasks. The framework includes an evaluation model that can extract related entity pairs with high precision. We propose a simple labeling principle and a deep neural network to build the model, embedding the outputs as prompts into the extraction process of the large model. We conduct extensive experiments to demonstrate that the proposed method can assist large language models in obtaining more accurate extraction results, especially from complex sentences containing multiple relational triples. Our evaluation model can also be embedded into traditional extraction models to enhance their extraction precision from complex sentences.
To Know by the Company Words Keep and What Else Lies in the Vicinity
The development of state-of-the-art (SOTA) Natural Language Processing (NLP) systems has steadily been establishing new techniques to absorb the statistics of linguistic data. These techniques often trace well-known constructs from traditional theories, and we study these connections to close gaps around key NLP methods as a means to orient future work. For this, we introduce an analytic model of the statistics learned by seminal algorithms (including GloVe and Word2Vec), and derive insights for systems that use these algorithms and the statistics of co-occurrence, in general. In this work, we derive -- to the best of our knowledge -- the first known solution to Word2Vec's softmax-optimized, skip-gram algorithm. This result presents exciting potential for future development as a direct solution to a deep learning (DL) language model's (LM's) matrix factorization. However, we use the solution to demonstrate a seemingly-universal existence of a property that word vectors exhibit and which allows for the prophylactic discernment of biases in data -- prior to their absorption by DL models. To qualify our work, we conduct an analysis of independence, i.e., on the density of statistical dependencies in co-occurrence models, which in turn renders insights on the distributional hypothesis' partial fulfillment by co-occurrence statistics.
A Few Brief Notes on DeepImpact, COIL, and a Conceptual Framework for Information Retrieval Techniques
Recent developments in representational learning for information retrieval can be organized in a conceptual framework that establishes two pairs of contrasts: sparse vs. dense representations and unsupervised vs. learned representations. Sparse learned representations can further be decomposed into expansion and term weighting components. This framework allows us to understand the relationship between recently proposed techniques such as DPR, ANCE, DeepCT, DeepImpact, and COIL, and furthermore, gaps revealed by our analysis point to "low hanging fruit" in terms of techniques that have yet to be explored. We present a novel technique dubbed "uniCOIL", a simple extension of COIL that achieves to our knowledge the current state-of-the-art in sparse retrieval on the popular MS MARCO passage ranking dataset. Our implementation using the Anserini IR toolkit is built on the Lucene search library and thus fully compatible with standard inverted indexes.
ProphetNet-Ads: A Looking Ahead Strategy for Generative Retrieval Models in Sponsored Search Engine
In a sponsored search engine, generative retrieval models are recently proposed to mine relevant advertisement keywords for users' input queries. Generative retrieval models generate outputs token by token on a path of the target library prefix tree (Trie), which guarantees all of the generated outputs are legal and covered by the target library. In actual use, we found several typical problems caused by Trie-constrained searching length. In this paper, we analyze these problems and propose a looking ahead strategy for generative retrieval models named ProphetNet-Ads. ProphetNet-Ads improves the retrieval ability by directly optimizing the Trie-constrained searching space. We build a dataset from a real-word sponsored search engine and carry out experiments to analyze different generative retrieval models. Compared with Trie-based LSTM generative retrieval model proposed recently, our single model result and integrated result improve the recall by 15.58\% and 18.8\% respectively with beam size 5. Case studies further demonstrate how these problems are alleviated by ProphetNet-Ads clearly.
Deep contextualized word representations
We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals.
Determination of Latent Dimensionality in International Trade Flow
Currently, high-dimensional data is ubiquitous in data science, which necessitates the development of techniques to decompose and interpret such multidimensional (aka tensor) datasets. Finding a low dimensional representation of the data, that is, its inherent structure, is one of the approaches that can serve to understand the dynamics of low dimensional latent features hidden in the data. Nonnegative RESCAL is one such technique, particularly well suited to analyze self-relational data, such as dynamic networks found in international trade flows. Nonnegative RESCAL computes a low dimensional tensor representation by finding the latent space containing multiple modalities. Estimating the dimensionality of this latent space is crucial for extracting meaningful latent features. Here, to determine the dimensionality of the latent space with nonnegative RESCAL, we propose a latent dimension determination method which is based on clustering of the solutions of multiple realizations of nonnegative RESCAL decompositions. We demonstrate the performance of our model selection method on synthetic data and then we apply our method to decompose a network of international trade flows data from International Monetary Fund and validate the resulting features against empirical facts from economic literature.
Tevatron 2.0: Unified Document Retrieval Toolkit across Scale, Language, and Modality
Recent advancements in large language models (LLMs) have driven interest in billion-scale retrieval models with strong generalization across retrieval tasks and languages. Additionally, progress in large vision-language models has created new opportunities for multimodal retrieval. In response, we have updated the Tevatron toolkit, introducing a unified pipeline that enables researchers to explore retriever models at different scales, across multiple languages, and with various modalities. This demo paper highlights the toolkit's key features, bridging academia and industry by supporting efficient training, inference, and evaluation of neural retrievers. We showcase a unified dense retriever achieving strong multilingual and multimodal effectiveness, and conduct a cross-modality zero-shot study to demonstrate its research potential. Alongside, we release OmniEmbed, to the best of our knowledge, the first embedding model that unifies text, image document, video, and audio retrieval, serving as a baseline for future research.
UniME-V2: MLLM-as-a-Judge for Universal Multimodal Embedding Learning
Universal multimodal embedding models are foundational to various tasks. Existing approaches typically employ in-batch negative mining by measuring the similarity of query-candidate pairs. However, these methods often struggle to capture subtle semantic differences among candidates and lack diversity in negative samples. Moreover, the embeddings exhibit limited discriminative ability in distinguishing false and hard negatives. In this paper, we leverage the advanced understanding capabilities of MLLMs to enhance representation learning and present a novel Universal Multimodal Embedding (UniME-V2) model. Our approach first constructs a potential hard negative set through global retrieval. We then introduce the MLLM-as-a-Judge mechanism, which utilizes MLLMs to assess the semantic alignment of query-candidate pairs and generate soft semantic matching scores. These scores serve as a foundation for hard negative mining, mitigating the impact of false negatives and enabling the identification of diverse, high-quality hard negatives. Furthermore, the semantic matching scores are used as soft labels to mitigate the rigid one-to-one mapping constraint. By aligning the similarity matrix with the soft semantic matching score matrix, the model learns semantic distinctions among candidates, significantly enhancing its discriminative capacity. To further improve performance, we propose UniME-V2-Reranker, a reranking model trained on our mined hard negatives through a joint pairwise and listwise optimization approach. We conduct comprehensive experiments on the MMEB benchmark and multiple retrieval tasks, demonstrating that our method achieves state-of-the-art performance on average across all tasks.
Retrieval-based Disentangled Representation Learning with Natural Language Supervision
Disentangled representation learning remains challenging as the underlying factors of variation in the data do not naturally exist. The inherent complexity of real-world data makes it unfeasible to exhaustively enumerate and encapsulate all its variations within a finite set of factors. However, it is worth noting that most real-world data have linguistic equivalents, typically in the form of textual descriptions. These linguistic counterparts can represent the data and effortlessly decomposed into distinct tokens. In light of this, we present Vocabulary Disentangled Retrieval (VDR), a retrieval-based framework that harnesses natural language as proxies of the underlying data variation to drive disentangled representation learning. Our approach employ a bi-encoder model to represent both data and natural language in a vocabulary space, enabling the model to distinguish dimensions that capture intrinsic characteristics within data through its natural language counterpart, thus facilitating disentanglement. We extensively assess the performance of VDR across 15 retrieval benchmark datasets, covering text-to-text and cross-modal retrieval scenarios, as well as human evaluation. Our experimental results compellingly demonstrate the superiority of VDR over previous bi-encoder retrievers with comparable model size and training costs, achieving an impressive 8.7% improvement in NDCG@10 on the BEIR benchmark, a 5.3% increase on MS COCO, and a 6.0% increase on Flickr30k in terms of mean recall in the zero-shot setting. Moreover, The results from human evaluation indicate that interpretability of our method is on par with SOTA captioning models.
Efficient Reasoning via Thought-Training and Thought-Free Inference
Recent advances in large language models (LLMs) have leveraged explicit Chain-of-Thought (CoT) prompting to improve reasoning accuracy. However, most existing methods primarily compress verbose reasoning outputs. These Long-to-Short transformations aim to improve efficiency, but still rely on explicit reasoning during inference. In this work, we introduce 3TF (Thought-Training and Thought-Free inference), a framework for efficient reasoning that takes a Short-to-Long perspective. We first train a hybrid model that can operate in both reasoning and non-reasoning modes, and then further train it on CoT-annotated data to internalize structured reasoning, while enforcing concise, thought-free outputs at inference time using the no-reasoning mode. Unlike compression-based approaches, 3TF improves the reasoning quality of non-reasoning outputs, enabling models to perform rich internal reasoning implicitly while keeping external outputs short. Empirically, 3TF-trained models obtain large improvements on reasoning benchmarks under thought-free inference, demonstrating that high quality reasoning can be learned and executed implicitly without explicit step-by-step generation.
NevIR: Negation in Neural Information Retrieval
Negation is a common everyday phenomena and has been a consistent area of weakness for language models (LMs). Although the Information Retrieval (IR) community has adopted LMs as the backbone of modern IR architectures, there has been little to no research in understanding how negation impacts neural IR. We therefore construct a straightforward benchmark on this theme: asking IR models to rank two documents that differ only by negation. We show that the results vary widely according to the type of IR architecture: cross-encoders perform best, followed by late-interaction models, and in last place are bi-encoder and sparse neural architectures. We find that most current information retrieval models do not consider negation, performing similarly or worse than randomly ranking. We show that although the obvious approach of continued fine-tuning on a dataset of contrastive documents containing negations increases performance (as does model size), there is still a large gap between machine and human performance.
TripletCLIP: Improving Compositional Reasoning of CLIP via Synthetic Vision-Language Negatives
Contrastive Language-Image Pretraining (CLIP) models maximize the mutual information between text and visual modalities to learn representations. This makes the nature of the training data a significant factor in the efficacy of CLIP for downstream tasks. However, the lack of compositional diversity in contemporary image-text datasets limits the compositional reasoning ability of CLIP. We show that generating ``hard'' negative captions via in-context learning and synthesizing corresponding negative images with text-to-image generators offers a solution. We introduce a novel contrastive pre-training strategy that leverages these hard negative captions and images in an alternating fashion to train CLIP. We demonstrate that our method, named TripletCLIP, when applied to existing datasets such as CC3M and CC12M, enhances the compositional capabilities of CLIP, resulting in an absolute improvement of over 9% on the SugarCrepe benchmark on an equal computational budget, as well as improvements in zero-shot image classification and image retrieval. Our code, models, and data are available at: https://tripletclip.github.io
Representational Strengths and Limitations of Transformers
Attention layers, as commonly used in transformers, form the backbone of modern deep learning, yet there is no mathematical description of their benefits and deficiencies as compared with other architectures. In this work we establish both positive and negative results on the representation power of attention layers, with a focus on intrinsic complexity parameters such as width, depth, and embedding dimension. On the positive side, we present a sparse averaging task, where recurrent networks and feedforward networks all have complexity scaling polynomially in the input size, whereas transformers scale merely logarithmically in the input size; furthermore, we use the same construction to show the necessity and role of a large embedding dimension in a transformer. On the negative side, we present a triple detection task, where attention layers in turn have complexity scaling linearly in the input size; as this scenario seems rare in practice, we also present natural variants that can be efficiently solved by attention layers. The proof techniques emphasize the value of communication complexity in the analysis of transformers and related models, and the role of sparse averaging as a prototypical attention task, which even finds use in the analysis of triple detection.
Neural Collaborative Filtering
In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation -- collaborative filtering -- on the basis of implicit feedback. Although some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering -- the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items. By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural network-based Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.
