Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOpen-Source Large Language Models Outperform Crowd Workers and Approach ChatGPT in Text-Annotation Tasks
This study examines the performance of open-source Large Language Models (LLMs) in text annotation tasks and compares it with proprietary models like ChatGPT and human-based services such as MTurk. While prior research demonstrated the high performance of ChatGPT across numerous NLP tasks, open-source LLMs like HugginChat and FLAN are gaining attention for their cost-effectiveness, transparency, reproducibility, and superior data protection. We assess these models using both zero-shot and few-shot approaches and different temperature parameters across a range of text annotation tasks. Our findings show that while ChatGPT achieves the best performance in most tasks, open-source LLMs not only outperform MTurk but also demonstrate competitive potential against ChatGPT in specific tasks.
Crowd Guilds: Worker-led Reputation and Feedback on Crowdsourcing Platforms
Crowd workers are distributed and decentralized. While decentralization is designed to utilize independent judgment to promote high-quality results, it paradoxically undercuts behaviors and institutions that are critical to high-quality work. Reputation is one central example: crowdsourcing systems depend on reputation scores from decentralized workers and requesters, but these scores are notoriously inflated and uninformative. In this paper, we draw inspiration from historical worker guilds (e.g., in the silk trade) to design and implement crowd guilds: centralized groups of crowd workers who collectively certify each other's quality through double-blind peer assessment. A two-week field experiment compared crowd guilds to a traditional decentralized crowd work model. Crowd guilds produced reputation signals more strongly correlated with ground-truth worker quality than signals available on current crowd working platforms, and more accurate than in the traditional model.
Can the Crowd Judge Truthfulness? A Longitudinal Study on Recent Misinformation about COVID-19
Recently, the misinformation problem has been addressed with a crowdsourcing-based approach: to assess the truthfulness of a statement, instead of relying on a few experts, a crowd of non-expert is exploited. We study whether crowdsourcing is an effective and reliable method to assess truthfulness during a pandemic, targeting statements related to COVID-19, thus addressing (mis)information that is both related to a sensitive and personal issue and very recent as compared to when the judgment is done. In our experiments, crowd workers are asked to assess the truthfulness of statements, and to provide evidence for the assessments. Besides showing that the crowd is able to accurately judge the truthfulness of the statements, we report results on workers behavior, agreement among workers, effect of aggregation functions, of scales transformations, and of workers background and bias. We perform a longitudinal study by re-launching the task multiple times with both novice and experienced workers, deriving important insights on how the behavior and quality change over time. Our results show that: workers are able to detect and objectively categorize online (mis)information related to COVID-19; both crowdsourced and expert judgments can be transformed and aggregated to improve quality; worker background and other signals (e.g., source of information, behavior) impact the quality of the data. The longitudinal study demonstrates that the time-span has a major effect on the quality of the judgments, for both novice and experienced workers. Finally, we provide an extensive failure analysis of the statements misjudged by the crowd-workers.
The COVID-19 Infodemic: Can the Crowd Judge Recent Misinformation Objectively?
Misinformation is an ever increasing problem that is difficult to solve for the research community and has a negative impact on the society at large. Very recently, the problem has been addressed with a crowdsourcing-based approach to scale up labeling efforts: to assess the truthfulness of a statement, instead of relying on a few experts, a crowd of (non-expert) judges is exploited. We follow the same approach to study whether crowdsourcing is an effective and reliable method to assess statements truthfulness during a pandemic. We specifically target statements related to the COVID-19 health emergency, that is still ongoing at the time of the study and has arguably caused an increase of the amount of misinformation that is spreading online (a phenomenon for which the term "infodemic" has been used). By doing so, we are able to address (mis)information that is both related to a sensitive and personal issue like health and very recent as compared to when the judgment is done: two issues that have not been analyzed in related work. In our experiment, crowd workers are asked to assess the truthfulness of statements, as well as to provide evidence for the assessments as a URL and a text justification. Besides showing that the crowd is able to accurately judge the truthfulness of the statements, we also report results on many different aspects, including: agreement among workers, the effect of different aggregation functions, of scales transformations, and of workers background / bias. We also analyze workers behavior, in terms of queries submitted, URLs found / selected, text justifications, and other behavioral data like clicks and mouse actions collected by means of an ad hoc logger.
APEACH: Attacking Pejorative Expressions with Analysis on Crowd-Generated Hate Speech Evaluation Datasets
In hate speech detection, developing training and evaluation datasets across various domains is the critical issue. Whereas, major approaches crawl social media texts and hire crowd-workers to annotate the data. Following this convention often restricts the scope of pejorative expressions to a single domain lacking generalization. Sometimes domain overlap between training corpus and evaluation set overestimate the prediction performance when pretraining language models on low-data language. To alleviate these problems in Korean, we propose APEACH that asks unspecified users to generate hate speech examples followed by minimal post-labeling. We find that APEACH can collect useful datasets that are less sensitive to the lexical overlaps between the pretraining corpus and the evaluation set, thereby properly measuring the model performance.
CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge
When answering a question, people often draw upon their rich world knowledge in addition to the particular context. Recent work has focused primarily on answering questions given some relevant document or context, and required very little general background. To investigate question answering with prior knowledge, we present CommonsenseQA: a challenging new dataset for commonsense question answering. To capture common sense beyond associations, we extract from ConceptNet (Speer et al., 2017) multiple target concepts that have the same semantic relation to a single source concept. Crowd-workers are asked to author multiple-choice questions that mention the source concept and discriminate in turn between each of the target concepts. This encourages workers to create questions with complex semantics that often require prior knowledge. We create 12,247 questions through this procedure and demonstrate the difficulty of our task with a large number of strong baselines. Our best baseline is based on BERT-large (Devlin et al., 2018) and obtains 56% accuracy, well below human performance, which is 89%.
CoCoLoFa: A Dataset of News Comments with Common Logical Fallacies Written by LLM-Assisted Crowds
Detecting logical fallacies in texts can help users spot argument flaws, but automating this detection is not easy. Manually annotating fallacies in large-scale, real-world text data to create datasets for developing and validating detection models is costly. This paper introduces CoCoLoFa, the largest known logical fallacy dataset, containing 7,706 comments for 648 news articles, with each comment labeled for fallacy presence and type. We recruited 143 crowd workers to write comments embodying specific fallacy types (e.g., slippery slope) in response to news articles. Recognizing the complexity of this writing task, we built an LLM-powered assistant into the workers' interface to aid in drafting and refining their comments. Experts rated the writing quality and labeling validity of CoCoLoFa as high and reliable. BERT-based models fine-tuned using CoCoLoFa achieved the highest fallacy detection (F1=0.86) and classification (F1=0.87) performance on its test set, outperforming the state-of-the-art LLMs. Our work shows that combining crowdsourcing and LLMs enables us to more effectively construct datasets for complex linguistic phenomena that crowd workers find challenging to produce on their own.
QuAC : Question Answering in Context
We present QuAC, a dataset for Question Answering in Context that contains 14K information-seeking QA dialogs (100K questions in total). The dialogs involve two crowd workers: (1) a student who poses a sequence of freeform questions to learn as much as possible about a hidden Wikipedia text, and (2) a teacher who answers the questions by providing short excerpts from the text. QuAC introduces challenges not found in existing machine comprehension datasets: its questions are often more open-ended, unanswerable, or only meaningful within the dialog context, as we show in a detailed qualitative evaluation. We also report results for a number of reference models, including a recently state-of-the-art reading comprehension architecture extended to model dialog context. Our best model underperforms humans by 20 F1, suggesting that there is significant room for future work on this data. Dataset, baseline, and leaderboard available at http://quac.ai.
Ask the experts: sourcing high-quality datasets for nutritional counselling through Human-AI collaboration
Large Language Models (LLMs), with their flexible generation abilities, can be powerful data sources in domains with few or no available corpora. However, problems like hallucinations and biases limit such applications. In this case study, we pick nutrition counselling, a domain lacking any public resource, and show that high-quality datasets can be gathered by combining LLMs, crowd-workers and nutrition experts. We first crowd-source and cluster a novel dataset of diet-related issues, then work with experts to prompt ChatGPT into producing related supportive text. Finally, we let the experts evaluate the safety of the generated text. We release HAI-coaching, the first expert-annotated nutrition counselling dataset containing ~2.4K dietary struggles from crowd workers, and ~97K related supportive texts generated by ChatGPT. Extensive analysis shows that ChatGPT while producing highly fluent and human-like text, also manifests harmful behaviours, especially in sensitive topics like mental health, making it unsuitable for unsupervised use.
CleanPatrick: A Benchmark for Image Data Cleaning
Robust machine learning depends on clean data, yet current image data cleaning benchmarks rely on synthetic noise or narrow human studies, limiting comparison and real-world relevance. We introduce CleanPatrick, the first large-scale benchmark for data cleaning in the image domain, built upon the publicly available Fitzpatrick17k dermatology dataset. We collect 496,377 binary annotations from 933 medical crowd workers, identify off-topic samples (4%), near-duplicates (21%), and label errors (22%), and employ an aggregation model inspired by item-response theory followed by expert review to derive high-quality ground truth. CleanPatrick formalizes issue detection as a ranking task and adopts typical ranking metrics mirroring real audit workflows. Benchmarking classical anomaly detectors, perceptual hashing, SSIM, Confident Learning, NoiseRank, and SelfClean, we find that, on CleanPatrick, self-supervised representations excel at near-duplicate detection, classical methods achieve competitive off-topic detection under constrained review budgets, and label-error detection remains an open challenge for fine-grained medical classification. By releasing both the dataset and the evaluation framework, CleanPatrick enables a systematic comparison of image-cleaning strategies and paves the way for more reliable data-centric artificial intelligence.
