new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 5

Free Lunch: Robust Cross-Lingual Transfer via Model Checkpoint Averaging

Massively multilingual language models have displayed strong performance in zero-shot (ZS-XLT) and few-shot (FS-XLT) cross-lingual transfer setups, where models fine-tuned on task data in a source language are transferred without any or with only a few annotated instances to the target language(s). However, current work typically overestimates model performance as fine-tuned models are frequently evaluated at model checkpoints that generalize best to validation instances in the target languages. This effectively violates the main assumptions of "true" ZS-XLT and FS-XLT. Such XLT setups require robust methods that do not depend on labeled target language data for validation and model selection. In this work, aiming to improve the robustness of "true" ZS-XLT and FS-XLT, we propose a simple and effective method that averages different checkpoints (i.e., model snapshots) during task fine-tuning. We conduct exhaustive ZS-XLT and FS-XLT experiments across higher-level semantic tasks (NLI, extractive QA) and lower-level token classification tasks (NER, POS). The results indicate that averaging model checkpoints yields systematic and consistent performance gains across diverse target languages in all tasks. Importantly, it simultaneously substantially desensitizes XLT to varying hyperparameter choices in the absence of target language validation. We also show that checkpoint averaging benefits performance when further combined with run averaging (i.e., averaging the parameters of models fine-tuned over independent runs).

  • 3 authors
·
May 26, 2023

Cross-Lingual Transfer from Related Languages: Treating Low-Resource Maltese as Multilingual Code-Switching

Although multilingual language models exhibit impressive cross-lingual transfer capabilities on unseen languages, the performance on downstream tasks is impacted when there is a script disparity with the languages used in the multilingual model's pre-training data. Using transliteration offers a straightforward yet effective means to align the script of a resource-rich language with a target language, thereby enhancing cross-lingual transfer capabilities. However, for mixed languages, this approach is suboptimal, since only a subset of the language benefits from the cross-lingual transfer while the remainder is impeded. In this work, we focus on Maltese, a Semitic language, with substantial influences from Arabic, Italian, and English, and notably written in Latin script. We present a novel dataset annotated with word-level etymology. We use this dataset to train a classifier that enables us to make informed decisions regarding the appropriate processing of each token in the Maltese language. We contrast indiscriminate transliteration or translation to mixing processing pipelines that only transliterate words of Arabic origin, thereby resulting in text with a mixture of scripts. We fine-tune the processed data on four downstream tasks and show that conditional transliteration based on word etymology yields the best results, surpassing fine-tuning with raw Maltese or Maltese processed with non-selective pipelines.

  • 5 authors
·
Jan 30, 2024

Polish Medical Exams: A new dataset for cross-lingual medical knowledge transfer assessment

Large Language Models (LLMs) have demonstrated significant potential in handling specialized tasks, including medical problem-solving. However, most studies predominantly focus on English-language contexts. This study introduces a novel benchmark dataset based on Polish medical licensing and specialization exams (LEK, LDEK, PES) taken by medical doctor candidates and practicing doctors pursuing specialization. The dataset was web-scraped from publicly available resources provided by the Medical Examination Center and the Chief Medical Chamber. It comprises over 24,000 exam questions, including a subset of parallel Polish-English corpora, where the English portion was professionally translated by the examination center for foreign candidates. By creating a structured benchmark from these existing exam questions, we systematically evaluate state-of-the-art LLMs, including general-purpose, domain-specific, and Polish-specific models, and compare their performance against human medical students. Our analysis reveals that while models like GPT-4o achieve near-human performance, significant challenges persist in cross-lingual translation and domain-specific understanding. These findings underscore disparities in model performance across languages and medical specialties, highlighting the limitations and ethical considerations of deploying LLMs in clinical practice.