TARA: Simple and Efficient Time Aware Retrieval Adaptation of MLLMs for Video Understanding
Our objective is to build a general time-aware video-text embedding model for retrieval. To that end, we propose a simple and efficient recipe, dubbed TARA (Time Aware Retrieval Adaptation), to adapt Multimodal LLMs (MLLMs) to a time-aware video-text embedding model without using any video data at all. For evaluating time-awareness in retrieval, we propose a new benchmark with temporally opposite (chiral) actions as hard negatives and curated splits for chiral and non-chiral actions. We show that TARA outperforms all existing video-text models on this chiral benchmark while also achieving strong results on standard benchmarks. Furthermore, we discover additional benefits of TARA beyond time-awareness: (i) TARA embeddings are negation-aware as shown in NegBench benchmark that evaluates negation in video retrieval, (ii) TARA achieves state of the art performance on verb and adverb understanding in videos. Overall, TARA yields a strong, versatile, time-aware video-text embedding model with state of the art zero-shot performance.
Vision-Language Models Do Not Understand Negation
Many practical vision-language applications require models that understand negation, e.g., when using natural language to retrieve images which contain certain objects but not others. Despite advancements in vision-language models (VLMs) through large-scale training, their ability to comprehend negation remains underexplored. This study addresses the question: how well do current VLMs understand negation? We introduce NegBench, a new benchmark designed to evaluate negation understanding across 18 task variations and 79k examples spanning image, video, and medical datasets. The benchmark consists of two core tasks designed to evaluate negation understanding in diverse multimodal settings: Retrieval with Negation and Multiple Choice Questions with Negated Captions. Our evaluation reveals that modern VLMs struggle significantly with negation, often performing at chance level. To address these shortcomings, we explore a data-centric approach wherein we finetune CLIP models on large-scale synthetic datasets containing millions of negated captions. We show that this approach can result in a 10% increase in recall on negated queries and a 40% boost in accuracy on multiple-choice questions with negated captions.
DSFormer: Effective Compression of Text-Transformers by Dense-Sparse Weight Factorization
With the tremendous success of large transformer models in natural language understanding, down-sizing them for cost-effective deployments has become critical. Recent studies have explored the low-rank weight factorization techniques which are efficient to train, and apply out-of-the-box to any transformer architecture. Unfortunately, the low-rank assumption tends to be over-restrictive and hinders the expressiveness of the compressed model. This paper proposes, DSFormer, a simple alternative factorization scheme which expresses a target weight matrix as the product of a small dense and a semi-structured sparse matrix. The resulting approximation is more faithful to the weight distribution in transformers and therefore achieves a stronger efficiency-accuracy trade-off. Another concern with existing factorizers is their dependence on a task-unaware initialization step which degrades the accuracy of the resulting model. DSFormer addresses this issue through a novel Straight-Through Factorizer (STF) algorithm that jointly learns all the weight factorizations to directly maximize the final task accuracy. Extensive experiments on multiple natural language understanding benchmarks demonstrate that DSFormer obtains up to 40% better compression than the state-of-the-art low-rank factorizers, leading semi-structured sparsity baselines and popular knowledge distillation approaches. Our approach is also orthogonal to mainstream compressors and offers up to 50% additional compression when added to popular distilled, layer-shared and quantized transformers. We empirically evaluate the benefits of STF over conventional optimization practices.
Making Large Language Models Efficient Dense Retrievers
Recent work has shown that directly fine-tuning large language models (LLMs) for dense retrieval yields strong performance, but their substantial parameter counts make them computationally inefficient. While prior studies have revealed significant layer redundancy in LLMs for generative tasks, it remains unclear whether similar redundancy exists when these models are adapted for retrieval tasks, which require encoding entire sequences into fixed representations rather than generating tokens iteratively. To this end, we conduct a comprehensive analysis of layer redundancy in LLM-based dense retrievers. We find that, in contrast to generative settings, MLP layers are substantially more prunable, while attention layers remain critical for semantic aggregation. Building on this insight, we propose EffiR, a framework for developing efficient retrievers that performs large-scale MLP compression through a coarse-to-fine strategy (coarse-grained depth reduction followed by fine-grained width reduction), combined with retrieval-specific fine-tuning. Across diverse BEIR datasets and LLM backbones, EffiR achieves substantial reductions in model size and inference cost while preserving the performance of full-size models.
Named Entity Disambiguation using Deep Learning on Graphs
We tackle NED by comparing entities in short sentences with graphs. Creating a context vector from graphs through deep learning is a challenging problem that has never been applied to NED. Our main contribution is to present an experimental study of recent neural techniques, as well as a discussion about which graph features are most important for the disambiguation task. In addition, a new dataset () is created to allow a clean and scalable evaluation of NED with entries, and to be used as a reference in future research. In the end our results show that a Bi-LSTM encoding of the graph triplets performs best, improving upon the baseline models and scoring an F1 value of 91.6% on the test set
SCOT: Self-Supervised Contrastive Pretraining For Zero-Shot Compositional Retrieval
Compositional image retrieval (CIR) is a multimodal learning task where a model combines a query image with a user-provided text modification to retrieve a target image. CIR finds applications in a variety of domains including product retrieval (e-commerce) and web search. Existing methods primarily focus on fully-supervised learning, wherein models are trained on datasets of labeled triplets such as FashionIQ and CIRR. This poses two significant challenges: (i) curating such triplet datasets is labor intensive; and (ii) models lack generalization to unseen objects and domains. In this work, we propose SCOT (Self-supervised COmpositional Training), a novel zero-shot compositional pretraining strategy that combines existing large image-text pair datasets with the generative capabilities of large language models to contrastively train an embedding composition network. Specifically, we show that the text embedding from a large-scale contrastively-pretrained vision-language model can be utilized as proxy target supervision during compositional pretraining, replacing the target image embedding. In zero-shot settings, this strategy surpasses SOTA zero-shot compositional retrieval methods as well as many fully-supervised methods on standard benchmarks such as FashionIQ and CIRR.
A Peek Into the Hidden Layers of a Convolutional Neural Network Through a Factorization Lens
Despite their increasing popularity and success in a variety of supervised learning problems, deep neural networks are extremely hard to interpret and debug: Given and already trained Deep Neural Net, and a set of test inputs, how can we gain insight into how those inputs interact with different layers of the neural network? Furthermore, can we characterize a given deep neural network based on it's observed behavior on different inputs? In this paper we propose a novel factorization based approach on understanding how different deep neural networks operate. In our preliminary results, we identify fascinating patterns that link the factorization rank (typically used as a measure of interestingness in unsupervised data analysis) with how well or poorly the deep network has been trained. Finally, our proposed approach can help provide visual insights on how high-level. interpretable patterns of the network's input behave inside the hidden layers of the deep network.
HaSa: Hardness and Structure-Aware Contrastive Knowledge Graph Embedding
We consider a contrastive learning approach to knowledge graph embedding (KGE) via InfoNCE. For KGE, efficient learning relies on augmenting the training data with negative triples. However, most KGE works overlook the bias from generating the negative triples-false negative triples (factual triples missing from the knowledge graph). We argue that the generation of high-quality (i.e., hard) negative triples might lead to an increase in false negative triples. To mitigate the impact of false negative triples during the generation of hard negative triples, we propose the Hardness and Structure-aware (HaSa) contrastive KGE method, which alleviates the effect of false negative triples while generating the hard negative triples. Experiments show that HaSa improves the performance of InfoNCE-based KGE approaches and achieves state-of-the-art results in several metrics for WN18RR datasets and competitive results for FB15k-237 datasets compared to both classic and pre-trained LM-based KGE methods.
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking
In neural Information Retrieval, ongoing research is directed towards improving the first retriever in ranking pipelines. Learning dense embeddings to conduct retrieval using efficient approximate nearest neighbors methods has proven to work well. Meanwhile, there has been a growing interest in learning sparse representations for documents and queries, that could inherit from the desirable properties of bag-of-words models such as the exact matching of terms and the efficiency of inverted indexes. In this work, we present a new first-stage ranker based on explicit sparsity regularization and a log-saturation effect on term weights, leading to highly sparse representations and competitive results with respect to state-of-the-art dense and sparse methods. Our approach is simple, trained end-to-end in a single stage. We also explore the trade-off between effectiveness and efficiency, by controlling the contribution of the sparsity regularization.
TPRF: A Transformer-based Pseudo-Relevance Feedback Model for Efficient and Effective Retrieval
This paper considers Pseudo-Relevance Feedback (PRF) methods for dense retrievers in a resource constrained environment such as that of cheap cloud instances or embedded systems (e.g., smartphones and smartwatches), where memory and CPU are limited and GPUs are not present. For this, we propose a transformer-based PRF method (TPRF), which has a much smaller memory footprint and faster inference time compared to other deep language models that employ PRF mechanisms, with a marginal effectiveness loss. TPRF learns how to effectively combine the relevance feedback signals from dense passage representations. Specifically, TPRF provides a mechanism for modelling relationships and weights between the query and the relevance feedback signals. The method is agnostic to the specific dense representation used and thus can be generally applied to any dense retriever.
Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations
Learned sparse representations form an attractive class of contextual embeddings for text retrieval. That is so because they are effective models of relevance and are interpretable by design. Despite their apparent compatibility with inverted indexes, however, retrieval over sparse embeddings remains challenging. That is due to the distributional differences between learned embeddings and term frequency-based lexical models of relevance such as BM25. Recognizing this challenge, a great deal of research has gone into, among other things, designing retrieval algorithms tailored to the properties of learned sparse representations, including approximate retrieval systems. In fact, this task featured prominently in the latest BigANN Challenge at NeurIPS 2023, where approximate algorithms were evaluated on a large benchmark dataset by throughput and recall. In this work, we propose a novel organization of the inverted index that enables fast yet effective approximate retrieval over learned sparse embeddings. Our approach organizes inverted lists into geometrically-cohesive blocks, each equipped with a summary vector. During query processing, we quickly determine if a block must be evaluated using the summaries. As we show experimentally, single-threaded query processing using our method, Seismic, reaches sub-millisecond per-query latency on various sparse embeddings of the MS MARCO dataset while maintaining high recall. Our results indicate that Seismic is one to two orders of magnitude faster than state-of-the-art inverted index-based solutions and further outperforms the winning (graph-based) submissions to the BigANN Challenge by a significant margin.
LEMON: LanguagE ModeL for Negative Sampling of Knowledge Graph Embeddings
Knowledge Graph Embedding models have become an important area of machine learning.Those models provide a latent representation of entities and relations in a knowledge graph which can then be used in downstream machine learning tasks such as link prediction. The learning process of such models can be performed by contrasting positive and negative triples. While all triples of a KG are considered positive, negative triples are usually not readily available. Therefore, the choice of the sampling method to obtain the negative triples play a crucial role in the performance and effectiveness of Knowledge Graph Embedding models. Most of the current methods fetch negative samples from a random distribution of entities in the underlying Knowledge Graph which also often includes meaningless triples. Other known methods use adversarial techniques or generative neural networks which consequently reduce the efficiency of the process. In this paper, we propose an approach for generating informative negative samples considering available complementary knowledge about entities. Particularly, Pre-trained Language Models are used to form neighborhood clusters by utilizing the distances between entities to obtain representations of symbolic entities via their textual information. Our comprehensive evaluations demonstrate the effectiveness of the proposed approach on benchmark Knowledge Graphs with textual information for the link prediction task.