EduQG: A Multi-format Multiple Choice Dataset for the Educational Domain
We introduce a high-quality dataset that contains 3,397 samples comprising (i) multiple choice questions, (ii) answers (including distractors), and (iii) their source documents, from the educational domain. Each question is phrased in two forms, normal and close. Correct answers are linked to source documents with sentence-level annotations. Thus, our versatile dataset can be used for both question and distractor generation, as well as to explore new challenges such as question format conversion. Furthermore, 903 questions are accompanied by their cognitive complexity level as per Bloom's taxonomy. All questions have been generated by educational experts rather than crowd workers to ensure they are maintaining educational and learning standards. Our analysis and experiments suggest distinguishable differences between our dataset and commonly used ones for question generation for educational purposes. We believe this new dataset can serve as a valuable resource for research and evaluation in the educational domain. The dataset and baselines will be released to support further research in question generation.
Annotation Artifacts in Natural Language Inference Data
Large-scale datasets for natural language inference are created by presenting crowd workers with a sentence (premise), and asking them to generate three new sentences (hypotheses) that it entails, contradicts, or is logically neutral with respect to. We show that, in a significant portion of such data, this protocol leaves clues that make it possible to identify the label by looking only at the hypothesis, without observing the premise. Specifically, we show that a simple text categorization model can correctly classify the hypothesis alone in about 67% of SNLI (Bowman et. al, 2015) and 53% of MultiNLI (Williams et. al, 2017). Our analysis reveals that specific linguistic phenomena such as negation and vagueness are highly correlated with certain inference classes. Our findings suggest that the success of natural language inference models to date has been overestimated, and that the task remains a hard open problem.
The Many Dimensions of Truthfulness: Crowdsourcing Misinformation Assessments on a Multidimensional Scale
Recent work has demonstrated the viability of using crowdsourcing as a tool for evaluating the truthfulness of public statements. Under certain conditions such as: (1) having a balanced set of workers with different backgrounds and cognitive abilities; (2) using an adequate set of mechanisms to control the quality of the collected data; and (3) using a coarse grained assessment scale, the crowd can provide reliable identification of fake news. However, fake news are a subtle matter: statements can be just biased ("cherrypicked"), imprecise, wrong, etc. and the unidimensional truth scale used in existing work cannot account for such differences. In this paper we propose a multidimensional notion of truthfulness and we ask the crowd workers to assess seven different dimensions of truthfulness selected based on existing literature: Correctness, Neutrality, Comprehensibility, Precision, Completeness, Speaker's Trustworthiness, and Informativeness. We deploy a set of quality control mechanisms to ensure that the thousands of assessments collected on 180 publicly available fact-checked statements distributed over two datasets are of adequate quality, including a custom search engine used by the crowd workers to find web pages supporting their truthfulness assessments. A comprehensive analysis of crowdsourced judgments shows that: (1) the crowdsourced assessments are reliable when compared to an expert-provided gold standard; (2) the proposed dimensions of truthfulness capture independent pieces of information; (3) the crowdsourcing task can be easily learned by the workers; and (4) the resulting assessments provide a useful basis for a more complete estimation of statement truthfulness.
ProtoQA: A Question Answering Dataset for Prototypical Common-Sense Reasoning
Given questions regarding some prototypical situation such as Name something that people usually do before they leave the house for work? a human can easily answer them via acquired experiences. There can be multiple right answers for such questions, with some more common for a situation than others. This paper introduces a new question answering dataset for training and evaluating common sense reasoning capabilities of artificial intelligence systems in such prototypical situations. The training set is gathered from an existing set of questions played in a long-running international game show FAMILY- FEUD. The hidden evaluation set is created by gathering answers for each question from 100 crowd-workers. We also propose a generative evaluation task where a model has to output a ranked list of answers, ideally covering all prototypical answers for a question. After presenting multiple competitive baseline models, we find that human performance still exceeds model scores on all evaluation metrics with a meaningful gap, supporting the challenging nature of the task.
Never-ending Learning of User Interfaces
Machine learning models have been trained to predict semantic information about user interfaces (UIs) to make apps more accessible, easier to test, and to automate. Currently, most models rely on datasets that are collected and labeled by human crowd-workers, a process that is costly and surprisingly error-prone for certain tasks. For example, it is possible to guess if a UI element is "tappable" from a screenshot (i.e., based on visual signifiers) or from potentially unreliable metadata (e.g., a view hierarchy), but one way to know for certain is to programmatically tap the UI element and observe the effects. We built the Never-ending UI Learner, an app crawler that automatically installs real apps from a mobile app store and crawls them to discover new and challenging training examples to learn from. The Never-ending UI Learner has crawled for more than 5,000 device-hours, performing over half a million actions on 6,000 apps to train three computer vision models for i) tappability prediction, ii) draggability prediction, and iii) screen similarity.
OMoS-QA: A Dataset for Cross-Lingual Extractive Question Answering in a German Migration Context
When immigrating to a new country, it is easy to feel overwhelmed by the need to obtain information on financial support, housing, schooling, language courses, and other issues. If relocation is rushed or even forced, the necessity for high-quality answers to such questions is all the more urgent. Official immigration counselors are usually overbooked, and online systems could guide newcomers to the requested information or a suitable counseling service. To this end, we present OMoS-QA, a dataset of German and English questions paired with relevant trustworthy documents and manually annotated answers, specifically tailored to this scenario. Questions are automatically generated with an open-source large language model (LLM) and answer sentences are selected by crowd workers with high agreement. With our data, we conduct a comparison of 5 pretrained LLMs on the task of extractive question answering (QA) in German and English. Across all models and both languages, we find high precision and low-to-mid recall in selecting answer sentences, which is a favorable trade-off to avoid misleading users. This performance even holds up when the question language does not match the document language. When it comes to identifying unanswerable questions given a context, there are larger differences between the two languages.
What's Mine becomes Yours: Defining, Annotating and Detecting Context-Dependent Paraphrases in News Interview Dialogs
Best practices for high conflict conversations like counseling or customer support almost always include recommendations to paraphrase the previous speaker. Although paraphrase classification has received widespread attention in NLP, paraphrases are usually considered independent from context, and common models and datasets are not applicable to dialog settings. In this work, we investigate paraphrases in dialog (e.g., Speaker 1: "That book is mine." becomes Speaker 2: "That book is yours."). We provide an operationalization of context-dependent paraphrases, and develop a training for crowd-workers to classify paraphrases in dialog. We introduce a dataset with utterance pairs from NPR and CNN news interviews annotated for context-dependent paraphrases. To enable analyses on label variation, the dataset contains 5,581 annotations on 600 utterance pairs. We present promising results with in-context learning and with token classification models for automatic paraphrase detection in dialog.
Reasoning Over Paragraph Effects in Situations
A key component of successfully reading a passage of text is the ability to apply knowledge gained from the passage to a new situation. In order to facilitate progress on this kind of reading, we present ROPES, a challenging benchmark for reading comprehension targeting Reasoning Over Paragraph Effects in Situations. We target expository language describing causes and effects (e.g., "animal pollinators increase efficiency of fertilization in flowers"), as they have clear implications for new situations. A system is presented a background passage containing at least one of these relations, a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the background passage in the context of the situation. We collect background passages from science textbooks and Wikipedia that contain such phenomena, and ask crowd workers to author situations, questions, and answers, resulting in a 14,322 question dataset. We analyze the challenges of this task and evaluate the performance of state-of-the-art reading comprehension models. The best model performs only slightly better than randomly guessing an answer of the correct type, at 61.6% F1, well below the human performance of 89.0%.
IndoNLI: A Natural Language Inference Dataset for Indonesian
We present IndoNLI, the first human-elicited NLI dataset for Indonesian. We adapt the data collection protocol for MNLI and collect nearly 18K sentence pairs annotated by crowd workers and experts. The expert-annotated data is used exclusively as a test set. It is designed to provide a challenging test-bed for Indonesian NLI by explicitly incorporating various linguistic phenomena such as numerical reasoning, structural changes, idioms, or temporal and spatial reasoning. Experiment results show that XLM-R outperforms other pre-trained models in our data. The best performance on the expert-annotated data is still far below human performance (13.4% accuracy gap), suggesting that this test set is especially challenging. Furthermore, our analysis shows that our expert-annotated data is more diverse and contains fewer annotation artifacts than the crowd-annotated data. We hope this dataset can help accelerate progress in Indonesian NLP research.
KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment
Deep learning methods for image quality assessment (IQA) are limited due to the small size of existing datasets. Extensive datasets require substantial resources both for generating publishable content and annotating it accurately. We present a systematic and scalable approach to creating KonIQ-10k, the largest IQA dataset to date, consisting of 10,073 quality scored images. It is the first in-the-wild database aiming for ecological validity, concerning the authenticity of distortions, the diversity of content, and quality-related indicators. Through the use of crowdsourcing, we obtained 1.2 million reliable quality ratings from 1,459 crowd workers, paving the way for more general IQA models. We propose a novel, deep learning model (KonCept512), to show an excellent generalization beyond the test set (0.921 SROCC), to the current state-of-the-art database LIVE-in-the-Wild (0.825 SROCC). The model derives its core performance from the InceptionResNet architecture, being trained at a higher resolution than previous models (512x384). Correlation analysis shows that KonCept512 performs similar to having 9 subjective scores for each test image.