  • 5 authors
·
Nov 30, 2024

Cross-Lingual Stability of LLM Judges Under Controlled Generation: Evidence from Finno-Ugric Languages

Cross-lingual evaluation of large language models (LLMs) typically conflates two sources of variance: genuine model performance differences and measurement instability. We investigate evaluation reliability by holding generation conditions constant while varying target language. Using synthetic customer-support dialogues generated with identical parameters across Estonian, Finnish, and Hungarian, we test whether automatic metrics and LLM-as-a-judge scoring produce stable model rankings across these morphologically rich, related Finno-Ugric languages. With a small set of Estonian native speaker annotations as a reference point, we find systematic ranking instabilities: surface-level metrics (lexical diversity, surface and semantic similarity) maintain cross-language stability, but pragmatic judgments (coherence, instruction-following) exhibit rank inversions and near-zero correlations. Because generation is controlled, these inconsistencies reflect how judge scoring behaves differently across languages rather than true model differences. This controlled design provides a diagnostic probe: evaluation methods that fail to maintain stability under identical generation conditions signal transfer failure before deployment. Our findings suggest that zero-shot judge transfer is unreliable for discourse-level assessment in morphologically rich languages, motivating language-specific calibration against targeted human baselines. We release our controlled generation protocol, synthetic data, and evaluation framework to enable replication across language families at https://github.com/isaac-chung/cross-lingual-stability-judges.

  • 2 authors
·
Feb 2 2

MEXA: Multilingual Evaluation of English-Centric LLMs via Cross-Lingual Alignment

English-centric large language models (LLMs) often show strong multilingual capabilities. However, the multilingual performance of these models remains unclear and is not thoroughly evaluated for many languages. Most benchmarks for multilinguality focus on classic NLP tasks, or cover a minimal number of languages. We introduce MEXA, a method for assessing the multilingual capabilities of pre-trained English-centric LLMs using parallel sentences, which are available for more languages than existing downstream tasks. MEXA leverages the fact that English-centric LLMs use English as a kind of pivot language in their intermediate layers. It computes the alignment between English and non-English languages using parallel sentences to evaluate the transfer of language understanding from English to other languages. This alignment can be used to estimate model performance in other languages. We conduct studies using various parallel datasets (FLORES-200 and Bible), models (Llama family, Gemma family, Mistral, and OLMo), and established downstream tasks (Belebele, m-MMLU, and m-ARC). We explore different methods to compute embeddings in decoder-only models. Our results show that MEXA, in its default settings, achieves a statistically significant average Pearson correlation of 0.90 with three established downstream tasks across nine models and two parallel datasets. This suggests that MEXA is a reliable method for estimating the multilingual capabilities of English-centric LLMs, providing a clearer understanding of their multilingual potential and the inner workings of LLMs. Leaderboard: https://huggingface.co/spaces/cis-lmu/Mexa, Code: https://github.com/cisnlp/Mexa.

  • 6 authors
·
Oct 8, 2024 2

ProKD: An Unsupervised Prototypical Knowledge Distillation Network for Zero-Resource Cross-Lingual Named Entity Recognition

For named entity recognition (NER) in zero-resource languages, utilizing knowledge distillation methods to transfer language-independent knowledge from the rich-resource source languages to zero-resource languages is an effective means. Typically, these approaches adopt a teacher-student architecture, where the teacher network is trained in the source language, and the student network seeks to learn knowledge from the teacher network and is expected to perform well in the target language. Despite the impressive performance achieved by these methods, we argue that they have two limitations. Firstly, the teacher network fails to effectively learn language-independent knowledge shared across languages due to the differences in the feature distribution between the source and target languages. Secondly, the student network acquires all of its knowledge from the teacher network and ignores the learning of target language-specific knowledge. Undesirably, these limitations would hinder the model's performance in the target language. This paper proposes an unsupervised prototype knowledge distillation network (ProKD) to address these issues. Specifically, ProKD presents a contrastive learning-based prototype alignment method to achieve class feature alignment by adjusting the distance among prototypes in the source and target languages, boosting the teacher network's capacity to acquire language-independent knowledge. In addition, ProKD introduces a prototypical self-training method to learn the intrinsic structure of the language by retraining the student network on the target data using samples' distance information from prototypes, thereby enhancing the student network's ability to acquire language-specific knowledge. Extensive experiments on three benchmark cross-lingual NER datasets demonstrate the effectiveness of our approach.