On the Theoretical Limitations of Embedding-Based Retrieval
Vector embeddings have been tasked with an ever-increasing set of retrieval tasks over the years, with a nascent rise in using them for reasoning, instruction-following, coding, and more. These new benchmarks push embeddings to work for any query and any notion of relevance that could be given. While prior works have pointed out theoretical limitations of vector embeddings, there is a common assumption that these difficulties are exclusively due to unrealistic queries, and those that are not can be overcome with better training data and larger models. In this work, we demonstrate that we may encounter these theoretical limitations in realistic settings with extremely simple queries. We connect known results in learning theory, showing that the number of top-k subsets of documents capable of being returned as the result of some query is limited by the dimension of the embedding. We empirically show that this holds true even if we restrict to k=2, and directly optimize on the test set with free parameterized embeddings. We then create a realistic dataset called LIMIT that stress tests models based on these theoretical results, and observe that even state-of-the-art models fail on this dataset despite the simple nature of the task. Our work shows the limits of embedding models under the existing single vector paradigm and calls for future research to develop methods that can resolve this fundamental limitation.
Alleviating Forgetfulness of Linear Attention by Hybrid Sparse Attention and Contextualized Learnable Token Eviction
Linear-attention models that compress the entire input sequence into a fixed-size recurrent state offer an efficient alternative to Transformers, but their finite memory induces forgetfulness that harms retrieval-intensive tasks. To mitigate the issue, we explore a series of hybrid models that restore direct access to past tokens. We interleave token mixers with intermediate time and space complexity between linear and full attention, including sparse attention with token eviction, and the query-aware native sparse attention. Particularly, we propose a novel learnable token eviction approach. Combined with sliding-window attention, an end-to-end trainable lightweight CNN aggregates information from both past and future adjacent tokens to adaptively retain a limited set of critical KV-pairs per head, maintaining linear attention's constant time and space complexity. Efficient Triton kernels for the sparse attention mechanisms are provided. Empirical evaluations on retrieval-intensive benchmarks support the effectiveness of our approaches.
DeepWalk: Online Learning of Social Representations
We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide F_1 scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.
ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction
Neural information retrieval (IR) has greatly advanced search and other knowledge-intensive language tasks. While many neural IR methods encode queries and documents into single-vector representations, late interaction models produce multi-vector representations at the granularity of each token and decompose relevance modeling into scalable token-level computations. This decomposition has been shown to make late interaction more effective, but it inflates the space footprint of these models by an order of magnitude. In this work, we introduce ColBERTv2, a retriever that couples an aggressive residual compression mechanism with a denoised supervision strategy to simultaneously improve the quality and space footprint of late interaction. We evaluate ColBERTv2 across a wide range of benchmarks, establishing state-of-the-art quality within and outside the training domain while reducing the space footprint of late interaction models by 6--10times.
Measuring Compositional Generalization: A Comprehensive Method on Realistic Data
State-of-the-art machine learning methods exhibit limited compositional generalization. At the same time, there is a lack of realistic benchmarks that comprehensively measure this ability, which makes it challenging to find and evaluate improvements. We introduce a novel method to systematically construct such benchmarks by maximizing compound divergence while guaranteeing a small atom divergence between train and test sets, and we quantitatively compare this method to other approaches for creating compositional generalization benchmarks. We present a large and realistic natural language question answering dataset that is constructed according to this method, and we use it to analyze the compositional generalization ability of three machine learning architectures. We find that they fail to generalize compositionally and that there is a surprisingly strong negative correlation between compound divergence and accuracy. We also demonstrate how our method can be used to create new compositionality benchmarks on top of the existing SCAN dataset, which confirms these findings.
MASTER: Multi-task Pre-trained Bottlenecked Masked Autoencoders are Better Dense Retrievers
Pre-trained Transformers (\eg BERT) have been commonly used in existing dense retrieval methods for parameter initialization, and recent studies are exploring more effective pre-training tasks for further improving the quality of dense vectors. Although various novel and effective tasks have been proposed, their different input formats and learning objectives make them hard to be integrated for jointly improving the model performance. In this work, we aim to unify a variety of pre-training tasks into the bottlenecked masked autoencoder manner, and integrate them into a multi-task pre-trained model, namely MASTER. Concretely, MASTER utilizes a shared-encoder multi-decoder architecture that can construct a representation bottleneck to compress the abundant semantic information across tasks into dense vectors. Based on it, we integrate three types of representative pre-training tasks: corrupted passages recovering, related passages recovering and PLMs outputs recovering, to characterize the inner-passage information, inter-passage relations and PLMs knowledge. Extensive experiments have shown that our approach outperforms competitive dense retrieval methods. Our code and data are publicly released in https://github.com/microsoft/SimXNS.
Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval
Conducting text retrieval in a dense learned representation space has many intriguing advantages over sparse retrieval. Yet the effectiveness of dense retrieval (DR) often requires combination with sparse retrieval. In this paper, we identify that the main bottleneck is in the training mechanisms, where the negative instances used in training are not representative of the irrelevant documents in testing. This paper presents Approximate nearest neighbor Negative Contrastive Estimation (ANCE), a training mechanism that constructs negatives from an Approximate Nearest Neighbor (ANN) index of the corpus, which is parallelly updated with the learning process to select more realistic negative training instances. This fundamentally resolves the discrepancy between the data distribution used in the training and testing of DR. In our experiments, ANCE boosts the BERT-Siamese DR model to outperform all competitive dense and sparse retrieval baselines. It nearly matches the accuracy of sparse-retrieval-and-BERT-reranking using dot-product in the ANCE-learned representation space and provides almost 100x speed-up.
LearningWord Embeddings for Low-resource Languages by PU Learning
Word embedding is a key component in many downstream applications in processing natural languages. Existing approaches often assume the existence of a large collection of text for learning effective word embedding. However, such a corpus may not be available for some low-resource languages. In this paper, we study how to effectively learn a word embedding model on a corpus with only a few million tokens. In such a situation, the co-occurrence matrix is sparse as the co-occurrences of many word pairs are unobserved. In contrast to existing approaches often only sample a few unobserved word pairs as negative samples, we argue that the zero entries in the co-occurrence matrix also provide valuable information. We then design a Positive-Unlabeled Learning (PU-Learning) approach to factorize the co-occurrence matrix and validate the proposed approaches in four different languages.
End-to-End Training of Neural Retrievers for Open-Domain Question Answering
Recent work on training neural retrievers for open-domain question answering (OpenQA) has employed both supervised and unsupervised approaches. However, it remains unclear how unsupervised and supervised methods can be used most effectively for neural retrievers. In this work, we systematically study retriever pre-training. We first propose an approach of unsupervised pre-training with the Inverse Cloze Task and masked salient spans, followed by supervised finetuning using question-context pairs. This approach leads to absolute gains of 2+ points over the previous best result in the top-20 retrieval accuracy on Natural Questions and TriviaQA datasets. We also explore two approaches for end-to-end supervised training of the reader and retriever components in OpenQA models. In the first approach, the reader considers each retrieved document separately while in the second approach, the reader considers all the retrieved documents together. Our experiments demonstrate the effectiveness of these approaches as we obtain new state-of-the-art results. On the Natural Questions dataset, we obtain a top-20 retrieval accuracy of 84, an improvement of 5 points over the recent DPR model. In addition, we achieve good results on answer extraction, outperforming recent models like REALM and RAG by 3+ points. We further scale up end-to-end training to large models and show consistent gains in performance over smaller models.
Improving Query Representations for Dense Retrieval with Pseudo Relevance Feedback: A Reproducibility Study
Pseudo-Relevance Feedback (PRF) utilises the relevance signals from the top-k passages from the first round of retrieval to perform a second round of retrieval aiming to improve search effectiveness. A recent research direction has been the study and development of PRF methods for deep language models based rankers, and in particular in the context of dense retrievers. Dense retrievers, compared to more complex neural rankers, provide a trade-off between effectiveness, which is often reduced compared to more complex neural rankers, and query latency, which also is reduced making the retrieval pipeline more efficient. The introduction of PRF methods for dense retrievers has been motivated as an attempt to further improve their effectiveness. In this paper, we reproduce and study a recent method for PRF with dense retrievers, called ANCE-PRF. This method concatenates the query text and that of the top-k feedback passages to form a new query input, which is then encoded into a dense representation using a newly trained query encoder based on the original dense retriever used for the first round of retrieval. While the method can potentially be applied to any of the existing dense retrievers, prior work has studied it only in the context of the ANCE dense retriever. We study the reproducibility of ANCE-PRF in terms of both its training (encoding of the PRF signal) and inference (ranking) steps. We further extend the empirical analysis provided in the original work to investigate the effect of the hyper-parameters that govern the training process and the robustness of the method across these different settings. Finally, we contribute a study of the generalisability of the ANCE-PRF method when dense retrievers other than ANCE are used for the first round of retrieval and for encoding the PRF signal.
How to Capture Higher-order Correlations? Generalizing Matrix Softmax Attention to Kronecker Computation
In the classical transformer attention scheme, we are given three n times d size matrices Q, K, V (the query, key, and value tokens), and the goal is to compute a new n times d size matrix D^{-1} exp(QK^top) V where D = diag( exp(QK^top) {bf 1}_n ). In this work, we study a generalization of attention which captures triple-wise correlations. This generalization is able to solve problems about detecting triple-wise connections that were shown to be impossible for transformers. The potential downside of this generalization is that it appears as though computations are even more difficult, since the straightforward algorithm requires cubic time in n. However, we show that in the bounded-entry setting (which arises in practice, and which is well-studied in both theory and practice), there is actually a near-linear time algorithm. More precisely, we show that bounded entries are both necessary and sufficient for quickly performing generalized computations: bullet On the positive side, if all entries of the input matrices are bounded above by o(sqrt[3]{log n}) then we show how to approximate the ``tensor-type'' attention matrix in n^{1+o(1)} time. bullet On the negative side, we show that if the entries of the input matrices may be as large as Omega(sqrt[3]{log n}), then there is no algorithm that runs faster than n^{3-o(1)} (assuming the Strong Exponential Time Hypothesis from fine-grained complexity theory). We also show that our construction, algorithms, and lower bounds naturally generalize to higher-order tensors and correlations. Interestingly, the higher the order of the tensors, the lower the bound on the entries needs to be for an efficient algorithm. Our results thus yield a natural tradeoff between the boundedness of the entries, and order of the tensor one may use for more expressive, efficient attention computation.
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning
We present a simple few-shot named entity recognition (NER) system based on nearest neighbor learning and structured inference. Our system uses a supervised NER model trained on the source domain, as a feature extractor. Across several test domains, we show that a nearest neighbor classifier in this feature-space is far more effective than the standard meta-learning approaches. We further propose a cheap but effective method to capture the label dependencies between entity tags without expensive CRF training. We show that our method of combining structured decoding with nearest neighbor learning achieves state-of-the-art performance on standard few-shot NER evaluation tasks, improving F1 scores by 6% to 16% absolute points over prior meta-learning based systems.
NV-Retriever: Improving text embedding models with effective hard-negative mining
Text embedding models have been popular for information retrieval applications such as semantic search and Question-Answering systems based on Retrieval-Augmented Generation (RAG). Those models are typically Transformer models that are fine-tuned with contrastive learning objectives. Many papers introduced new embedding model architectures and training approaches, however, one of the key ingredients, the process of mining negative passages, remains poorly explored or described. One of the challenging aspects of fine-tuning embedding models is the selection of high quality hard-negative passages for contrastive learning. In this paper we propose a family of positive-aware mining methods that leverage the positive relevance score for more effective false negatives removal. We also provide a comprehensive ablation study on hard-negative mining methods over their configurations, exploring different teacher and base models. We demonstrate the efficacy of our proposed methods by introducing the NV-Retriever-v1 model, which scores 60.9 on MTEB Retrieval (BEIR) benchmark and 0.65 points higher than previous methods. The model placed 1st when it was published to MTEB Retrieval on July 07, 2024.