Crowdsourcing Multiple Choice Science Questions
We present a novel method for obtaining high-quality, domain-targeted multiple choice questions from crowd workers. Generating these questions can be difficult without trading away originality, relevance or diversity in the answer options. Our method addresses these problems by leveraging a large corpus of domain-specific text and a small set of existing questions. It produces model suggestions for document selection and answer distractor choice which aid the human question generation process. With this method we have assembled SciQ, a dataset of 13.7K multiple choice science exam questions (Dataset available at http://allenai.org/data.html). We demonstrate that the method produces in-domain questions by providing an analysis of this new dataset and by showing that humans cannot distinguish the crowdsourced questions from original questions. When using SciQ as additional training data to existing questions, we observe accuracy improvements on real science exams.
The False Promise of Imitating Proprietary LLMs
An emerging method to cheaply improve a weaker language model is to finetune it on outputs from a stronger model, such as a proprietary system like ChatGPT (e.g., Alpaca, Self-Instruct, and others). This approach looks to cheaply imitate the proprietary model's capabilities using a weaker open-source model. In this work, we critically analyze this approach. We first finetune a series of LMs that imitate ChatGPT using varying base model sizes (1.5B--13B), data sources, and imitation data amounts (0.3M--150M tokens). We then evaluate the models using crowd raters and canonical NLP benchmarks. Initially, we were surprised by the output quality of our imitation models -- they appear far better at following instructions, and crowd workers rate their outputs as competitive with ChatGPT. However, when conducting more targeted automatic evaluations, we find that imitation models close little to none of the gap from the base LM to ChatGPT on tasks that are not heavily supported in the imitation data. We show that these performance discrepancies may slip past human raters because imitation models are adept at mimicking ChatGPT's style but not its factuality. Overall, we conclude that model imitation is a false promise: there exists a substantial capabilities gap between open and closed LMs that, with current methods, can only be bridged using an unwieldy amount of imitation data or by using more capable base LMs. In turn, we argue that the highest leverage action for improving open-source models is to tackle the difficult challenge of developing better base LMs, rather than taking the shortcut of imitating proprietary systems.
Prefer to Classify: Improving Text Classifiers via Auxiliary Preference Learning
The development of largely human-annotated benchmarks has driven the success of deep neural networks in various NLP tasks. To enhance the effectiveness of existing benchmarks, collecting new additional input-output pairs is often too costly and challenging, particularly considering their marginal impact on improving the current model accuracy. Instead, additional or complementary annotations on the existing input texts in the benchmarks can be preferable as an efficient way to pay the additional human cost. In this paper, we investigate task-specific preferences between pairs of input texts as a new alternative way for such auxiliary data annotation. From 'pair-wise' comparisons with respect to the task, the auxiliary preference learning enables the model to learn an additional informative training signal that cannot be captured with 'instance-wise' task labels. To this end, we propose a novel multi-task learning framework, called prefer-to-classify (P2C), which can enjoy the cooperative effect of learning both the given classification task and the auxiliary preferences. Here, we provide three different ways to collect preference signals in practice: (a) implicitly extracting from annotation records (for free, but often unavailable), (b) collecting explicitly from crowd workers (high paid), or (c) pre-trained large language models such as GPT-3 (low paid). Given existing classification NLP benchmarks, we demonstrate that the proposed auxiliary preference learning via P2C on them is effective in improving text classifiers. Our codes are publicly available.
A Dataset for Answering Time-Sensitive Questions
Time is an important dimension in our physical world. Lots of facts can evolve with respect to time. For example, the U.S. President might change every four years. Therefore, it is important to consider the time dimension and empower the existing QA models to reason over time. However, the existing QA datasets contain rather few time-sensitive questions, hence not suitable for diagnosing or benchmarking the model's temporal reasoning capability. In order to promote research in this direction, we propose to construct a time-sensitive QA dataset. The dataset is constructed by 1) mining time-evolving facts from WikiData and aligning them to their corresponding Wikipedia page, 2) employing crowd workers to verify and calibrate these noisy facts, 3) generating question-answer pairs based on the annotated time-sensitive facts. Our dataset poses challenges in the aspect of both temporal understanding and temporal reasoning. We evaluate different SoTA long-document QA systems like BigBird and FiD on our dataset. The best-performing model FiD can only achieve 46\% accuracy, still far behind the human performance of 87\%. We demonstrate that these models are still lacking the ability to perform consistent temporal reasoning. Therefore, we believe that our dataset could serve as a benchmark to develop NLP models more sensitive to temporal shifts. The dataset and code are released in~https://github.com/wenhuchen/Time-Sensitive-QA.
RPT: Relational Pre-trained Transformer Is Almost All You Need towards Democratizing Data Preparation
Can AI help automate human-easy but computer-hard data preparation tasks that burden data scientists, practitioners, and crowd workers? We answer this question by presenting RPT, a denoising auto-encoder for tuple-to-X models (X could be tuple, token, label, JSON, and so on). RPT is pre-trained for a tuple-to-tuple model by corrupting the input tuple and then learning a model to reconstruct the original tuple. It adopts a Transformer-based neural translation architecture that consists of a bidirectional encoder (similar to BERT) and a left-to-right autoregressive decoder (similar to GPT), leading to a generalization of both BERT and GPT. The pre-trained RPT can already support several common data preparation tasks such as data cleaning, auto-completion and schema matching. Better still, RPT can be fine-tuned on a wide range of data preparation tasks, such as value normalization, data transformation, data annotation, etc. To complement RPT, we also discuss several appealing techniques such as collaborative training and few-shot learning for entity resolution, and few-shot learning and NLP question-answering for information extraction. In addition, we identify a series of research opportunities to advance the field of data preparation.
ClusterNet: A Perception-Based Clustering Model for Scattered Data
Visualizations for scattered data are used to make users understand certain attributes of their data by solving different tasks, e.g. correlation estimation, outlier detection, cluster separation. In this paper, we focus on the later task, and develop a technique that is aligned to human perception, that can be used to understand how human subjects perceive clusterings in scattered data and possibly optimize for better understanding. Cluster separation in scatterplots is a task that is typically tackled by widely used clustering techniques, such as for instance k-means or DBSCAN. However, as these algorithms are based on non-perceptual metrics, we can show in our experiments, that their output do not reflect human cluster perception. We propose a learning strategy which directly operates on scattered data. To learn perceptual cluster separation on this data, we crowdsourced a large scale dataset, consisting of 7,320 point-wise cluster affiliations for bivariate data, which has been labeled by 384 human crowd workers. Based on this data, we were able to train ClusterNet, a point-based deep learning model, trained to reflect human perception of cluster separability. In order to train ClusterNet on human annotated data, we use a PointNet++ architecture enabling inference on point clouds directly. In this work, we provide details on how we collected our dataset, report statistics of the resulting annotations, and investigate perceptual agreement of cluster separation for real-world data. We further report the training and evaluation protocol of ClusterNet and introduce a novel metric, that measures the accuracy between a clustering technique and a group of human annotators. Finally, we compare our approach against existing state-of-the-art clustering techniques and can show, that ClusterNet is able to generalize to unseen and out of scope data.
Multi-annotator Deep Learning: A Probabilistic Framework for Classification
Solving complex classification tasks using deep neural networks typically requires large amounts of annotated data. However, corresponding class labels are noisy when provided by error-prone annotators, e.g., crowd workers. Training standard deep neural networks leads to subpar performances in such multi-annotator supervised learning settings. We address this issue by presenting a probabilistic training framework named multi-annotator deep learning (MaDL). A ground truth and an annotator performance model are jointly trained in an end-to-end learning approach. The ground truth model learns to predict instances' true class labels, while the annotator performance model infers probabilistic estimates of annotators' performances. A modular network architecture enables us to make varying assumptions regarding annotators' performances, e.g., an optional class or instance dependency. Further, we learn annotator embeddings to estimate annotators' densities within a latent space as proxies of their potentially correlated annotations. Together with a weighted loss function, we improve the learning from correlated annotation patterns. In a comprehensive evaluation, we examine three research questions about multi-annotator supervised learning. Our findings indicate MaDL's state-of-the-art performance and robustness against many correlated, spamming annotators.
InferES : A Natural Language Inference Corpus for Spanish Featuring Negation-Based Contrastive and Adversarial Examples
In this paper, we present InferES - an original corpus for Natural Language Inference (NLI) in European Spanish. We propose, implement, and analyze a variety of corpus-creating strategies utilizing expert linguists and crowd workers. The objectives behind InferES are to provide high-quality data, and, at the same time to facilitate the systematic evaluation of automated systems. Specifically, we focus on measuring and improving the performance of machine learning systems on negation-based adversarial examples and their ability to generalize across out-of-distribution topics. We train two transformer models on InferES (8,055 gold examples) in a variety of scenarios. Our best model obtains 72.8% accuracy, leaving a lot of room for improvement. The "hypothesis-only" baseline performs only 2%-5% higher than majority, indicating much fewer annotation artifacts than prior work. We find that models trained on InferES generalize very well across topics (both in- and out-of-distribution) and perform moderately well on negation-based adversarial examples.