  • 5 authors
·
Jan 20, 2023

Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks

We introduce llama-embed-nemotron-8b, an open-weights text embedding model that achieves state-of-the-art performance on the Multilingual Massive Text Embedding Benchmark (MMTEB) leaderboard as of October 21, 2025. While recent models show strong performance, their training data or methodologies are often not fully disclosed. We aim to address this by developing a fully open-source model, publicly releasing its weights and detailed ablation studies, and planning to share the curated training datasets. Our model demonstrates superior performance across all major embedding tasks -- including retrieval, classification and semantic textual similarity (STS) -- and excels in challenging multilingual scenarios, such as low-resource languages and cross-lingual setups. This state-of-the-art performance is driven by a novel data mix of 16.1 million query-document pairs, split between 7.7 million samples from public datasets and 8.4 million synthetically generated examples from various open-weight LLMs. One of our key contributions is a detailed ablation study analyzing core design choices, including a comparison of contrastive loss implementations, an evaluation of synthetic data generation (SDG) strategies, and the impact of model merging. The llama-embed-nemotron-8b is an instruction-aware model, supporting user-defined instructions to enhance performance for specific use-cases. This combination of top-tier performance, broad applicability, and user-driven flexibility enables it to serve as a universal text embedding solution.

nvidia NVIDIA
·
Nov 10, 2025 2

Efficient Language Model Training through Cross-Lingual and Progressive Transfer Learning

Most Transformer language models are primarily pretrained on English text, limiting their use for other languages. As the model sizes grow, the performance gap between English and other languages with fewer compute and data resources increases even further. Consequently, more resource-efficient training methods are needed to bridge the gap for languages with fewer resources available. To address this problem, we introduce a cross-lingual and progressive transfer learning approach, called CLP-Transfer, that transfers models from a source language, for which pretrained models are publicly available, like English, to a new target language. As opposed to prior work, which focused on the cross-lingual transfer between two languages, we extend the transfer to the model size. Given a pretrained model in a source language, we aim for a same-sized model in a target language. Instead of training a model from scratch, we exploit a smaller model that is in the target language but requires much fewer resources. Both small and source models are then used to initialize the token embeddings of the larger model based on the overlapping vocabulary of the source and target language. All remaining weights are reused from the model in the source language. This approach outperforms the sole cross-lingual transfer and can save up to 80% of the training steps compared to the random initialization.

  • 2 authors
·
Jan 23, 2023

Self-Distillation for Model Stacking Unlocks Cross-Lingual NLU in 200+ Languages

LLMs have become a go-to solution not just for text generation, but also for natural language understanding (NLU) tasks. Acquiring extensive knowledge through language modeling on web-scale corpora, they excel on English NLU, yet struggle to extend their NLU capabilities to underrepresented languages. In contrast, machine translation models (MT) produce excellent multilingual representations, resulting in strong translation performance even for low-resource languages. MT encoders, however, lack the knowledge necessary for comprehensive NLU that LLMs obtain through language modeling training on immense corpora. In this work, we get the best both worlds by integrating MT encoders directly into LLM backbones via sample-efficient self-distillation. The resulting MT-LLMs preserve the inherent multilingual representational alignment from the MT encoder, allowing lower-resource languages to tap into the rich knowledge embedded in English-centric LLMs. Merging the MT encoder and LLM in a single model, we mitigate the propagation of translation errors and inference overhead of MT decoding inherent to discrete translation-based cross-lingual transfer (e.g., translate-test). Evaluation spanning three prominent NLU tasks and 127 predominantly low-resource languages renders MT-LLMs highly effective in cross-lingual transfer. MT-LLMs substantially and consistently outperform translate-test based on the same MT model, showing that we truly unlock multilingual language understanding for LLMs.