Investigating Multi-layer Representations for Dense Passage Retrieval
Dense retrieval models usually adopt vectors from the last hidden layer of the document encoder to represent a document, which is in contrast to the fact that representations in different layers of a pre-trained language model usually contain different kinds of linguistic knowledge, and behave differently during fine-tuning. Therefore, we propose to investigate utilizing representations from multiple encoder layers to make up the representation of a document, which we denote Multi-layer Representations (MLR). We first investigate how representations in different layers affect MLR's performance under the multi-vector retrieval setting, and then propose to leverage pooling strategies to reduce multi-vector models to single-vector ones to improve retrieval efficiency. Experiments demonstrate the effectiveness of MLR over dual encoder, ME-BERT and ColBERT in the single-vector retrieval setting, as well as demonstrate that it works well with other advanced training techniques such as retrieval-oriented pre-training and hard negative mining.
Improved Active Multi-Task Representation Learning via Lasso
To leverage the copious amount of data from source tasks and overcome the scarcity of the target task samples, representation learning based on multi-task pretraining has become a standard approach in many applications. However, up until now, most existing works design a source task selection strategy from a purely empirical perspective. Recently, chen2022active gave the first active multi-task representation learning (A-MTRL) algorithm which adaptively samples from source tasks and can provably reduce the total sample complexity using the L2-regularized-target-source-relevance parameter nu^2. But their work is theoretically suboptimal in terms of total source sample complexity and is less practical in some real-world scenarios where sparse training source task selection is desired. In this paper, we address both issues. Specifically, we show the strict dominance of the L1-regularized-relevance-based (nu^1-based) strategy by giving a lower bound for the nu^2-based strategy. When nu^1 is unknown, we propose a practical algorithm that uses the LASSO program to estimate nu^1. Our algorithm successfully recovers the optimal result in the known case. In addition to our sample complexity results, we also characterize the potential of our nu^1-based strategy in sample-cost-sensitive settings. Finally, we provide experiments on real-world computer vision datasets to illustrate the effectiveness of our proposed method.
KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model
In this paper, we propose KaLM-Embedding-V2, a versatile and compact embedding model, which achieves impressive performance in general-purpose text embedding tasks by leveraging superior training techniques and data. Our key innovations include: (1) To better align the architecture with representation learning, we remove the causal attention mask and adopt a fully bidirectional transformer with simple yet effective mean-pooling to produce fixed-length embeddings; (2) We employ a multi-stage training pipeline: (i) pre-training on large-scale weakly supervised open-source corpora; (ii) fine-tuning on high-quality retrieval and non-retrieval datasets; and (iii) model-soup parameter averaging for robust generalization. Besides, we introduce a focal-style reweighting mechanism that concentrates learning on difficult samples and an online hard-negative mixing strategy to continuously enrich hard negatives without expensive offline mining; (3) We collect over 20 categories of data for pre-training and 100 categories of data for fine-tuning, to boost both the performance and generalization of the embedding model. Extensive evaluations on the Massive Text Embedding Benchmark (MTEB) Chinese and English show that our model significantly outperforms others of comparable size, and competes with 3x, 14x, 18x, and 26x larger embedding models, setting a new standard for a versatile and compact embedding model with less than 1B parameters.
Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers
Learned sparse retrieval, which can efficiently perform retrieval through mature inverted-index engines, has garnered growing attention in recent years. Particularly, the inference-free sparse retrievers are attractive as they eliminate online model inference in the retrieval phase thereby avoids huge computational cost, offering reasonable throughput and latency. However, even the state-of-the-art (SOTA) inference-free sparse models lag far behind in terms of search relevance when compared to both sparse and dense siamese models. Towards competitive search relevance for inference-free sparse retrievers, we argue that they deserve dedicated training methods other than using same ones with siamese encoders. In this paper, we propose two different approaches for performance improvement. First, we introduce the IDF-aware FLOPS loss, which introduces Inverted Document Frequency (IDF) to the sparsification of representations. We find that it mitigates the negative impact of the FLOPS regularization on search relevance, allowing the model to achieve a better balance between accuracy and efficiency. Moreover, we propose a heterogeneous ensemble knowledge distillation framework that combines siamese dense and sparse retrievers to generate supervisory signals during the pre-training phase. The ensemble framework of dense and sparse retriever capitalizes on their strengths respectively, providing a strong upper bound for knowledge distillation. To concur the diverse feedback from heterogeneous supervisors, we normalize and then aggregate the outputs of the teacher models to eliminate score scale differences. On the BEIR benchmark, our model outperforms existing SOTA inference-free sparse model by 3.3 NDCG@10 score. It exhibits search relevance comparable to siamese sparse retrievers and client-side latency only 1.1x that of BM25.
Efficiently Teaching an Effective Dense Retriever with Balanced Topic Aware Sampling
A vital step towards the widespread adoption of neural retrieval models is their resource efficiency throughout the training, indexing and query workflows. The neural IR community made great advancements in training effective dual-encoder dense retrieval (DR) models recently. A dense text retrieval model uses a single vector representation per query and passage to score a match, which enables low-latency first stage retrieval with a nearest neighbor search. Increasingly common, training approaches require enormous compute power, as they either conduct negative passage sampling out of a continuously updating refreshing index or require very large batch sizes for in-batch negative sampling. Instead of relying on more compute capability, we introduce an efficient topic-aware query and balanced margin sampling technique, called TAS-Balanced. We cluster queries once before training and sample queries out of a cluster per batch. We train our lightweight 6-layer DR model with a novel dual-teacher supervision that combines pairwise and in-batch negative teachers. Our method is trainable on a single consumer-grade GPU in under 48 hours (as opposed to a common configuration of 8x V100s). We show that our TAS-Balanced training method achieves state-of-the-art low-latency (64ms per query) results on two TREC Deep Learning Track query sets. Evaluated on NDCG@10, we outperform BM25 by 44%, a plainly trained DR by 19%, docT5query by 11%, and the previous best DR model by 5%. Additionally, TAS-Balanced produces the first dense retriever that outperforms every other method on recall at any cutoff on TREC-DL and allows more resource intensive re-ranking models to operate on fewer passages to improve results further.
Zero-shot Multimodal Document Retrieval via Cross-modal Question Generation
Rapid advances in Multimodal Large Language Models (MLLMs) have expanded information retrieval beyond purely textual inputs, enabling retrieval from complex real world documents that combine text and visuals. However, most documents are private either owned by individuals or confined within corporate silos and current retrievers struggle when faced with unseen domains or languages. To address this gap, we introduce PREMIR, a simple yet effective framework that leverages the broad knowledge of an MLLM to generate cross modal pre questions (preQs) before retrieval. Unlike earlier multimodal retrievers that compare embeddings in a single vector space, PREMIR leverages preQs from multiple complementary modalities to expand the scope of matching to the token level. Experiments show that PREMIR achieves state of the art performance on out of distribution benchmarks, including closed domain and multilingual settings, outperforming strong baselines across all retrieval metrics. We confirm the contribution of each component through in depth ablation studies, and qualitative analyses of the generated preQs further highlight the model's robustness in real world settings.
MUVERA: Multi-Vector Retrieval via Fixed Dimensional Encodings
Neural embedding models have become a fundamental component of modern information retrieval (IR) pipelines. These models produce a single embedding x in R^d per data-point, allowing for fast retrieval via highly optimized maximum inner product search (MIPS) algorithms. Recently, beginning with the landmark ColBERT paper, multi-vector models, which produce a set of embedding per data point, have achieved markedly superior performance for IR tasks. Unfortunately, using these models for IR is computationally expensive due to the increased complexity of multi-vector retrieval and scoring. In this paper, we introduce MUVERA (MUlti-VEctor Retrieval Algorithm), a retrieval mechanism which reduces multi-vector similarity search to single-vector similarity search. This enables the usage of off-the-shelf MIPS solvers for multi-vector retrieval. MUVERA asymmetrically generates Fixed Dimensional Encodings (FDEs) of queries and documents, which are vectors whose inner product approximates multi-vector similarity. We prove that FDEs give high-quality epsilon-approximations, thus providing the first single-vector proxy for multi-vector similarity with theoretical guarantees. Empirically, we find that FDEs achieve the same recall as prior state-of-the-art heuristics while retrieving 2-5times fewer candidates. Compared to prior state of the art implementations, MUVERA achieves consistently good end-to-end recall and latency across a diverse set of the BEIR retrieval datasets, achieving an average of 10% improved recall with 90% lower latency.
Out-of-Domain Semantics to the Rescue! Zero-Shot Hybrid Retrieval Models
The pre-trained language model (eg, BERT) based deep retrieval models achieved superior performance over lexical retrieval models (eg, BM25) in many passage retrieval tasks. However, limited work has been done to generalize a deep retrieval model to other tasks and domains. In this work, we carefully select five datasets, including two in-domain datasets and three out-of-domain datasets with different levels of domain shift, and study the generalization of a deep model in a zero-shot setting. Our findings show that the performance of a deep retrieval model is significantly deteriorated when the target domain is very different from the source domain that the model was trained on. On the contrary, lexical models are more robust across domains. We thus propose a simple yet effective framework to integrate lexical and deep retrieval models. Our experiments demonstrate that these two models are complementary, even when the deep model is weaker in the out-of-domain setting. The hybrid model obtains an average of 20.4% relative gain over the deep retrieval model, and an average of 9.54% over the lexical model in three out-of-domain datasets.
RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering
In open-domain question answering, dense passage retrieval has become a new paradigm to retrieve relevant passages for finding answers. Typically, the dual-encoder architecture is adopted to learn dense representations of questions and passages for semantic matching. However, it is difficult to effectively train a dual-encoder due to the challenges including the discrepancy between training and inference, the existence of unlabeled positives and limited training data. To address these challenges, we propose an optimized training approach, called RocketQA, to improving dense passage retrieval. We make three major technical contributions in RocketQA, namely cross-batch negatives, denoised hard negatives and data augmentation. The experiment results show that RocketQA significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions. We also conduct extensive experiments to examine the effectiveness of the three strategies in RocketQA. Besides, we demonstrate that the performance of end-to-end QA can be improved based on our RocketQA retriever.
Generating Long Sequences with Sparse Transformers
Transformers are powerful sequence models, but require time and memory that grows quadratically with the sequence length. In this paper we introduce sparse factorizations of the attention matrix which reduce this to O(n n). We also introduce a) a variation on architecture and initialization to train deeper networks, b) the recomputation of attention matrices to save memory, and c) fast attention kernels for training. We call networks with these changes Sparse Transformers, and show they can model sequences tens of thousands of timesteps long using hundreds of layers. We use the same architecture to model images, audio, and text from raw bytes, setting a new state of the art for density modeling of Enwik8, CIFAR-10, and ImageNet-64. We generate unconditional samples that demonstrate global coherence and great diversity, and show it is possible in principle to use self-attention to model sequences of length one million or more.
A Comparative Analysis of Conversational Large Language Models in Knowledge-Based Text Generation
Generating natural language text from graph-structured data is essential for conversational information seeking. Semantic triples derived from knowledge graphs can serve as a valuable source for grounding responses from conversational agents by providing a factual basis for the information they communicate. This is especially relevant in the context of large language models, which offer great potential for conversational interaction but are prone to hallucinating, omitting, or producing conflicting information. In this study, we conduct an empirical analysis of conversational large language models in generating natural language text from semantic triples. We compare four large language models of varying sizes with different prompting techniques. Through a series of benchmark experiments on the WebNLG dataset, we analyze the models' performance and identify the most common issues in the generated predictions. Our findings show that the capabilities of large language models in triple verbalization can be significantly improved through few-shot prompting, post-processing, and efficient fine-tuning techniques, particularly for smaller models that exhibit lower zero-shot performance.
Distilling Dense Representations for Ranking using Tightly-Coupled Teachers
We present an approach to ranking with dense representations that applies knowledge distillation to improve the recently proposed late-interaction ColBERT model. Specifically, we distill the knowledge from ColBERT's expressive MaxSim operator for computing relevance scores into a simple dot product, thus enabling single-step ANN search. Our key insight is that during distillation, tight coupling between the teacher model and the student model enables more flexible distillation strategies and yields better learned representations. We empirically show that our approach improves query latency and greatly reduces the onerous storage requirements of ColBERT, while only making modest sacrifices in terms of effectiveness. By combining our dense representations with sparse representations derived from document expansion, we are able to approach the effectiveness of a standard cross-encoder reranker using BERT that is orders of magnitude slower.