AI vs. Human -- Differentiation Analysis of Scientific Content Generation
Recent neural language models have taken a significant step forward in producing remarkably controllable, fluent, and grammatical text. Although studies have found that AI-generated text is not distinguishable from human-written text for crowd-sourcing workers, there still exist errors in AI-generated text which are even subtler and harder to spot. We primarily focus on the scenario in which scientific AI writing assistant is deeply involved. First, we construct a feature description framework to distinguish between AI-generated text and human-written text from syntax, semantics, and pragmatics based on the human evaluation. Then we utilize the features, i.e., writing style, coherence, consistency, and argument logistics, from the proposed framework to analyze two types of content. Finally, we adopt several publicly available methods to investigate the gap of between AI-generated scientific text and human-written scientific text by AI-generated scientific text detection models. The results suggest that while AI has the potential to generate scientific content that is as accurate as human-written content, there is still a gap in terms of depth and overall quality. The AI-generated scientific content is more likely to contain errors in factual issues. We find that there exists a "writing style" gap between AI-generated scientific text and human-written scientific text. Based on the analysis result, we summarize a series of model-agnostic and distribution-agnostic features for detection tasks in other domains. Findings in this paper contribute to guiding the optimization of AI models to produce high-quality content and addressing related ethical and security concerns.
Premise-based Multimodal Reasoning: Conditional Inference on Joint Textual and Visual Clues
It is a common practice for recent works in vision language cross-modal reasoning to adopt a binary or multi-choice classification formulation taking as input a set of source image(s) and textual query. In this work, we take a sober look at such an unconditional formulation in the sense that no prior knowledge is specified with respect to the source image(s). Inspired by the designs of both visual commonsense reasoning and natural language inference tasks, we propose a new task termed Premise-based Multi-modal Reasoning(PMR) where a textual premise is the background presumption on each source image. The PMR dataset contains 15,360 manually annotated samples which are created by a multi-phase crowd-sourcing process. With selected high-quality movie screenshots and human-curated premise templates from 6 pre-defined categories, we ask crowd-source workers to write one true hypothesis and three distractors (4 choices) given the premise and image through a cross-check procedure. Besides, we generate adversarial samples to alleviate the annotation artifacts and double the size of PMR. We benchmark various state-of-the-art (pretrained) multi-modal inference models on PMR and conduct comprehensive experimental analyses to showcase the utility of our dataset.
InFoBench: Evaluating Instruction Following Ability in Large Language Models
This paper introduces the Decomposed Requirements Following Ratio (DRFR), a new metric for evaluating Large Language Models' (LLMs) ability to follow instructions. Addressing a gap in current methodologies, DRFR breaks down complex instructions into simpler criteria, facilitating a detailed analysis of LLMs' compliance with various aspects of tasks. Alongside this metric, we present InFoBench, a benchmark comprising 500 diverse instructions and 2,250 decomposed questions across multiple constraint categories. Our experiments compare DRFR with traditional scoring methods and explore annotation sources, including human experts, crowd-sourced workers, and GPT-4. The findings demonstrate DRFR's higher reliability and the effectiveness of using GPT-4 as a cost-efficient annotator. The evaluation of several advanced LLMs using this framework reveals their strengths and areas needing improvement, particularly in complex instruction-following. This study contributes a novel metric and benchmark, offering insights for future LLM development and evaluation.
LLM-Driven Usefulness Labeling for IR Evaluation
In the information retrieval (IR) domain, evaluation plays a crucial role in optimizing search experiences and supporting diverse user intents. In the recent LLM era, research has been conducted to automate document relevance labels, as these labels have traditionally been assigned by crowd-sourced workers - a process that is both time and consuming and costly. This study focuses on LLM-generated usefulness labels, a crucial evaluation metric that considers the user's search intents and task objectives, an aspect where relevance falls short. Our experiment utilizes task-level, query-level, and document-level features along with user search behavior signals, which are essential in defining the usefulness of a document. Our research finds that (i) pre-trained LLMs can generate moderate usefulness labels by understanding the comprehensive search task session, (ii) pre-trained LLMs perform better judgement in short search sessions when provided with search session contexts. Additionally, we investigated whether LLMs can capture the unique divergence between relevance and usefulness, along with conducting an ablation study to identify the most critical metrics for accurate usefulness label generation. In conclusion, this work explores LLM-generated usefulness labels by evaluating critical metrics and optimizing for practicality in real-world settings.
SummEval: Re-evaluating Summarization Evaluation
The scarcity of comprehensive up-to-date studies on evaluation metrics for text summarization and the lack of consensus regarding evaluation protocols continue to inhibit progress. We address the existing shortcomings of summarization evaluation methods along five dimensions: 1) we re-evaluate 14 automatic evaluation metrics in a comprehensive and consistent fashion using neural summarization model outputs along with expert and crowd-sourced human annotations, 2) we consistently benchmark 23 recent summarization models using the aforementioned automatic evaluation metrics, 3) we assemble the largest collection of summaries generated by models trained on the CNN/DailyMail news dataset and share it in a unified format, 4) we implement and share a toolkit that provides an extensible and unified API for evaluating summarization models across a broad range of automatic metrics, 5) we assemble and share the largest and most diverse, in terms of model types, collection of human judgments of model-generated summaries on the CNN/Daily Mail dataset annotated by both expert judges and crowd-source workers. We hope that this work will help promote a more complete evaluation protocol for text summarization as well as advance research in developing evaluation metrics that better correlate with human judgments.
When Crowd Meets Persona: Creating a Large-Scale Open-Domain Persona Dialogue Corpus
Building a natural language dataset requires caution since word semantics is vulnerable to subtle text change or the definition of the annotated concept. Such a tendency can be seen in generative tasks like question-answering and dialogue generation and also in tasks that create a categorization-based corpus, like topic classification or sentiment analysis. Open-domain conversations involve two or more crowdworkers freely conversing about any topic, and collecting such data is particularly difficult for two reasons: 1) the dataset should be ``crafted" rather than ``obtained" due to privacy concerns, and 2) paid creation of such dialogues may differ from how crowdworkers behave in real-world settings. In this study, we tackle these issues when creating a large-scale open-domain persona dialogue corpus, where persona implies that the conversation is performed by several actors with a fixed persona and user-side workers from an unspecified crowd.
A Survey on Cost Types, Interaction Schemes, and Annotator Performance Models in Selection Algorithms for Active Learning in Classification
Pool-based active learning (AL) aims to optimize the annotation process (i.e., labeling) as the acquisition of annotations is often time-consuming and therefore expensive. For this purpose, an AL strategy queries annotations intelligently from annotators to train a high-performance classification model at a low annotation cost. Traditional AL strategies operate in an idealized framework. They assume a single, omniscient annotator who never gets tired and charges uniformly regardless of query difficulty. However, in real-world applications, we often face human annotators, e.g., crowd or in-house workers, who make annotation mistakes and can be reluctant to respond if tired or faced with complex queries. Recently, a wide range of novel AL strategies has been proposed to address these issues. They differ in at least one of the following three central aspects from traditional AL: (1) They explicitly consider (multiple) human annotators whose performances can be affected by various factors, such as missing expertise. (2) They generalize the interaction with human annotators by considering different query and annotation types, such as asking an annotator for feedback on an inferred classification rule. (3) They take more complex cost schemes regarding annotations and misclassifications into account. This survey provides an overview of these AL strategies and refers to them as real-world AL. Therefore, we introduce a general real-world AL strategy as part of a learning cycle and use its elements, e.g., the query and annotator selection algorithm, to categorize about 60 real-world AL strategies. Finally, we outline possible directions for future research in the field of AL.
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
The blind application of machine learning runs the risk of amplifying biases present in data. Such a danger is facing us with word embedding, a popular framework to represent text data as vectors which has been used in many machine learning and natural language processing tasks. We show that even word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing extent. This raises concerns because their widespread use, as we describe, often tends to amplify these biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding. Second, gender neutral words are shown to be linearly separable from gender definition words in the word embedding. Using these properties, we provide a methodology for modifying an embedding to remove gender stereotypes, such as the association between between the words receptionist and female, while maintaining desired associations such as between the words queen and female. We define metrics to quantify both direct and indirect gender biases in embeddings, and develop algorithms to "debias" the embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can be used in applications without amplifying gender bias.
CoSQL: A Conversational Text-to-SQL Challenge Towards Cross-Domain Natural Language Interfaces to Databases
We present CoSQL, a corpus for building cross-domain, general-purpose database (DB) querying dialogue systems. It consists of 30k+ turns plus 10k+ annotated SQL queries, obtained from a Wizard-of-Oz (WOZ) collection of 3k dialogues querying 200 complex DBs spanning 138 domains. Each dialogue simulates a real-world DB query scenario with a crowd worker as a user exploring the DB and a SQL expert retrieving answers with SQL, clarifying ambiguous questions, or otherwise informing of unanswerable questions. When user questions are answerable by SQL, the expert describes the SQL and execution results to the user, hence maintaining a natural interaction flow. CoSQL introduces new challenges compared to existing task-oriented dialogue datasets:(1) the dialogue states are grounded in SQL, a domain-independent executable representation, instead of domain-specific slot-value pairs, and (2) because testing is done on unseen databases, success requires generalizing to new domains. CoSQL includes three tasks: SQL-grounded dialogue state tracking, response generation from query results, and user dialogue act prediction. We evaluate a set of strong baselines for each task and show that CoSQL presents significant challenges for future research. The dataset, baselines, and leaderboard will be released at https://yale-lily.github.io/cosql.