  • 4 authors
·
Jun 18, 2024

Cross-lingual Transfer for Automatic Question Generation by Learning Interrogative Structures in Target Languages

Automatic question generation (QG) serves a wide range of purposes, such as augmenting question-answering (QA) corpora, enhancing chatbot systems, and developing educational materials. Despite its importance, most existing datasets predominantly focus on English, resulting in a considerable gap in data availability for other languages. Cross-lingual transfer for QG (XLT-QG) addresses this limitation by allowing models trained on high-resource language datasets to generate questions in low-resource languages. In this paper, we propose a simple and efficient XLT-QG method that operates without the need for monolingual, parallel, or labeled data in the target language, utilizing a small language model. Our model, trained solely on English QA datasets, learns interrogative structures from a limited set of question exemplars, which are then applied to generate questions in the target language. Experimental results show that our method outperforms several XLT-QG baselines and achieves performance comparable to GPT-3.5-turbo across different languages. Additionally, the synthetic data generated by our model proves beneficial for training multilingual QA models. With significantly fewer parameters than large language models and without requiring additional training for target languages, our approach offers an effective solution for QG and QA tasks across various languages.

  • 3 authors
·
Oct 4, 2024

MIND Your Language: A Multilingual Dataset for Cross-lingual News Recommendation

Digital news platforms use news recommenders as the main instrument to cater to the individual information needs of readers. Despite an increasingly language-diverse online community, in which many Internet users consume news in multiple languages, the majority of news recommendation focuses on major, resource-rich languages, and English in particular. Moreover, nearly all news recommendation efforts assume monolingual news consumption, whereas more and more users tend to consume information in at least two languages. Accordingly, the existing body of work on news recommendation suffers from a lack of publicly available multilingual benchmarks that would catalyze development of news recommenders effective in multilingual settings and for low-resource languages. Aiming to fill this gap, we introduce xMIND, an open, multilingual news recommendation dataset derived from the English MIND dataset using machine translation, covering a set of 14 linguistically and geographically diverse languages, with digital footprints of varying sizes. Using xMIND, we systematically benchmark several state-of-the-art content-based neural news recommenders (NNRs) in both zero-shot (ZS-XLT) and few-shot (FS-XLT) cross-lingual transfer scenarios, considering both monolingual and bilingual news consumption patterns. Our findings reveal that (i) current NNRs, even when based on a multilingual language model, suffer from substantial performance losses under ZS-XLT and that (ii) inclusion of target-language data in FS-XLT training has limited benefits, particularly when combined with a bilingual news consumption. Our findings thus warrant a broader research effort in multilingual and cross-lingual news recommendation. The xMIND dataset is available at https://github.com/andreeaiana/xMIND.

  • 3 authors
·
Mar 26, 2024

The Role of Language Imbalance in Cross-lingual Generalisation: Insights from Cloned Language Experiments

Multilinguality is crucial for extending recent advancements in language modelling to diverse linguistic communities. To maintain high performance while representing multiple languages, multilingual models ideally align representations, allowing what is learned in one language to generalise to others. Prior research has emphasised the importance of parallel data and shared vocabulary elements as key factors for such alignment. In this study, we investigate an unintuitive novel driver of cross-lingual generalisation: language imbalance. In controlled experiments on perfectly equivalent cloned languages, we observe that the existence of a predominant language during training boosts the performance of less frequent languages and leads to stronger alignment of model representations across languages. Furthermore, we find that this trend is amplified with scale: with large enough models or long enough training, we observe that bilingual training data with a 90/10 language split yields better performance on both languages than a balanced 50/50 split. Building on these insights, we design training schemes that can improve performance in all cloned languages, even without altering the training data. As we extend our analysis to real languages, we find that infrequent languages still benefit from frequent ones, yet whether language imbalance causes cross-lingual generalisation there is not conclusive.