Qwen3-VL-Embedding and Qwen3-VL-Reranker: A Unified Framework for State-of-the-Art Multimodal Retrieval and Ranking
In this report, we introduce the Qwen3-VL-Embedding and Qwen3-VL-Reranker model series, the latest extensions of the Qwen family built on the Qwen3-VL foundation model. Together, they provide an end-to-end pipeline for high-precision multimodal search by mapping diverse modalities, including text, images, document images, and video, into a unified representation space. The Qwen3-VL-Embedding model employs a multi-stage training paradigm, progressing from large-scale contrastive pre-training to reranking model distillation, to generate semantically rich high-dimensional vectors. It supports Matryoshka Representation Learning, enabling flexible embedding dimensions, and handles inputs up to 32k tokens. Complementing this, Qwen3-VL-Reranker performs fine-grained relevance estimation for query-document pairs using a cross-encoder architecture with cross-attention mechanisms. Both model series inherit the multilingual capabilities of Qwen3-VL, supporting more than 30 languages, and are released in 2B and 8B parameter sizes to accommodate diverse deployment requirements. Empirical evaluations demonstrate that the Qwen3-VL-Embedding series achieves state-of-the-art results across diverse multimodal embedding evaluation benchmarks. Specifically, Qwen3-VL-Embedding-8B attains an overall score of 77.8 on MMEB-V2, ranking first among all models (as of January 8, 2025). This report presents the architecture, training methodology, and practical capabilities of the series, demonstrating their effectiveness on various multimodal retrieval tasks, including image-text retrieval, visual question answering, and video-text matching.
Layer by Layer: Uncovering Hidden Representations in Language Models
From extracting features to generating text, the outputs of large language models (LLMs) typically rely on their final layers, following the conventional wisdom that earlier layers capture only low-level cues. However, our analysis shows that intermediate layers can encode even richer representations, often improving performance on a wide range of downstream tasks. To explain and quantify these hidden-layer properties, we propose a unified framework of representation quality metrics based on information theory, geometry, and invariance to input perturbations. Our framework highlights how each model layer balances information compression and signal preservation, revealing why mid-depth embeddings can exceed the last layer's performance. Through extensive experiments on 32 text-embedding tasks and comparisons across model architectures (transformers, state-space models) and domains (language, vision), we demonstrate that intermediate layers consistently provide stronger features. These findings challenge the standard focus on final-layer embeddings and open new directions for model analysis and optimization, including strategic use of mid-layer representations for more robust and accurate AI systems.
MultiConIR: Towards multi-condition Information Retrieval
In this paper, we introduce MultiConIR, the first benchmark designed to evaluate retrieval models in multi-condition scenarios. Unlike existing datasets that primarily focus on single-condition queries from search engines, MultiConIR captures real-world complexity by incorporating five diverse domains: books, movies, people, medical cases, and legal documents. We propose three tasks to systematically assess retrieval and reranking models on multi-condition robustness, monotonic relevance ranking, and query format sensitivity. Our findings reveal that existing retrieval and reranking models struggle with multi-condition retrieval, with rerankers suffering severe performance degradation as query complexity increases. We further investigate the performance gap between retrieval and reranking models, exploring potential reasons for these discrepancies, and analysis the impact of different pooling strategies on condition placement sensitivity. Finally, we highlight the strengths of GritLM and Nv-Embed, which demonstrate enhanced adaptability to multi-condition queries, offering insights for future retrieval models. The code and datasets are available at https://github.com/EIT-NLP/MultiConIR.
ConvMix: A Mixed-Criteria Data Augmentation Framework for Conversational Dense Retrieval
Conversational search aims to satisfy users' complex information needs via multiple-turn interactions. The key challenge lies in revealing real users' search intent from the context-dependent queries. Previous studies achieve conversational search by fine-tuning a conversational dense retriever with relevance judgments between pairs of context-dependent queries and documents. However, this training paradigm encounters data scarcity issues. To this end, we propose ConvMix, a mixed-criteria framework to augment conversational dense retrieval, which covers more aspects than existing data augmentation frameworks. We design a two-sided relevance judgment augmentation schema in a scalable manner via the aid of large language models. Besides, we integrate the framework with quality control mechanisms to obtain semantically diverse samples and near-distribution supervisions to combine various annotated data. Experimental results on five widely used benchmarks show that the conversational dense retriever trained by our ConvMix framework outperforms previous baseline methods, which demonstrates our superior effectiveness.
Towards Robust Ranker for Text Retrieval
A ranker plays an indispensable role in the de facto 'retrieval & rerank' pipeline, but its training still lags behind -- learning from moderate negatives or/and serving as an auxiliary module for a retriever. In this work, we first identify two major barriers to a robust ranker, i.e., inherent label noises caused by a well-trained retriever and non-ideal negatives sampled for a high-capable ranker. Thereby, we propose multiple retrievers as negative generators improve the ranker's robustness, where i) involving extensive out-of-distribution label noises renders the ranker against each noise distribution, and ii) diverse hard negatives from a joint distribution are relatively close to the ranker's negative distribution, leading to more challenging thus effective training. To evaluate our robust ranker (dubbed R^2anker), we conduct experiments in various settings on the popular passage retrieval benchmark, including BM25-reranking, full-ranking, retriever distillation, etc. The empirical results verify the new state-of-the-art effectiveness of our model.
Introducing Neural Bag of Whole-Words with ColBERTer: Contextualized Late Interactions using Enhanced Reduction
Recent progress in neural information retrieval has demonstrated large gains in effectiveness, while often sacrificing the efficiency and interpretability of the neural model compared to classical approaches. This paper proposes ColBERTer, a neural retrieval model using contextualized late interaction (ColBERT) with enhanced reduction. Along the effectiveness Pareto frontier, ColBERTer's reductions dramatically lower ColBERT's storage requirements while simultaneously improving the interpretability of its token-matching scores. To this end, ColBERTer fuses single-vector retrieval, multi-vector refinement, and optional lexical matching components into one model. For its multi-vector component, ColBERTer reduces the number of stored vectors per document by learning unique whole-word representations for the terms in each document and learning to identify and remove word representations that are not essential to effective scoring. We employ an explicit multi-task, multi-stage training to facilitate using very small vector dimensions. Results on the MS MARCO and TREC-DL collection show that ColBERTer can reduce the storage footprint by up to 2.5x, while maintaining effectiveness. With just one dimension per token in its smallest setting, ColBERTer achieves index storage parity with the plaintext size, with very strong effectiveness results. Finally, we demonstrate ColBERTer's robustness on seven high-quality out-of-domain collections, yielding statistically significant gains over traditional retrieval baselines.
To Interpolate or not to Interpolate: PRF, Dense and Sparse Retrievers
Current pre-trained language model approaches to information retrieval can be broadly divided into two categories: sparse retrievers (to which belong also non-neural approaches such as bag-of-words methods, e.g., BM25) and dense retrievers. Each of these categories appears to capture different characteristics of relevance. Previous work has investigated how relevance signals from sparse retrievers could be combined with those from dense retrievers via interpolation. Such interpolation would generally lead to higher retrieval effectiveness. In this paper we consider the problem of combining the relevance signals from sparse and dense retrievers in the context of Pseudo Relevance Feedback (PRF). This context poses two key challenges: (1) When should interpolation occur: before, after, or both before and after the PRF process? (2) Which sparse representation should be considered: a zero-shot bag-of-words model (BM25), or a learnt sparse representation? To answer these questions we perform a thorough empirical evaluation considering an effective and scalable neural PRF approach (Vector-PRF), three effective dense retrievers (ANCE, TCTv2, DistillBERT), and one state-of-the-art learnt sparse retriever (uniCOIL). The empirical findings from our experiments suggest that, regardless of sparse representation and dense retriever, interpolation both before and after PRF achieves the highest effectiveness across most datasets and metrics.
SegVG: Transferring Object Bounding Box to Segmentation for Visual Grounding
Different from Object Detection, Visual Grounding deals with detecting a bounding box for each text-image pair. This one box for each text-image data provides sparse supervision signals. Although previous works achieve impressive results, their passive utilization of annotation, i.e. the sole use of the box annotation as regression ground truth, results in a suboptimal performance. In this paper, we present SegVG, a novel method transfers the box-level annotation as Segmentation signals to provide an additional pixel-level supervision for Visual Grounding. Specifically, we propose the Multi-layer Multi-task Encoder-Decoder as the target grounding stage, where we learn a regression query and multiple segmentation queries to ground the target by regression and segmentation of the box in each decoding layer, respectively. This approach allows us to iteratively exploit the annotation as signals for both box-level regression and pixel-level segmentation. Moreover, as the backbones are typically initialized by pretrained parameters learned from unimodal tasks and the queries for both regression and segmentation are static learnable embeddings, a domain discrepancy remains among these three types of features, which impairs subsequent target grounding. To mitigate this discrepancy, we introduce the Triple Alignment module, where the query, text, and vision tokens are triangularly updated to share the same space by triple attention mechanism. Extensive experiments on five widely used datasets validate our state-of-the-art (SOTA) performance.
Sparse, Dense, and Attentional Representations for Text Retrieval
Dual encoders perform retrieval by encoding documents and queries into dense lowdimensional vectors, scoring each document by its inner product with the query. We investigate the capacity of this architecture relative to sparse bag-of-words models and attentional neural networks. Using both theoretical and empirical analysis, we establish connections between the encoding dimension, the margin between gold and lower-ranked documents, and the document length, suggesting limitations in the capacity of fixed-length encodings to support precise retrieval of long documents. Building on these insights, we propose a simple neural model that combines the efficiency of dual encoders with some of the expressiveness of more costly attentional architectures, and explore sparse-dense hybrids to capitalize on the precision of sparse retrieval. These models outperform strong alternatives in large-scale retrieval.
Deep Feature Factorization For Concept Discovery
We propose Deep Feature Factorization (DFF), a method capable of localizing similar semantic concepts within an image or a set of images. We use DFF to gain insight into a deep convolutional neural network's learned features, where we detect hierarchical cluster structures in feature space. This is visualized as heat maps, which highlight semantically matching regions across a set of images, revealing what the network `perceives' as similar. DFF can also be used to perform co-segmentation and co-localization, and we report state-of-the-art results on these tasks.
Vector representations of text data in deep learning
In this dissertation we report results of our research on dense distributed representations of text data. We propose two novel neural models for learning such representations. The first model learns representations at the document level, while the second model learns word-level representations. For document-level representations we propose Binary Paragraph Vector: a neural network models for learning binary representations of text documents, which can be used for fast document retrieval. We provide a thorough evaluation of these models and demonstrate that they outperform the seminal method in the field in the information retrieval task. We also report strong results in transfer learning settings, where our models are trained on a generic text corpus and then used to infer codes for documents from a domain-specific dataset. In contrast to previously proposed approaches, Binary Paragraph Vector models learn embeddings directly from raw text data. For word-level representations we propose Disambiguated Skip-gram: a neural network model for learning multi-sense word embeddings. Representations learned by this model can be used in downstream tasks, like part-of-speech tagging or identification of semantic relations. In the word sense induction task Disambiguated Skip-gram outperforms state-of-the-art models on three out of four benchmarks datasets. Our model has an elegant probabilistic interpretation. Furthermore, unlike previous models of this kind, it is differentiable with respect to all its parameters and can be trained with backpropagation. In addition to quantitative results, we present qualitative evaluation of Disambiguated Skip-gram, including two-dimensional visualisations of selected word-sense embeddings.