Microsoft COCO: Common Objects in Context
We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.
Models in the Loop: Aiding Crowdworkers with Generative Annotation Assistants
In Dynamic Adversarial Data Collection (DADC), human annotators are tasked with finding examples that models struggle to predict correctly. Models trained on DADC-collected training data have been shown to be more robust in adversarial and out-of-domain settings, and are considerably harder for humans to fool. However, DADC is more time-consuming than traditional data collection and thus more costly per annotated example. In this work, we examine whether we can maintain the advantages of DADC, without incurring the additional cost. To that end, we introduce Generative Annotation Assistants (GAAs), generator-in-the-loop models that provide real-time suggestions that annotators can either approve, modify, or reject entirely. We collect training datasets in twenty experimental settings and perform a detailed analysis of this approach for the task of extractive question answering (QA) for both standard and adversarial data collection. We demonstrate that GAAs provide significant efficiency benefits with over a 30% annotation speed-up, while leading to over a 5x improvement in model fooling rates. In addition, we find that using GAA-assisted training data leads to higher downstream model performance on a variety of question answering tasks over adversarial data collection.
Open-Source Large Language Models as Multilingual Crowdworkers: Synthesizing Open-Domain Dialogues in Several Languages With No Examples in Targets and No Machine Translation
The prevailing paradigm in the domain of Open-Domain Dialogue agents predominantly focuses on the English language, encompassing both models and datasets. Furthermore, the financial and temporal investments required for crowdsourcing such datasets for finetuning are substantial, particularly when multiple languages are involved. Fortunately, advancements in Large Language Models (LLMs) have unveiled a plethora of possibilities across diverse tasks. Specifically, instruction-tuning has enabled LLMs to execute tasks based on natural language instructions, occasionally surpassing the performance of human crowdworkers. Additionally, these models possess the capability to function in various languages within a single thread. Consequently, to generate new samples in different languages, we propose leveraging these capabilities to replicate the data collection process. We introduce a pipeline for generating Open-Domain Dialogue data in multiple Target Languages using LLMs, with demonstrations provided in a unique Source Language. By eschewing explicit Machine Translation in this approach, we enhance the adherence to language-specific nuances. We apply this methodology to the PersonaChat dataset. To enhance the openness of generated dialogues and mimic real life scenarii, we added the notion of speech events corresponding to the type of conversation the speakers are involved in and also that of common ground which represents the premises of a conversation.
QUEST: A Retrieval Dataset of Entity-Seeking Queries with Implicit Set Operations
Formulating selective information needs results in queries that implicitly specify set operations, such as intersection, union, and difference. For instance, one might search for "shorebirds that are not sandpipers" or "science-fiction films shot in England". To study the ability of retrieval systems to meet such information needs, we construct QUEST, a dataset of 3357 natural language queries with implicit set operations, that map to a set of entities corresponding to Wikipedia documents. The dataset challenges models to match multiple constraints mentioned in queries with corresponding evidence in documents and correctly perform various set operations. The dataset is constructed semi-automatically using Wikipedia category names. Queries are automatically composed from individual categories, then paraphrased and further validated for naturalness and fluency by crowdworkers. Crowdworkers also assess the relevance of entities based on their documents and highlight attribution of query constraints to spans of document text. We analyze several modern retrieval systems, finding that they often struggle on such queries. Queries involving negation and conjunction are particularly challenging and systems are further challenged with combinations of these operations.
Discovering Language Model Behaviors with Model-Written Evaluations
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
NewsQA: A Machine Comprehension Dataset
We present NewsQA, a challenging machine comprehension dataset of over 100,000 human-generated question-answer pairs. Crowdworkers supply questions and answers based on a set of over 10,000 news articles from CNN, with answers consisting of spans of text from the corresponding articles. We collect this dataset through a four-stage process designed to solicit exploratory questions that require reasoning. A thorough analysis confirms that NewsQA demands abilities beyond simple word matching and recognizing textual entailment. We measure human performance on the dataset and compare it to several strong neural models. The performance gap between humans and machines (0.198 in F1) indicates that significant progress can be made on NewsQA through future research. The dataset is freely available at https://datasets.maluuba.com/NewsQA.
CREAK: A Dataset for Commonsense Reasoning over Entity Knowledge
Most benchmark datasets targeting commonsense reasoning focus on everyday scenarios: physical knowledge like knowing that you could fill a cup under a waterfall [Talmor et al., 2019], social knowledge like bumping into someone is awkward [Sap et al., 2019], and other generic situations. However, there is a rich space of commonsense inferences anchored to knowledge about specific entities: for example, deciding the truthfulness of a claim "Harry Potter can teach classes on how to fly on a broomstick." Can models learn to combine entity knowledge with commonsense reasoning in this fashion? We introduce CREAK, a testbed for commonsense reasoning about entity knowledge, bridging fact-checking about entities (Harry Potter is a wizard and is skilled at riding a broomstick) with commonsense inferences (if you're good at a skill you can teach others how to do it). Our dataset consists of 13k human-authored English claims about entities that are either true or false, in addition to a small contrast set. Crowdworkers can easily come up with these statements and human performance on the dataset is high (high 90s); we argue that models should be able to blend entity knowledge and commonsense reasoning to do well here. In our experiments, we focus on the closed-book setting and observe that a baseline model finetuned on existing fact verification benchmark struggles on CREAK. Training a model on CREAK improves accuracy by a substantial margin, but still falls short of human performance. Our benchmark provides a unique probe into natural language understanding models, testing both its ability to retrieve facts (e.g., who teaches at the University of Chicago?) and unstated commonsense knowledge (e.g., butlers do not yell at guests).
Experimental Narratives: A Comparison of Human Crowdsourced Storytelling and AI Storytelling
The paper proposes a framework that combines behavioral and computational experiments employing fictional prompts as a novel tool for investigating cultural artifacts and social biases in storytelling both by humans and generative AI. The study analyzes 250 stories authored by crowdworkers in June 2019 and 80 stories generated by GPT-3.5 and GPT-4 in March 2023 by merging methods from narratology and inferential statistics. Both crowdworkers and large language models responded to identical prompts about creating and falling in love with an artificial human. The proposed experimental paradigm allows a direct comparison between human and LLM-generated storytelling. Responses to the Pygmalionesque prompts confirm the pervasive presence of the Pygmalion myth in the collective imaginary of both humans and large language models. All solicited narratives present a scientific or technological pursuit. The analysis reveals that narratives from GPT-3.5 and particularly GPT-4 are more more progressive in terms of gender roles and sexuality than those written by humans. While AI narratives can occasionally provide innovative plot twists, they offer less imaginative scenarios and rhetoric than human-authored texts. The proposed framework argues that fiction can be used as a window into human and AI-based collective imaginary and social dimensions.
The Touché23-ValueEval Dataset for Identifying Human Values behind Arguments
We present the Touch\'e23-ValueEval Dataset for Identifying Human Values behind Arguments. To investigate approaches for the automated detection of human values behind arguments, we collected 9324 arguments from 6 diverse sources, covering religious texts, political discussions, free-text arguments, newspaper editorials, and online democracy platforms. Each argument was annotated by 3 crowdworkers for 54 values. The Touch\'e23-ValueEval dataset extends the Webis-ArgValues-22. In comparison to the previous dataset, the effectiveness of a 1-Baseline decreases, but that of an out-of-the-box BERT model increases. Therefore, though the classification difficulty increased as per the label distribution, the larger dataset allows for training better models.
Help me write a poem: Instruction Tuning as a Vehicle for Collaborative Poetry Writing
Recent work in training large language models (LLMs) to follow natural language instructions has opened up exciting opportunities for natural language interface design. Building on the prior success of LLMs in the realm of computer-assisted creativity, we aim to study if LLMs can improve the quality of user-generated content through collaboration. We present CoPoet, a collaborative poetry writing system. In contrast to auto-completing a user's text, CoPoet is controlled by user instructions that specify the attributes of the desired text, such as Write a sentence about `love' or Write a sentence ending in `fly'. The core component of our system is a language model fine-tuned on a diverse collection of instructions for poetry writing. Our model is not only competitive with publicly available LLMs trained on instructions (InstructGPT), but is also capable of satisfying unseen compositional instructions. A study with 15 qualified crowdworkers shows that users successfully write poems with CoPoet on diverse topics ranging from Monarchy to Climate change. Further, the collaboratively written poems are preferred by third-party evaluators over those written without the system.