  • 5 authors
·
Apr 11, 2024

Training-free LLM-generated Text Detection by Mining Token Probability Sequences

Large language models (LLMs) have demonstrated remarkable capabilities in generating high-quality texts across diverse domains. However, the potential misuse of LLMs has raised significant concerns, underscoring the urgent need for reliable detection of LLM-generated texts. Conventional training-based detectors often struggle with generalization, particularly in cross-domain and cross-model scenarios. In contrast, training-free methods, which focus on inherent discrepancies through carefully designed statistical features, offer improved generalization and interpretability. Despite this, existing training-free detection methods typically rely on global text sequence statistics, neglecting the modeling of local discriminative features, thereby limiting their detection efficacy. In this work, we introduce a novel training-free detector, termed Lastde that synergizes local and global statistics for enhanced detection. For the first time, we introduce time series analysis to LLM-generated text detection, capturing the temporal dynamics of token probability sequences. By integrating these local statistics with global ones, our detector reveals significant disparities between human and LLM-generated texts. We also propose an efficient alternative, Lastde++ to enable real-time detection. Extensive experiments on six datasets involving cross-domain, cross-model, and cross-lingual detection scenarios, under both white-box and black-box settings, demonstrated that our method consistently achieves state-of-the-art performance. Furthermore, our approach exhibits greater robustness against paraphrasing attacks compared to existing baseline methods.

  • 7 authors
·
Oct 8, 2024

RedWhale: An Adapted Korean LLM Through Efficient Continual Pretraining

The field of Natural Language Processing (NLP) has seen significant advancements with the development of Large Language Models (LLMs). However, much of this research remains focused on English, often overlooking low-resource languages like Korean. This oversight presents challenges due to the unique non-alphabetic token structure of Korean and the substantial memory and computational demands required for LLM training, which frequently lead to memory constraints and out-of-memory errors. To address these issues, we present RedWhale, a model specifically tailored for Korean language processing. RedWhale is developed using an efficient continual pretraining approach that includes a comprehensive Korean corpus preprocessing pipeline, a specialized tokenizer, an optimized model initialization technique, and a multistage pretraining strategy. These innovations collectively reduce training time and computational costs while maintaining high levels of accuracy and comprehension. By leveraging cross-lingual transfer learning, which exploits shared linguistic similarities across languages, RedWhale builds on English models to enhance Korean language processing. Experimental results demonstrate that RedWhale outperforms other leading models on Korean NLP benchmarks, including the Korean Balanced Evaluation of Significant Tasks (KoBEST), showing superior understanding and generation of Korean text. Furthermore, RedWhale showed no signs of convergence even after pretraining on 9.7 billion tokens, indicating the potential for further improvements with additional training. This work represents a significant advancement in bridging the linguistic divide, particularly in enhancing NLP capabilities for the Korean language.

  • 4 authors
·
Aug 20, 2024

BatonVoice: An Operationalist Framework for Enhancing Controllable Speech Synthesis with Linguistic Intelligence from LLMs

The rise of Large Language Models (LLMs) is reshaping multimodel models, with speech synthesis being a prominent application. However, existing approaches often underutilize the linguistic intelligence of these models, typically failing to leverage their powerful instruction-following capabilities. This limitation hinders the model's ability to follow text instructions for controllable Text-to-Speech~(TTS). To address this, we propose a new paradigm inspired by ``operationalism'' that decouples instruction understanding from speech generation. We introduce BatonVoice, a framework where an LLM acts as a ``conductor'', understanding user instructions and generating a textual ``plan'' -- explicit vocal features (e.g., pitch, energy). A separate TTS model, the ``orchestra'', then generates the speech from these features. To realize this component, we develop BatonTTS, a TTS model trained specifically for this task. Our experiments demonstrate that BatonVoice achieves strong performance in controllable and emotional speech synthesis, outperforming strong open- and closed-source baselines. Notably, our approach enables remarkable zero-shot cross-lingual generalization, accurately applying feature control abilities to languages unseen during post-training. This demonstrates that objectifying speech into textual vocal features can more effectively unlock the linguistic intelligence of LLMs.