Structured Pruning for Deep Convolutional Neural Networks: A survey
The remarkable performance of deep Convolutional neural networks (CNNs) is generally attributed to their deeper and wider architectures, which can come with significant computational costs. Pruning neural networks has thus gained interest since it effectively lowers storage and computational costs. In contrast to weight pruning, which results in unstructured models, structured pruning provides the benefit of realistic acceleration by producing models that are friendly to hardware implementation. The special requirements of structured pruning have led to the discovery of numerous new challenges and the development of innovative solutions. This article surveys the recent progress towards structured pruning of deep CNNs. We summarize and compare the state-of-the-art structured pruning techniques with respect to filter ranking methods, regularization methods, dynamic execution, neural architecture search, the lottery ticket hypothesis, and the applications of pruning. While discussing structured pruning algorithms, we briefly introduce the unstructured pruning counterpart to emphasize their differences. Furthermore, we provide insights into potential research opportunities in the field of structured pruning. A curated list of neural network pruning papers can be found at https://github.com/he-y/Awesome-Pruning
Watch and Listen: Understanding Audio-Visual-Speech Moments with Multimodal LLM
Humans naturally understand moments in a video by integrating visual and auditory cues. For example, localizing a scene in the video like "A scientist passionately speaks on wildlife conservation as dramatic orchestral music plays, with the audience nodding and applauding" requires simultaneous processing of visual, audio, and speech signals. However, existing models often struggle to effectively fuse and interpret audio information, limiting their capacity for comprehensive video temporal understanding. To address this, we present TriSense, a triple-modality large language model designed for holistic video temporal understanding through the integration of visual, audio, and speech modalities. Central to TriSense is a Query-Based Connector that adaptively reweights modality contributions based on the input query, enabling robust performance under modality dropout and allowing flexible combinations of available inputs. To support TriSense's multimodal capabilities, we introduce TriSense-2M, a high-quality dataset of over 2 million curated samples generated via an automated pipeline powered by fine-tuned LLMs. TriSense-2M includes long-form videos and diverse modality combinations, facilitating broad generalization. Extensive experiments across multiple benchmarks demonstrate the effectiveness of TriSense and its potential to advance multimodal video analysis. Code and dataset will be publicly released.
Deep Representation Learning for Clustering of Health Tweets
Twitter has been a prominent social media platform for mining population-level health data and accurate clustering of health-related tweets into topics is important for extracting relevant health insights. In this work, we propose deep convolutional autoencoders for learning compact representations of health-related tweets, further to be employed in clustering. We compare our method to several conventional tweet representation methods including bag-of-words, term frequency-inverse document frequency, Latent Dirichlet Allocation and Non-negative Matrix Factorization with 3 different clustering algorithms. Our results show that the clustering performance using proposed representation learning scheme significantly outperforms that of conventional methods for all experiments of different number of clusters. In addition, we propose a constraint on the learned representations during the neural network training in order to further enhance the clustering performance. All in all, this study introduces utilization of deep neural network-based architectures, i.e., deep convolutional autoencoders, for learning informative representations of health-related tweets.
Unsupervised Learning under Latent Label Shift
What sorts of structure might enable a learner to discover classes from unlabeled data? Traditional approaches rely on feature-space similarity and heroic assumptions on the data. In this paper, we introduce unsupervised learning under Latent Label Shift (LLS), where we have access to unlabeled data from multiple domains such that the label marginals p_d(y) can shift across domains but the class conditionals p(x|y) do not. This work instantiates a new principle for identifying classes: elements that shift together group together. For finite input spaces, we establish an isomorphism between LLS and topic modeling: inputs correspond to words, domains to documents, and labels to topics. Addressing continuous data, we prove that when each label's support contains a separable region, analogous to an anchor word, oracle access to p(d|x) suffices to identify p_d(y) and p_d(y|x) up to permutation. Thus motivated, we introduce a practical algorithm that leverages domain-discriminative models as follows: (i) push examples through domain discriminator p(d|x); (ii) discretize the data by clustering examples in p(d|x) space; (iii) perform non-negative matrix factorization on the discrete data; (iv) combine the recovered p(y|d) with the discriminator outputs p(d|x) to compute p_d(y|x) ; forall d. With semi-synthetic experiments, we show that our algorithm can leverage domain information to improve upon competitive unsupervised classification methods. We reveal a failure mode of standard unsupervised classification methods when feature-space similarity does not indicate true groupings, and show empirically that our method better handles this case. Our results establish a deep connection between distribution shift and topic modeling, opening promising lines for future work.
Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization
Efficient k-nearest neighbor search is a fundamental task, foundational for many problems in NLP. When the similarity is measured by dot-product between dual-encoder vectors or ell_2-distance, there already exist many scalable and efficient search methods. But not so when similarity is measured by more accurate and expensive black-box neural similarity models, such as cross-encoders, which jointly encode the query and candidate neighbor. The cross-encoders' high computational cost typically limits their use to reranking candidates retrieved by a cheaper model, such as dual encoder or TF-IDF. However, the accuracy of such a two-stage approach is upper-bounded by the recall of the initial candidate set, and potentially requires additional training to align the auxiliary retrieval model with the cross-encoder model. In this paper, we present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder. Retrieval is made efficient with CUR decomposition, a matrix decomposition approach that approximates all pairwise cross-encoder distances from a small subset of rows and columns of the distance matrix. Indexing items using our approach is computationally cheaper than training an auxiliary dual-encoder model through distillation. Empirically, for k > 10, our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods that re-rank items retrieved using a dual-encoder or TF-IDF.
Semantic Representation and Inference for NLP
Semantic representation and inference is essential for Natural Language Processing (NLP). The state of the art for semantic representation and inference is deep learning, and particularly Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and transformer Self-Attention models. This thesis investigates the use of deep learning for novel semantic representation and inference, and makes contributions in the following three areas: creating training data, improving semantic representations and extending inference learning. In terms of creating training data, we contribute the largest publicly available dataset of real-life factual claims for the purpose of automatic claim verification (MultiFC), and we present a novel inference model composed of multi-scale CNNs with different kernel sizes that learn from external sources to infer fact checking labels. In terms of improving semantic representations, we contribute a novel model that captures non-compositional semantic indicators. By definition, the meaning of a non-compositional phrase cannot be inferred from the individual meanings of its composing words (e.g., hot dog). Motivated by this, we operationalize the compositionality of a phrase contextually by enriching the phrase representation with external word embeddings and knowledge graphs. Finally, in terms of inference learning, we propose a series of novel deep learning architectures that improve inference by using syntactic dependencies, by ensembling role guided attention heads, incorporating gating layers, and concatenating multiple heads in novel and effective ways. This thesis consists of seven publications (five published and two under review).
Deep Learning for Sequential Recommendation: Algorithms, Influential Factors, and Evaluations
In the field of sequential recommendation, deep learning (DL)-based methods have received a lot of attention in the past few years and surpassed traditional models such as Markov chain-based and factorization-based ones. However, there is little systematic study on DL-based methods, especially regarding to how to design an effective DL model for sequential recommendation. In this view, this survey focuses on DL-based sequential recommender systems by taking the aforementioned issues into consideration. Specifically,we illustrate the concept of sequential recommendation, propose a categorization of existing algorithms in terms of three types of behavioral sequence, summarize the key factors affecting the performance of DL-based models, and conduct corresponding evaluations to demonstrate the effects of these factors. We conclude this survey by systematically outlining future directions and challenges in this field.
Multi-task Self-Supervised Visual Learning
We investigate methods for combining multiple self-supervised tasks--i.e., supervised tasks where data can be collected without manual labeling--in order to train a single visual representation. First, we provide an apples-to-apples comparison of four different self-supervised tasks using the very deep ResNet-101 architecture. We then combine tasks to jointly train a network. We also explore lasso regularization to encourage the network to factorize the information in its representation, and methods for "harmonizing" network inputs in order to learn a more unified representation. We evaluate all methods on ImageNet classification, PASCAL VOC detection, and NYU depth prediction. Our results show that deeper networks work better, and that combining tasks--even via a naive multi-head architecture--always improves performance. Our best joint network nearly matches the PASCAL performance of a model pre-trained on ImageNet classification, and matches the ImageNet network on NYU depth prediction.
Low Rank Factorization for Compact Multi-Head Self-Attention
Effective representation learning from text has been an active area of research in the fields of NLP and text mining. Attention mechanisms have been at the forefront in order to learn contextual sentence representations. Current state-of-the-art approaches for many NLP tasks use large pre-trained language models such as BERT, XLNet and so on for learning representations. These models are based on the Transformer architecture that involves recurrent blocks of computation consisting of multi-head self-attention and feedforward networks. One of the major bottlenecks largely contributing to the computational complexity of the Transformer models is the self-attention layer, that is both computationally expensive and parameter intensive. In this work, we introduce a novel multi-head self-attention mechanism operating on GRUs that is shown to be computationally cheaper and more parameter efficient than self-attention mechanism proposed in Transformers for text classification tasks. The efficiency of our approach mainly stems from two optimizations; 1) we use low-rank matrix factorization of the affinity matrix to efficiently get multiple attention distributions instead of having separate parameters for each head 2) attention scores are obtained by querying a global context vector instead of densely querying all the words in the sentence. We evaluate the performance of the proposed model on tasks such as sentiment analysis from movie reviews, predicting business ratings from reviews and classifying news articles into topics. We find that the proposed approach matches or outperforms a series of strong baselines and is more parameter efficient than comparable multi-head approaches. We also perform qualitative analyses to verify that the proposed approach is interpretable and captures context-dependent word importance.
From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification
We propose sparsemax, a new activation function similar to the traditional softmax, but able to output sparse probabilities. After deriving its properties, we show how its Jacobian can be efficiently computed, enabling its use in a network trained with backpropagation. Then, we propose a new smooth and convex loss function which is the sparsemax analogue of the logistic loss. We reveal an unexpected connection between this new loss and the Huber classification loss. We obtain promising empirical results in multi-label classification problems and in attention-based neural networks for natural language inference. For the latter, we achieve a similar performance as the traditional softmax, but with a selective, more compact, attention focus.
RRRA: Resampling and Reranking through a Retriever Adapter
In dense retrieval, effective training hinges on selecting high quality hard negatives while avoiding false negatives. Recent methods apply heuristics based on positive document scores to identify hard negatives, improving both performance and interpretability. However, these global, example agnostic strategies often miss instance specific false negatives. To address this, we propose a learnable adapter module that monitors Bi-Encoder representations to estimate the likelihood that a hard negative is actually a false negative. This probability is modeled dynamically and contextually, enabling fine-grained, query specific judgments. The predicted scores are used in two downstream components: (1) resampling, where negatives are reweighted during training, and (2) reranking, where top-k retrieved documents are reordered at inference. Empirical results on standard benchmarks show that our adapter-enhanced framework consistently outperforms strong Bi-Encoder baselines, underscoring the benefit of explicit false negative modeling in dense retrieval.
TriangleMix: A Lossless and Efficient Attention Pattern for Long Context Prefilling
Large Language Models (LLMs) rely on attention mechanisms whose time complexity grows quadratically with input sequence length, creating significant computational bottlenecks during the prefilling stage. Existing static sparse attention methods typically degrade accuracy, while dynamic sparsity methods introduce additional computational overhead due to runtime sparse index estimation. To address these limitations, we propose TriangleMix, a novel training-free static attention pattern. TriangleMix employs dense attention in shallow layers and switches to a triangle-shaped sparse pattern in deeper layers. Extensive experiments demonstrate that TriangleMix reduces attention overhead by 3.7x to 15.3x in deep layers, and decreases overall Time-to-First-Token (TTFT) by 12% to 32% for sequence lengths ranging from 32K to 128K, without sacrificing model accuracy. Moreover, TriangleMix can be seamlessly integrated with dynamic sparsity methods to achieve further speedup, e.g. accelerating MInference by 19% at 128K, highlighting its potential to enhance LLM inference efficiency.