LLMs as Workers in Human-Computational Algorithms? Replicating Crowdsourcing Pipelines with LLMs
LLMs have shown promise in replicating human-like behavior in crowdsourcing tasks that were previously thought to be exclusive to human abilities. However, current efforts focus mainly on simple atomic tasks. We explore whether LLMs can replicate more complex crowdsourcing pipelines. We find that modern LLMs can simulate some of crowdworkers' abilities in these "human computation algorithms," but the level of success is variable and influenced by requesters' understanding of LLM capabilities, the specific skills required for sub-tasks, and the optimal interaction modality for performing these sub-tasks. We reflect on human and LLMs' different sensitivities to instructions, stress the importance of enabling human-facing safeguards for LLMs, and discuss the potential of training humans and LLMs with complementary skill sets. Crucially, we show that replicating crowdsourcing pipelines offers a valuable platform to investigate (1) the relative strengths of LLMs on different tasks (by cross-comparing their performances on sub-tasks) and (2) LLMs' potential in complex tasks, where they can complete part of the tasks while leaving others to humans.
Cross-Task Generalization via Natural Language Crowdsourcing Instructions
Humans (e.g., crowdworkers) have a remarkable ability in solving different tasks, by simply reading textual instructions that define them and looking at a few examples. Despite the success of the conventional supervised learning on individual datasets, such models often struggle with generalization across tasks (e.g., a question-answering system cannot solve classification tasks). A long-standing challenge in AI is to build a model that learns a new task by understanding the human-readable instructions that define it. To study this, we introduce NATURAL INSTRUCTIONS, a dataset of 61 distinct tasks, their human-authored instructions, and 193k task instances (input-output pairs). The instructions are obtained from crowdsourcing instructions used to create existing NLP datasets and mapped to a unified schema. Using this meta-dataset, we measure cross-task generalization by training models on seen tasks and measuring generalization to the remaining unseen ones. We adopt generative pre-trained language models to encode task-specific instructions along with input and generate task output. Our results indicate that models benefit from instructions when evaluated in terms of generalization to unseen tasks (19% better for models utilizing instructions). These models, however, are far behind an estimated performance upperbound indicating significant room for more progress in this direction.
Using Interactive Feedback to Improve the Accuracy and Explainability of Question Answering Systems Post-Deployment
Most research on question answering focuses on the pre-deployment stage; i.e., building an accurate model for deployment. In this paper, we ask the question: Can we improve QA systems further post-deployment based on user interactions? We focus on two kinds of improvements: 1) improving the QA system's performance itself, and 2) providing the model with the ability to explain the correctness or incorrectness of an answer. We collect a retrieval-based QA dataset, FeedbackQA, which contains interactive feedback from users. We collect this dataset by deploying a base QA system to crowdworkers who then engage with the system and provide feedback on the quality of its answers. The feedback contains both structured ratings and unstructured natural language explanations. We train a neural model with this feedback data that can generate explanations and re-score answer candidates. We show that feedback data not only improves the accuracy of the deployed QA system but also other stronger non-deployed systems. The generated explanations also help users make informed decisions about the correctness of answers. Project page: https://mcgill-nlp.github.io/feedbackqa/
IfQA: A Dataset for Open-domain Question Answering under Counterfactual Presuppositions
Although counterfactual reasoning is a fundamental aspect of intelligence, the lack of large-scale counterfactual open-domain question-answering (QA) benchmarks makes it difficult to evaluate and improve models on this ability. To address this void, we introduce the first such dataset, named IfQA, where each question is based on a counterfactual presupposition via an "if" clause. For example, if Los Angeles was on the east coast of the U.S., what would be the time difference between Los Angeles and Paris? Such questions require models to go beyond retrieving direct factual knowledge from the Web: they must identify the right information to retrieve and reason about an imagined situation that may even go against the facts built into their parameters. The IfQA dataset contains over 3,800 questions that were annotated annotated by crowdworkers on relevant Wikipedia passages. Empirical analysis reveals that the IfQA dataset is highly challenging for existing open-domain QA methods, including supervised retrieve-then-read pipeline methods (EM score 36.2), as well as recent few-shot approaches such as chain-of-thought prompting with GPT-3 (EM score 27.4). The unique challenges posed by the IfQA benchmark will push open-domain QA research on both retrieval and counterfactual reasoning fronts.
Know What You Don't Know: Unanswerable Questions for SQuAD
Extractive reading comprehension systems can often locate the correct answer to a question in a context document, but they also tend to make unreliable guesses on questions for which the correct answer is not stated in the context. Existing datasets either focus exclusively on answerable questions, or use automatically generated unanswerable questions that are easy to identify. To address these weaknesses, we present SQuAD 2.0, the latest version of the Stanford Question Answering Dataset (SQuAD). SQuAD 2.0 combines existing SQuAD data with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD 2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering. SQuAD 2.0 is a challenging natural language understanding task for existing models: a strong neural system that gets 86% F1 on SQuAD 1.1 achieves only 66% F1 on SQuAD 2.0.
Safe RLHF: Safe Reinforcement Learning from Human Feedback
With the development of large language models (LLMs), striking a balance between the performance and safety of AI systems has never been more critical. However, the inherent tension between the objectives of helpfulness and harmlessness presents a significant challenge during LLM training. To address this issue, we propose Safe Reinforcement Learning from Human Feedback (Safe RLHF), a novel algorithm for human value alignment. Safe RLHF explicitly decouples human preferences regarding helpfulness and harmlessness, effectively avoiding the crowdworkers' confusion about the tension and allowing us to train separate reward and cost models. We formalize the safety concern of LLMs as an optimization task of maximizing the reward function while satisfying specified cost constraints. Leveraging the Lagrangian method to solve this constrained problem, Safe RLHF dynamically adjusts the balance between the two objectives during fine-tuning. Through a three-round fine-tuning using Safe RLHF, we demonstrate a superior ability to mitigate harmful responses while enhancing model performance compared to existing value-aligned algorithms. Experimentally, we fine-tuned the Alpaca-7B using Safe RLHF and aligned it with collected human preferences, significantly improving its helpfulness and harmlessness according to human evaluations.
AlpacaFarm: A Simulation Framework for Methods that Learn from Human Feedback
Large language models (LLMs) such as ChatGPT have seen widespread adoption due to their ability to follow user instructions well. Developing these LLMs involves a complex yet poorly understood workflow requiring training with human feedback. Replicating and understanding this instruction-following process faces three major challenges: the high cost of data collection, the lack of trustworthy evaluation, and the absence of reference method implementations. We address these challenges with AlpacaFarm, a simulator that enables research and development for learning from feedback at a low cost. First, we design LLM prompts to simulate human feedback that are 45x cheaper than crowdworkers and display high agreement with humans. Second, we propose an automatic evaluation and validate it against human instructions obtained on real-world interactions. Third, we contribute reference implementations for several methods (PPO, best-of-n, expert iteration, and more) that learn from pairwise feedback. Finally, as an end-to-end validation of AlpacaFarm, we train and evaluate eleven models on 10k pairs of real human feedback and show that rankings of models trained in AlpacaFarm match rankings of models trained on human data. As a demonstration of the research possible in AlpacaFarm, we find that methods that use a reward model can substantially improve over supervised fine-tuning and that our reference PPO implementation leads to a +10% improvement in win-rate against Davinci003. We release all components of AlpacaFarm at https://github.com/tatsu-lab/alpaca_farm.
Can Large Language Models Transform Computational Social Science?
Large Language Models (LLMs) like ChatGPT are capable of successfully performing many language processing tasks zero-shot (without the need for training data). If this capacity also applies to the coding of social phenomena like persuasiveness and political ideology, then LLMs could effectively transform Computational Social Science (CSS). This work provides a road map for using LLMs as CSS tools. Towards this end, we contribute a set of prompting best practices and an extensive evaluation pipeline to measure the zero-shot performance of 13 language models on 24 representative CSS benchmarks. On taxonomic labeling tasks (classification), LLMs fail to outperform the best fine-tuned models but still achieve fair levels of agreement with humans. On free-form coding tasks (generation), LLMs produce explanations that often exceed the quality of crowdworkers' gold references. We conclude that today's LLMs can radically augment the CSS research pipeline in two ways: (1) serving as zero-shot data annotators on human annotation teams, and (2) bootstrapping challenging creative generation tasks (e.g., explaining the hidden meaning behind text). In summary, LLMs can significantly reduce costs and increase efficiency of social science analysis in partnership with humans.
End-to-end Training for Recommendation with Language-based User Profiles
Many online platforms maintain user profiles for personalization. Unfortunately, these profiles are typically not interpretable or easily modifiable by the user. To remedy this shortcoming, we explore natural language-based user profiles, as they promise enhanced transparency and scrutability of recommender systems. While existing work has shown that language-based profiles from standard LLMs can be effective, such generalist LLMs are unlikely to be optimal for this task. In this paper, we introduce LangPTune, the first end-to-end learning method for training LLMs to produce language-based user profiles that optimize recommendation effectiveness. Through comprehensive evaluations of LangPTune across various training configurations and benchmarks, we demonstrate that our approach significantly outperforms existing profile-based methods. In addition, it approaches performance levels comparable to state-of-the-art, less transparent recommender systems, providing a robust and interpretable alternative to conventional systems. Finally, we validate the relative interpretability of these language-based user profiles through user studies involving crowdworkers and GPT-4-based evaluations. Implementation of LangPTune can be found at https://github.com/ZhaolinGao/LangPTune.