NER Retriever: Zero-Shot Named Entity Retrieval with Type-Aware Embeddings
We present NER Retriever, a zero-shot retrieval framework for ad-hoc Named Entity Retrieval, a variant of Named Entity Recognition (NER), where the types of interest are not provided in advance, and a user-defined type description is used to retrieve documents mentioning entities of that type. Instead of relying on fixed schemas or fine-tuned models, our method builds on internal representations of large language models (LLMs) to embed both entity mentions and user-provided open-ended type descriptions into a shared semantic space. We show that internal representations, specifically the value vectors from mid-layer transformer blocks, encode fine-grained type information more effectively than commonly used top-layer embeddings. To refine these representations, we train a lightweight contrastive projection network that aligns type-compatible entities while separating unrelated types. The resulting entity embeddings are compact, type-aware, and well-suited for nearest-neighbor search. Evaluated on three benchmarks, NER Retriever significantly outperforms both lexical and dense sentence-level retrieval baselines. Our findings provide empirical support for representation selection within LLMs and demonstrate a practical solution for scalable, schema-free entity retrieval. The NER Retriever Codebase is publicly available at https://github.com/ShacharOr100/ner_retriever
Breaking the Modality Barrier: Universal Embedding Learning with Multimodal LLMs
The Contrastive Language-Image Pre-training (CLIP) framework has become a widely used approach for multimodal representation learning, particularly in image-text retrieval and clustering. However, its efficacy is constrained by three key limitations: (1) text token truncation, (2) isolated image-text encoding, and (3) deficient compositionality due to bag-of-words behavior. While recent Multimodal Large Language Models (MLLMs) have demonstrated significant advances in generalized vision-language understanding, their potential for learning transferable multimodal representations remains underexplored.In this work, we present UniME (Universal Multimodal Embedding), a novel two-stage framework that leverages MLLMs to learn discriminative representations for diverse downstream tasks. In the first stage, we perform textual discriminative knowledge distillation from a powerful LLM-based teacher model to enhance the embedding capability of the MLLM\'s language component. In the second stage, we introduce hard negative enhanced instruction tuning to further advance discriminative representation learning. Specifically, we initially mitigate false negative contamination and then sample multiple hard negatives per instance within each batch, forcing the model to focus on challenging samples. This approach not only improves discriminative power but also enhances instruction-following ability in downstream tasks. We conduct extensive experiments on the MMEB benchmark and multiple retrieval tasks, including short and long caption retrieval and compositional retrieval. Results demonstrate that UniME achieves consistent performance improvement across all tasks, exhibiting superior discriminative and compositional capabilities.
JointRank: Rank Large Set with Single Pass
Efficiently ranking relevant items from large candidate pools is a cornerstone of modern information retrieval systems -- such as web search, recommendation, and retrieval-augmented generation. Listwise rerankers, which improve relevance by jointly considering multiple candidates, are often limited in practice: either by model input size constraints, or by degraded quality when processing large sets. We propose a model-agnostic method for fast reranking large sets that exceed a model input limits. The method first partitions candidate items into overlapping blocks, each of which is ranked independently in parallel. Implicit pairwise comparisons are then derived from these local rankings. Finally, these comparisons are aggregated to construct a global ranking using algorithms such as Winrate or PageRank. Experiments on TREC DL-2019 show that our method achieves an nDCG@10 of 70.88 compared to the 57.68 for full-context listwise approach using gpt-4.1-mini as long-context model, while reducing latency from 21 to 8 seconds. The implementation of the algorithm and the experiments is available in the repository: https://github.com/V3RGANz/jointrank
Ten Lessons We Have Learned in the New "Sparseland": A Short Handbook for Sparse Neural Network Researchers
This article does not propose any novel algorithm or new hardware for sparsity. Instead, it aims to serve the "common good" for the increasingly prosperous Sparse Neural Network (SNN) research community. We attempt to summarize some most common confusions in SNNs, that one may come across in various scenarios such as paper review/rebuttal and talks - many drawn from the authors' own bittersweet experiences! We feel that doing so is meaningful and timely, since the focus of SNN research is notably shifting from traditional pruning to more diverse and profound forms of sparsity before, during, and after training. The intricate relationships between their scopes, assumptions, and approaches lead to misunderstandings, for non-experts or even experts in SNNs. In response, we summarize ten Q\&As of SNNs from many key aspects, including dense vs. sparse, unstructured sparse vs. structured sparse, pruning vs. sparse training, dense-to-sparse training vs. sparse-to-sparse training, static sparsity vs. dynamic sparsity, before-training/during-training vs. post-training sparsity, and many more. We strive to provide proper and generically applicable answers to clarify those confusions to the best extent possible. We hope our summary provides useful general knowledge for people who want to enter and engage with this exciting community; and also provides some "mind of ease" convenience for SNN researchers to explain their work in the right contexts. At the very least (and perhaps as this article's most insignificant target functionality), if you are writing/planning to write a paper or rebuttal in the field of SNNs, we hope some of our answers could help you!
Maestro: Uncovering Low-Rank Structures via Trainable Decomposition
Deep Neural Networks (DNNs) have been a large driver and enabler for AI breakthroughs in recent years. These models have been getting larger in their attempt to become more accurate and tackle new upcoming use-cases, including AR/VR and intelligent assistants. However, the training process of such large models is a costly and time-consuming process, which typically yields a single model to fit all targets. To mitigate this, various techniques have been proposed in the literature, including pruning, sparsification or quantization of the model weights and updates. While able to achieve high compression rates, they often incur computational overheads or accuracy penalties. Alternatively, factorization methods have been leveraged to incorporate low-rank compression in the training process. Similarly, such techniques (e.g.,~SVD) frequently rely on the computationally expensive decomposition of layers and are potentially sub-optimal for non-linear models, such as DNNs. In this work, we take a further step in designing efficient low-rank models and propose Maestro, a framework for trainable low-rank layers. Instead of regularly applying a priori decompositions such as SVD, the low-rank structure is built into the training process through a generalized variant of Ordered Dropout. This method imposes an importance ordering via sampling on the decomposed DNN structure. Our theoretical analysis demonstrates that our method recovers the SVD decomposition of linear mapping on uniformly distributed data and PCA for linear autoencoders. We further apply our technique on DNNs and empirically illustrate that Maestro enables the extraction of lower footprint models that preserve model performance while allowing for graceful accuracy-latency tradeoff for the deployment to devices of different capabilities.
L3Cube-MahaSocialNER: A Social Media based Marathi NER Dataset and BERT models
This work introduces the L3Cube-MahaSocialNER dataset, the first and largest social media dataset specifically designed for Named Entity Recognition (NER) in the Marathi language. The dataset comprises 18,000 manually labeled sentences covering eight entity classes, addressing challenges posed by social media data, including non-standard language and informal idioms. Deep learning models, including CNN, LSTM, BiLSTM, and Transformer models, are evaluated on the individual dataset with IOB and non-IOB notations. The results demonstrate the effectiveness of these models in accurately recognizing named entities in Marathi informal text. The L3Cube-MahaSocialNER dataset offers user-centric information extraction and supports real-time applications, providing a valuable resource for public opinion analysis, news, and marketing on social media platforms. We also show that the zero-shot results of the regular NER model are poor on the social NER test set thus highlighting the need for more social NER datasets. The datasets and models are publicly available at https://github.com/l3cube-pune/MarathiNLP
Language Models are Few-Shot Learners
Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.
NNN: Next-Generation Neural Networks for Marketing Measurement
We present NNN, an experimental Transformer-based neural network approach to marketing measurement. Unlike Marketing Mix Models (MMMs) which rely on scalar inputs and parametric decay functions, NNN uses rich embeddings to capture both quantitative and qualitative aspects of marketing and organic channels (e.g., search queries, ad creatives). This, combined with its attention mechanism, potentially enables NNN to model complex interactions, capture long-term effects, and improve sales attribution accuracy. We show that L1 regularization permits the use of such expressive models in typical data-constrained settings. Evaluating NNN on simulated and real-world data demonstrates its efficacy, particularly through considerable improvement in predictive power. In addition to marketing measurement, the NNN framework can provide valuable, complementary insights through model probing, such as evaluating keyword or creative effectiveness.
Evaluation of sentence embeddings in downstream and linguistic probing tasks
Despite the fast developmental pace of new sentence embedding methods, it is still challenging to find comprehensive evaluations of these different techniques. In the past years, we saw significant improvements in the field of sentence embeddings and especially towards the development of universal sentence encoders that could provide inductive transfer to a wide variety of downstream tasks. In this work, we perform a comprehensive evaluation of recent methods using a wide variety of downstream and linguistic feature probing tasks. We show that a simple approach using bag-of-words with a recently introduced language model for deep context-dependent word embeddings proved to yield better results in many tasks when compared to sentence encoders trained on entailment datasets. We also show, however, that we are still far away from a universal encoder that can perform consistently across several downstream tasks.
TrICy: Trigger-guided Data-to-text Generation with Intent aware Attention-Copy
Data-to-text (D2T) generation is a crucial task in many natural language understanding (NLU) applications and forms the foundation of task-oriented dialog systems. In the context of conversational AI solutions that can work directly with local data on the user's device, architectures utilizing large pre-trained language models (PLMs) are impractical for on-device deployment due to a high memory footprint. To this end, we propose TrICy, a novel lightweight framework for an enhanced D2T task that generates text sequences based on the intent in context and may further be guided by user-provided triggers. We leverage an attention-copy mechanism to predict out-of-vocabulary (OOV) words accurately. Performance analyses on E2E NLG dataset (BLEU: 66.43%, ROUGE-L: 70.14%), WebNLG dataset (BLEU: Seen 64.08%, Unseen 52.35%), and our Custom dataset related to text messaging applications, showcase our architecture's effectiveness. Moreover, we show that by leveraging an optional trigger input, data-to-text generation quality increases significantly and achieves the new SOTA score of 69.29% BLEU for E2E NLG. Furthermore, our analyses show that TrICy achieves at least 24% and 3% improvement in BLEU and METEOR respectively over LLMs like GPT-3, ChatGPT, and Llama 2. We also demonstrate that in some scenarios, performance improvement due to triggers is observed even when they are absent in training.
CoLLM: A Large Language Model for Composed Image Retrieval
Composed Image Retrieval (CIR) is a complex task that aims to retrieve images based on a multimodal query. Typical training data consists of triplets containing a reference image, a textual description of desired modifications, and the target image, which are expensive and time-consuming to acquire. The scarcity of CIR datasets has led to zero-shot approaches utilizing synthetic triplets or leveraging vision-language models (VLMs) with ubiquitous web-crawled image-caption pairs. However, these methods have significant limitations: synthetic triplets suffer from limited scale, lack of diversity, and unnatural modification text, while image-caption pairs hinder joint embedding learning of the multimodal query due to the absence of triplet data. Moreover, existing approaches struggle with complex and nuanced modification texts that demand sophisticated fusion and understanding of vision and language modalities. We present CoLLM, a one-stop framework that effectively addresses these limitations. Our approach generates triplets on-the-fly from image-caption pairs, enabling supervised training without manual annotation. We leverage Large Language Models (LLMs) to generate joint embeddings of reference images and modification texts, facilitating deeper multimodal fusion. Additionally, we introduce Multi-Text CIR (MTCIR), a large-scale dataset comprising 3.4M samples, and refine existing CIR benchmarks (CIRR and Fashion-IQ) to enhance evaluation reliability. Experimental results demonstrate that CoLLM achieves state-of-the-art performance across multiple CIR benchmarks and settings. MTCIR yields competitive results, with up to 15% performance improvement. Our refined benchmarks provide more reliable evaluation metrics for CIR models, contributing to the advancement of this important field.
Convolutional Neural Networks for Sentence Classification
We report on a series of experiments with convolutional neural networks (CNN) trained on top of pre-trained word vectors for sentence-level classification tasks. We show that a simple CNN with little hyperparameter tuning and static vectors achieves excellent results on multiple benchmarks. Learning task-specific vectors through fine-tuning offers further gains in performance. We additionally propose a simple modification to the architecture to allow for the use of both task-specific and static vectors. The CNN models discussed herein improve upon the state of the art on 4 out of 7 tasks, which include sentiment analysis and question classification.