The ALCHEmist: Automated Labeling 500x CHEaper Than LLM Data Annotators
Large pretrained models can be used as annotators, helping replace or augment crowdworkers and enabling distilling generalist models into smaller specialist models. Unfortunately, this comes at a cost: employing top-of-the-line models often requires paying thousands of dollars for API calls, while the resulting datasets are static and challenging to audit. To address these challenges, we propose a simple alternative: rather than directly querying labels from pretrained models, we task models to generate programs that can produce labels. These programs can be stored and applied locally, re-used and extended, and cost orders of magnitude less. Our system, Alchemist, obtains comparable to or better performance than large language model-based annotation in a range of tasks for a fraction of the cost: on average, improvements amount to a 12.9% enhancement while the total labeling costs across all datasets are reduced by a factor of approximately 500x.
ArabicaQA: A Comprehensive Dataset for Arabic Question Answering
In this paper, we address the significant gap in Arabic natural language processing (NLP) resources by introducing ArabicaQA, the first large-scale dataset for machine reading comprehension and open-domain question answering in Arabic. This comprehensive dataset, consisting of 89,095 answerable and 3,701 unanswerable questions created by crowdworkers to look similar to answerable ones, along with additional labels of open-domain questions marks a crucial advancement in Arabic NLP resources. We also present AraDPR, the first dense passage retrieval model trained on the Arabic Wikipedia corpus, specifically designed to tackle the unique challenges of Arabic text retrieval. Furthermore, our study includes extensive benchmarking of large language models (LLMs) for Arabic question answering, critically evaluating their performance in the Arabic language context. In conclusion, ArabicaQA, AraDPR, and the benchmarking of LLMs in Arabic question answering offer significant advancements in the field of Arabic NLP. The dataset and code are publicly accessible for further research https://github.com/DataScienceUIBK/ArabicaQA.
Tur[k]ingBench: A Challenge Benchmark for Web Agents
Can advanced multi-modal models effectively tackle complex web-based tasks? Such tasks are often found on crowdsourcing platforms, where crowdworkers engage in challenging micro-tasks within web-based environments. Building on this idea, we present TurkingBench, a benchmark consisting of tasks presented as web pages with textual instructions and multi-modal contexts. Unlike previous approaches that rely on artificially synthesized web pages, our benchmark uses natural HTML pages originally designed for crowdsourcing workers to perform various annotation tasks. Each task's HTML instructions are instantiated with different values derived from crowdsourcing tasks, creating diverse instances. This benchmark includes 32.2K instances spread across 158 tasks. To support the evaluation of TurkingBench, we have developed a framework that links chatbot responses to actions on web pages (e.g., modifying a text box, selecting a radio button). We assess the performance of cutting-edge private and open-source models, including language-only and vision-language models (such as GPT4 and InternVL), on this benchmark. Our results show that while these models outperform random chance, there is still significant room for improvement. We hope that this benchmark will drive progress in the evaluation and development of web-based agents.
CONDAQA: A Contrastive Reading Comprehension Dataset for Reasoning about Negation
The full power of human language-based communication cannot be realized without negation. All human languages have some form of negation. Despite this, negation remains a challenging phenomenon for current natural language understanding systems. To facilitate the future development of models that can process negation effectively, we present CONDAQA, the first English reading comprehension dataset which requires reasoning about the implications of negated statements in paragraphs. We collect paragraphs with diverse negation cues, then have crowdworkers ask questions about the implications of the negated statement in the passage. We also have workers make three kinds of edits to the passage -- paraphrasing the negated statement, changing the scope of the negation, and reversing the negation -- resulting in clusters of question-answer pairs that are difficult for models to answer with spurious shortcuts. CONDAQA features 14,182 question-answer pairs with over 200 unique negation cues and is challenging for current state-of-the-art models. The best performing model on CONDAQA (UnifiedQA-v2-3b) achieves only 42% on our consistency metric, well below human performance which is 81%. We release our dataset, along with fully-finetuned, few-shot, and zero-shot evaluations, to facilitate the development of future NLP methods that work on negated language.
WANLI: Worker and AI Collaboration for Natural Language Inference Dataset Creation
A recurring challenge of crowdsourcing NLP datasets at scale is that human writers often rely on repetitive patterns when crafting examples, leading to a lack of linguistic diversity. We introduce a novel approach for dataset creation based on worker and AI collaboration, which brings together the generative strength of language models and the evaluative strength of humans. Starting with an existing dataset, MultiNLI for natural language inference (NLI), our approach uses dataset cartography to automatically identify examples that demonstrate challenging reasoning patterns, and instructs GPT-3 to compose new examples with similar patterns. Machine generated examples are then automatically filtered, and finally revised and labeled by human crowdworkers. The resulting dataset, WANLI, consists of 107,885 NLI examples and presents unique empirical strengths over existing NLI datasets. Remarkably, training a model on WANLI improves performance on eight out-of-domain test sets we consider, including by 11% on HANS and 9% on Adversarial NLI, compared to training on the 4x larger MultiNLI. Moreover, it continues to be more effective than MultiNLI augmented with other NLI datasets. Our results demonstrate the promise of leveraging natural language generation techniques and re-imagining the role of humans in the dataset creation process.
DynaSent: A Dynamic Benchmark for Sentiment Analysis
We introduce DynaSent ('Dynamic Sentiment'), a new English-language benchmark task for ternary (positive/negative/neutral) sentiment analysis. DynaSent combines naturally occurring sentences with sentences created using the open-source Dynabench Platform, which facilities human-and-model-in-the-loop dataset creation. DynaSent has a total of 121,634 sentences, each validated by five crowdworkers, and its development and test splits are designed to produce chance performance for even the best models we have been able to develop; when future models solve this task, we will use them to create DynaSent version 2, continuing the dynamic evolution of this benchmark. Here, we report on the dataset creation effort, focusing on the steps we took to increase quality and reduce artifacts. We also present evidence that DynaSent's Neutral category is more coherent than the comparable category in other benchmarks, and we motivate training models from scratch for each round over successive fine-tuning.
FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation
We present a Few-Shot Relation Classification Dataset (FewRel), consisting of 70, 000 sentences on 100 relations derived from Wikipedia and annotated by crowdworkers. The relation of each sentence is first recognized by distant supervision methods, and then filtered by crowdworkers. We adapt the most recent state-of-the-art few-shot learning methods for relation classification and conduct a thorough evaluation of these methods. Empirical results show that even the most competitive few-shot learning models struggle on this task, especially as compared with humans. We also show that a range of different reasoning skills are needed to solve our task. These results indicate that few-shot relation classification remains an open problem and still requires further research. Our detailed analysis points multiple directions for future research. All details and resources about the dataset and baselines are released on http://zhuhao.me/fewrel.
RobotArena $\infty$: Scalable Robot Benchmarking via Real-to-Sim Translation
The pursuit of robot generalists - instructable agents capable of performing diverse tasks across diverse environments - demands rigorous and scalable evaluation. Yet real-world testing of robot policies remains fundamentally constrained: it is labor-intensive, slow, unsafe at scale, and difficult to reproduce. Existing simulation benchmarks are similarly limited, as they train and test policies within the same synthetic domains and cannot assess models trained from real-world demonstrations or alternative simulation environments. As policies expand in scope and complexity, these barriers only intensify, since defining "success" in robotics often hinges on nuanced human judgments of execution quality. In this paper, we introduce a new benchmarking framework that overcomes these challenges by shifting VLA evaluation into large-scale simulated environments augmented with online human feedback. Leveraging advances in vision-language models, 2D-to-3D generative modeling, and differentiable rendering, our approach automatically converts video demonstrations from widely used robot datasets into simulated counterparts. Within these digital twins, we assess VLA policies using both automated VLM-guided scoring and scalable human preference judgments collected from crowdworkers, transforming human involvement from tedious scene setup, resetting, and safety supervision into lightweight preference comparisons. To measure robustness, we systematically perturb simulated environments along multiple axes, such as textures and object placements, stress-testing policy generalization under controlled variation. The result is a continuously evolving, reproducible, and scalable benchmark for real-world trained robot manipulation policies, addressing a critical missing capability in today's robotics landscape.
SQuAD: 100,000+ Questions for Machine Comprehension of Text
We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at https://stanford-qa.com
GPTs Are Multilingual Annotators for Sequence Generation Tasks
Data annotation is an essential step for constructing new datasets. However, the conventional approach of data annotation through crowdsourcing is both time-consuming and expensive. In addition, the complexity of this process increases when dealing with low-resource languages owing to the difference in the language pool of crowdworkers. To address these issues, this study proposes an autonomous annotation method by utilizing large language models, which have been recently demonstrated to exhibit remarkable performance. Through our experiments, we demonstrate that the proposed method is not just cost-efficient but also applicable for low-resource language annotation. Additionally, we constructed an image captioning dataset using our approach and are committed to open this dataset for future study. We have opened our source code for further study and reproducibility.
CoVERT: A Corpus of Fact-checked Biomedical COVID-19 Tweets
Over the course of the COVID-19 pandemic, large volumes of biomedical information concerning this new disease have been published on social media. Some of this information can pose a real danger to people's health, particularly when false information is shared, for instance recommendations on how to treat diseases without professional medical advice. Therefore, automatic fact-checking resources and systems developed specifically for the medical domain are crucial. While existing fact-checking resources cover COVID-19-related information in news or quantify the amount of misinformation in tweets, there is no dataset providing fact-checked COVID-19-related Twitter posts with detailed annotations for biomedical entities, relations and relevant evidence. We contribute CoVERT, a fact-checked corpus of tweets with a focus on the domain of biomedicine and COVID-19-related (mis)information. The corpus consists of 300 tweets, each annotated with medical named entities and relations. We employ a novel crowdsourcing methodology to annotate all tweets with fact-checking labels and supporting evidence, which crowdworkers search for online. This methodology results in moderate inter-annotator agreement. Furthermore, we use the retrieved evidence extracts as part of a fact-checking pipeline, finding that the real-world evidence is more useful than the knowledge indirectly available in pretrained language models.