Precise Zero-Shot Dense Retrieval without Relevance Labels
While dense retrieval has been shown effective and efficient across tasks and languages, it remains difficult to create effective fully zero-shot dense retrieval systems when no relevance label is available. In this paper, we recognize the difficulty of zero-shot learning and encoding relevance. Instead, we propose to pivot through Hypothetical Document Embeddings~(HyDE). Given a query, HyDE first zero-shot instructs an instruction-following language model (e.g. InstructGPT) to generate a hypothetical document. The document captures relevance patterns but is unreal and may contain false details. Then, an unsupervised contrastively learned encoder~(e.g. Contriever) encodes the document into an embedding vector. This vector identifies a neighborhood in the corpus embedding space, where similar real documents are retrieved based on vector similarity. This second step ground the generated document to the actual corpus, with the encoder's dense bottleneck filtering out the incorrect details. Our experiments show that HyDE significantly outperforms the state-of-the-art unsupervised dense retriever Contriever and shows strong performance comparable to fine-tuned retrievers, across various tasks (e.g. web search, QA, fact verification) and languages~(e.g. sw, ko, ja).
Promptagator: Few-shot Dense Retrieval From 8 Examples
Much recent research on information retrieval has focused on how to transfer from one task (typically with abundant supervised data) to various other tasks where supervision is limited, with the implicit assumption that it is possible to generalize from one task to all the rest. However, this overlooks the fact that there are many diverse and unique retrieval tasks, each targeting different search intents, queries, and search domains. In this paper, we suggest to work on Few-shot Dense Retrieval, a setting where each task comes with a short description and a few examples. To amplify the power of a few examples, we propose Prompt-base Query Generation for Retriever (Promptagator), which leverages large language models (LLM) as a few-shot query generator, and creates task-specific retrievers based on the generated data. Powered by LLM's generalization ability, Promptagator makes it possible to create task-specific end-to-end retrievers solely based on a few examples {without} using Natural Questions or MS MARCO to train %question generators or dual encoders. Surprisingly, LLM prompting with no more than 8 examples allows dual encoders to outperform heavily engineered models trained on MS MARCO like ColBERT v2 by more than 1.2 nDCG on average on 11 retrieval sets. Further training standard-size re-rankers using the same generated data yields another 5.0 point nDCG improvement. Our studies determine that query generation can be far more effective than previously observed, especially when a small amount of task-specific knowledge is given.
Let's Think Dot by Dot: Hidden Computation in Transformer Language Models
Chain-of-thought responses from language models improve performance across most benchmarks. However, it remains unclear to what extent these performance gains can be attributed to human-like task decomposition or simply the greater computation that additional tokens allow. We show that transformers can use meaningless filler tokens (e.g., '......') in place of a chain of thought to solve two hard algorithmic tasks they could not solve when responding without intermediate tokens. However, we find empirically that learning to use filler tokens is difficult and requires specific, dense supervision to converge. We also provide a theoretical characterization of the class of problems where filler tokens are useful in terms of the quantifier depth of a first-order formula. For problems satisfying this characterization, chain-of-thought tokens need not provide information about the intermediate computational steps involved in multi-token computations. In summary, our results show that additional tokens can provide computational benefits independent of token choice. The fact that intermediate tokens can act as filler tokens raises concerns about large language models engaging in unauditable, hidden computations that are increasingly detached from the observed chain-of-thought tokens.
Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks
In an effort to understand the meaning of the intermediate representations captured by deep networks, recent papers have tried to associate specific semantic concepts to individual neural network filter responses, where interesting correlations are often found, largely by focusing on extremal filter responses. In this paper, we show that this approach can favor easy-to-interpret cases that are not necessarily representative of the average behavior of a representation. A more realistic but harder-to-study hypothesis is that semantic representations are distributed, and thus filters must be studied in conjunction. In order to investigate this idea while enabling systematic visualization and quantification of multiple filter responses, we introduce the Net2Vec framework, in which semantic concepts are mapped to vectorial embeddings based on corresponding filter responses. By studying such embeddings, we are able to show that 1., in most cases, multiple filters are required to code for a concept, that 2., often filters are not concept specific and help encode multiple concepts, and that 3., compared to single filter activations, filter embeddings are able to better characterize the meaning of a representation and its relationship to other concepts.
A Unified Model for Reverse Dictionary and Definition Modelling
We build a dual-way neural dictionary to retrieve words given definitions, and produce definitions for queried words. The model learns the two tasks simultaneously and handles unknown words via embeddings. It casts a word or a definition to the same representation space through a shared layer, then generates the other form in a multi-task fashion. Our method achieves promising automatic scores on previous benchmarks without extra resources. Human annotators prefer the model's outputs in both reference-less and reference-based evaluation, indicating its practicality. Analysis suggests that multiple objectives benefit learning.
LG-ANNA-Embedding technical report
This report presents a unified instruction-based framework for learning generalized text embeddings optimized for both information retrieval (IR) and non-IR tasks. Built upon a decoder-only large language model (Mistral-7B), our approach combines in-context learning, soft supervision, and adaptive hard-negative mining to generate context-aware embeddings without task-specific fine-tuning. Structured instructions and few-shot examples are used to guide the model across diverse tasks, enabling strong performance on classification, semantic similarity, clustering, and reranking benchmarks. To improve semantic discrimination, we employ a soft labeling framework where continuous relevance scores, distilled from a high-performance dense retriever and reranker, serve as fine-grained supervision signals. In addition, we introduce adaptive margin-based hard-negative mining, which filters out semantically ambiguous negatives based on their similarity to positive examples, thereby enhancing training stability and retrieval robustness. Our model is evaluated on the newly introduced MTEB (English, v2) benchmark, covering 41 tasks across seven categories. Results show that our method achieves strong generalization and ranks among the top-performing models by Borda score, outperforming several larger or fully fine-tuned baselines. These findings highlight the effectiveness of combining in-context prompting, soft supervision, and adaptive sampling for scalable, high-quality embedding generation.
Implicit Multiple Tensor Decomposition
Recently, triple decomposition has attracted increasing attention for decomposing third-order tensors into three factor tensors. However, this approach is limited to third-order tensors and enforces uniformity in the lower dimensions across all factor tensors, which restricts its flexibility and applicability. To address these issues, we propose the Multiple decomposition, a novel framework that generalizes triple decomposition to arbitrary order tensors and allows the short dimensions of the factor tensors to differ. We establish its connections with other classical tensor decompositions. Furthermore, implicit neural representation (INR) is employed to continuously represent the factor tensors in Multiple decomposition, enabling the method to generalize to non-grid data. We refer to this INR-based Multiple decomposition as Implicit Multiple Tensor Decomposition (IMTD). Then, the Proximal Alternating Least Squares (PALS) algorithm is utilized to solve the IMTD-based tensor reconstruction models. Since the objective function in IMTD-based models often lacks the Kurdyka-Lojasiewicz (KL) property, we establish a KL-free convergence analysis for the algorithm. Finally, extensive numerical experiments further validate the effectiveness of the proposed method.
Hypencoder: Hypernetworks for Information Retrieval
The vast majority of retrieval models depend on vector inner products to produce a relevance score between a query and a document. This naturally limits the expressiveness of the relevance score that can be employed. We propose a new paradigm, instead of producing a vector to represent the query we produce a small neural network which acts as a learned relevance function. This small neural network takes in a representation of the document, in this paper we use a single vector, and produces a scalar relevance score. To produce the little neural network we use a hypernetwork, a network that produce the weights of other networks, as our query encoder or as we call it a Hypencoder. Experiments on in-domain search tasks show that Hypencoder is able to significantly outperform strong dense retrieval models and has higher metrics then reranking models and models an order of magnitude larger. Hypencoder is also shown to generalize well to out-of-domain search tasks. To assess the extent of Hypencoder's capabilities, we evaluate on a set of hard retrieval tasks including tip-of-the-tongue retrieval and instruction-following retrieval tasks and find that the performance gap widens substantially compared to standard retrieval tasks. Furthermore, to demonstrate the practicality of our method we implement an approximate search algorithm and show that our model is able to search 8.8M documents in under 60ms.
FCN: Fusing Exponential and Linear Cross Network for Click-Through Rate Prediction
As an important modeling paradigm in click-through rate (CTR) prediction, the Deep & Cross Network (DCN) and its derivative models have gained widespread recognition primarily due to their success in a trade-off between computational cost and performance. This paradigm employs a cross network to explicitly model feature interactions with linear growth, while leveraging deep neural networks (DNN) to implicitly capture higher-order feature interactions. However, these models still face several key limitations: (1) The performance of existing explicit feature interaction methods lags behind that of implicit DNN, resulting in overall model performance being dominated by the DNN; (2) While these models claim to capture high-order feature interactions, they often overlook potential noise within these interactions; (3) The learning process for different interaction network branches lacks appropriate supervision signals; and (4) The high-order feature interactions captured by these models are often implicit and non-interpretable due to their reliance on DNN. To address the identified limitations, this paper proposes a novel model, called Fusing Cross Network (FCN), along with two sub-networks: Linear Cross Network (LCN) and Exponential Cross Network (ECN). FCN explicitly captures feature interactions with both linear and exponential growth, eliminating the need to rely on implicit DNN. Moreover, we introduce the Self-Mask operation to filter noise layer by layer and reduce the number of parameters in the cross network by half. To effectively train these two cross networks, we propose a simple yet effective loss function called Tri-BCE, which provides tailored supervision signals for each network. We evaluate the effectiveness, efficiency, and interpretability of FCN on six benchmark datasets. Furthermore, by integrating LCN and ECN, FCN achieves a new state-of-the-art performance.
Large Language Models aren't all that you need
This paper describes the architecture and systems built towards solving the SemEval 2023 Task 2: MultiCoNER II (Multilingual Complex Named Entity Recognition) [1]. We evaluate two approaches (a) a traditional Conditional Random Fields model and (b) a Large Language Model (LLM) fine-tuned with a customized head and compare the two approaches. The novel ideas explored are: 1) Decaying auxiliary loss (with residual) - where we train the model on an auxiliary task of Coarse-Grained NER and include this task as a part of the loss function 2) Triplet token blending - where we explore ways of blending the embeddings of neighboring tokens in the final NER layer prior to prediction 3) Task-optimal heads - where we explore a variety of custom heads and learning rates for the final layer of the LLM. We also explore multiple LLMs including GPT-3 and experiment with a variety of dropout and other hyperparameter settings before arriving at our final model which achieves micro & macro f1 of 0.85/0.84 (on dev) and 0.67/0.61 on the test data . We show that while pre-trained LLMs, by themselves, bring about a large improvement in scores as compared to traditional models, we also demonstrate that tangible improvements to the Macro-F1 score can be made by augmenting the LLM with additional feature/loss/model engineering techniques described above.
UniGen: A Unified Generative Framework for Retrieval and Question Answering with Large Language Models
Generative information retrieval, encompassing two major tasks of Generative Document Retrieval (GDR) and Grounded Answer Generation (GAR), has gained significant attention in the area of information retrieval and natural language processing. Existing methods for GDR and GAR rely on separate retrieval and reader modules, which hinder simultaneous optimization. To overcome this, we present UniGen, a Unified Generative framework for retrieval and question answering that integrates both tasks into a single generative model leveraging the capabilities of large language models. UniGen employs a shared encoder and two distinct decoders for generative retrieval and question answering. To facilitate the learning of both tasks, we introduce connectors, generated by large language models, to bridge the gaps between query inputs and generation targets, as well as between document identifiers and answers. Furthermore, we propose an iterative enhancement strategy that leverages generated answers and retrieved documents to iteratively improve both tasks. Through extensive experiments on the MS MARCO and NQ datasets, we demonstrate the effectiveness of UniGen, showcasing its superior performance in both the retrieval and the question answering tasks.