Improving Question Answering Model Robustness with Synthetic Adversarial Data Generation
Despite recent progress, state-of-the-art question answering models remain vulnerable to a variety of adversarial attacks. While dynamic adversarial data collection, in which a human annotator tries to write examples that fool a model-in-the-loop, can improve model robustness, this process is expensive which limits the scale of the collected data. In this work, we are the first to use synthetic adversarial data generation to make question answering models more robust to human adversaries. We develop a data generation pipeline that selects source passages, identifies candidate answers, generates questions, then finally filters or re-labels them to improve quality. Using this approach, we amplify a smaller human-written adversarial dataset to a much larger set of synthetic question-answer pairs. By incorporating our synthetic data, we improve the state-of-the-art on the AdversarialQA dataset by 3.7F1 and improve model generalisation on nine of the twelve MRQA datasets. We further conduct a novel human-in-the-loop evaluation to show that our models are considerably more robust to new human-written adversarial examples: crowdworkers can fool our model only 8.8% of the time on average, compared to 17.6% for a model trained without synthetic data.
Quoref: A Reading Comprehension Dataset with Questions Requiring Coreferential Reasoning
Machine comprehension of texts longer than a single sentence often requires coreference resolution. However, most current reading comprehension benchmarks do not contain complex coreferential phenomena and hence fail to evaluate the ability of models to resolve coreference. We present a new crowdsourced dataset containing more than 24K span-selection questions that require resolving coreference among entities in over 4.7K English paragraphs from Wikipedia. Obtaining questions focused on such phenomena is challenging, because it is hard to avoid lexical cues that shortcut complex reasoning. We deal with this issue by using a strong baseline model as an adversary in the crowdsourcing loop, which helps crowdworkers avoid writing questions with exploitable surface cues. We show that state-of-the-art reading comprehension models perform significantly worse than humans on this benchmark---the best model performance is 70.5 F1, while the estimated human performance is 93.4 F1.
TGIF: A New Dataset and Benchmark on Animated GIF Description
With the recent popularity of animated GIFs on social media, there is need for ways to index them with rich metadata. To advance research on animated GIF understanding, we collected a new dataset, Tumblr GIF (TGIF), with 100K animated GIFs from Tumblr and 120K natural language descriptions obtained via crowdsourcing. The motivation for this work is to develop a testbed for image sequence description systems, where the task is to generate natural language descriptions for animated GIFs or video clips. To ensure a high quality dataset, we developed a series of novel quality controls to validate free-form text input from crowdworkers. We show that there is unambiguous association between visual content and natural language descriptions in our dataset, making it an ideal benchmark for the visual content captioning task. We perform extensive statistical analyses to compare our dataset to existing image and video description datasets. Next, we provide baseline results on the animated GIF description task, using three representative techniques: nearest neighbor, statistical machine translation, and recurrent neural networks. Finally, we show that models fine-tuned from our animated GIF description dataset can be helpful for automatic movie description.
Does Putting a Linguist in the Loop Improve NLU Data Collection?
Many crowdsourced NLP datasets contain systematic gaps and biases that are identified only after data collection is complete. Identifying these issues from early data samples during crowdsourcing should make mitigation more efficient, especially when done iteratively. We take natural language inference as a test case and ask whether it is beneficial to put a linguist `in the loop' during data collection to dynamically identify and address gaps in the data by introducing novel constraints on the task. We directly compare three data collection protocols: (i) a baseline protocol, (ii) a linguist-in-the-loop intervention with iteratively-updated constraints on the task, and (iii) an extension of linguist-in-the-loop that provides direct interaction between linguists and crowdworkers via a chatroom. The datasets collected with linguist involvement are more reliably challenging than baseline, without loss of quality. But we see no evidence that using this data in training leads to better out-of-domain model performance, and the addition of a chat platform has no measurable effect on the resulting dataset. We suggest integrating expert analysis during data collection so that the expert can dynamically address gaps and biases in the dataset.
PHALM: Building a Knowledge Graph from Scratch by Prompting Humans and a Language Model
Despite the remarkable progress in natural language understanding with pretrained Transformers, neural language models often do not handle commonsense knowledge well. Toward commonsense-aware models, there have been attempts to obtain knowledge, ranging from automatic acquisition to crowdsourcing. However, it is difficult to obtain a high-quality knowledge base at a low cost, especially from scratch. In this paper, we propose PHALM, a method of building a knowledge graph from scratch, by prompting both crowdworkers and a large language model (LLM). We used this method to build a Japanese event knowledge graph and trained Japanese commonsense generation models. Experimental results revealed the acceptability of the built graph and inferences generated by the trained models. We also report the difference in prompting humans and an LLM. Our code, data, and models are available at github.com/nlp-waseda/comet-atomic-ja.
From Pixels to UI Actions: Learning to Follow Instructions via Graphical User Interfaces
Much of the previous work towards digital agents for graphical user interfaces (GUIs) has relied on text-based representations (derived from HTML or other structured data sources), which are not always readily available. These input representations have been often coupled with custom, task-specific action spaces. This paper focuses on creating agents that interact with the digital world using the same conceptual interface that humans commonly use -- via pixel-based screenshots and a generic action space corresponding to keyboard and mouse actions. Building upon recent progress in pixel-based pretraining, we show, for the first time, that it is possible for such agents to outperform human crowdworkers on the MiniWob++ benchmark of GUI-based instruction following tasks.
Dynatask: A Framework for Creating Dynamic AI Benchmark Tasks
We introduce Dynatask: an open source system for setting up custom NLP tasks that aims to greatly lower the technical knowledge and effort required for hosting and evaluating state-of-the-art NLP models, as well as for conducting model in the loop data collection with crowdworkers. Dynatask is integrated with Dynabench, a research platform for rethinking benchmarking in AI that facilitates human and model in the loop data collection and evaluation. To create a task, users only need to write a short task configuration file from which the relevant web interfaces and model hosting infrastructure are automatically generated. The system is available at https://dynabench.org/ and the full library can be found at https://github.com/facebookresearch/dynabench.
Reframing Human-AI Collaboration for Generating Free-Text Explanations
Large language models are increasingly capable of generating fluent-appearing text with relatively little task-specific supervision. But can these models accurately explain classification decisions? We consider the task of generating free-text explanations using human-written examples in a few-shot manner. We find that (1) authoring higher quality prompts results in higher quality generations; and (2) surprisingly, in a head-to-head comparison, crowdworkers often prefer explanations generated by GPT-3 to crowdsourced explanations in existing datasets. Our human studies also show, however, that while models often produce factual, grammatical, and sufficient explanations, they have room to improve along axes such as providing novel information and supporting the label. We create a pipeline that combines GPT-3 with a supervised filter that incorporates binary acceptability judgments from humans in the loop. Despite the intrinsic subjectivity of acceptability judgments, we demonstrate that acceptability is partially correlated with various fine-grained attributes of explanations. Our approach is able to consistently filter GPT-3-generated explanations deemed acceptable by humans.
AutoQA: From Databases To QA Semantic Parsers With Only Synthetic Training Data
We propose AutoQA, a methodology and toolkit to generate semantic parsers that answer questions on databases, with no manual effort. Given a database schema and its data, AutoQA automatically generates a large set of high-quality questions for training that covers different database operations. It uses automatic paraphrasing combined with template-based parsing to find alternative expressions of an attribute in different parts of speech. It also uses a novel filtered auto-paraphraser to generate correct paraphrases of entire sentences. We apply AutoQA to the Schema2QA dataset and obtain an average logical form accuracy of 62.9% when tested on natural questions, which is only 6.4% lower than a model trained with expert natural language annotations and paraphrase data collected from crowdworkers. To demonstrate the generality of AutoQA, we also apply it to the Overnight dataset. AutoQA achieves 69.8% answer accuracy, 16.4% higher than the state-of-the-art zero-shot models and only 5.2% lower than the same model trained with human data.
Separated by an Un-common Language: Towards Judgment Language Informed Vector Space Modeling
A common evaluation practice in the vector space models (VSMs) literature is to measure the models' ability to predict human judgments about lexical semantic relations between word pairs. Most existing evaluation sets, however, consist of scores collected for English word pairs only, ignoring the potential impact of the judgment language in which word pairs are presented on the human scores. In this paper we translate two prominent evaluation sets, wordsim353 (association) and SimLex999 (similarity), from English to Italian, German and Russian and collect scores for each dataset from crowdworkers fluent in its language. Our analysis reveals that human judgments are strongly impacted by the judgment language. Moreover, we show that the predictions of monolingual VSMs do not necessarily best correlate with human judgments made with the language used for model training, suggesting that models and humans are affected differently by the language they use when making semantic judgments. Finally, we show that in a large number of setups, multilingual VSM combination results in improved correlations with human judgments, suggesting that multilingualism may partially compensate for the judgment language effect on human judgments.