tencent Tencent
·
Sep 30, 2025 2

SIB-200: A Simple, Inclusive, and Big Evaluation Dataset for Topic Classification in 200+ Languages and Dialects

Despite the progress we have recorded in the last few years in multilingual natural language processing, evaluation is typically limited to a small set of languages with available datasets which excludes a large number of low-resource languages. In this paper, we created SIB-200 -- a large-scale open-sourced benchmark dataset for topic classification in 200 languages and dialects to address the lack of evaluation dataset for Natural Language Understanding (NLU). For many of the languages covered in SIB-200, this is the first publicly available evaluation dataset for NLU. The dataset is based on Flores-200 machine translation corpus. We annotated the English portion of the dataset and extended the sentence-level annotation to the remaining 203 languages covered in the corpus. Despite the simplicity of this task, our evaluation in full-supervised setting, cross-lingual transfer setting and prompting of large language model setting show that there is still a large gap between the performance of high-resource and low-resource languages when multilingual evaluation is scaled to numerous world languages. We found that languages unseen during the pre-training of multilingual language models, under-represented language families (like Nilotic and Altantic-Congo), and languages from the regions of Africa, Americas, Oceania and South East Asia, often have the lowest performance on our topic classification dataset. We hope our dataset will encourage a more inclusive evaluation of multilingual language models on a more diverse set of languages. https://github.com/dadelani/sib-200

  • 8 authors
·
Sep 14, 2023

MedRECT: A Medical Reasoning Benchmark for Error Correction in Clinical Texts

Large language models (LLMs) show increasing promise in medical applications, but their ability to detect and correct errors in clinical texts -- a prerequisite for safe deployment -- remains under-evaluated, particularly beyond English. We introduce MedRECT, a cross-lingual benchmark (Japanese/English) that formulates medical error handling as three subtasks: error detection, error localization (sentence extraction), and error correction. MedRECT is built with a scalable, automated pipeline from the Japanese Medical Licensing Examinations (JMLE) and a curated English counterpart, yielding MedRECT-ja (663 texts) and MedRECT-en (458 texts) with comparable error/no-error balance. We evaluate 9 contemporary LLMs spanning proprietary, open-weight, and reasoning families. Key findings: (i) reasoning models substantially outperform standard architectures, with up to 13.5% relative improvement in error detection and 51.0% in sentence extraction; (ii) cross-lingual evaluation reveals 5-10% performance gaps from English to Japanese, with smaller disparities for reasoning models; (iii) targeted LoRA fine-tuning yields asymmetric improvements in error correction performance (Japanese: +0.078, English: +0.168) while preserving reasoning capabilities; and (iv) our fine-tuned model exceeds human expert performance on structured medical error correction tasks. To our knowledge, MedRECT is the first comprehensive cross-lingual benchmark for medical error correction, providing a reproducible framework and resources for developing safer medical LLMs across languages.

  • 3 authors
·
Nov 1, 2025

Pushing on Multilingual Reasoning Models with Language-Mixed Chain-of-Thought

Recent frontier models employ long chain-of-thought reasoning to explore solution spaces in context and achieve stonger performance. While many works study distillation to build smaller yet capable models, most focus on English and little is known about language-specific reasoning. To bridge this gap, we first introduct **Language-Mixed CoT**, a reasoning schema that switches between English and a target language, using English as an anchor to excel in reasoning while minimizing translation artificats. As a Korean case study, we curate **Yi-Sang**: 5.79M native-Korean prompts from web Q&A, exams, STEM, and code; 3.7M long reasoning traces generated from Qwen3-32B; and a targeted 260k high-yield subset. We train ninve models (4B-35B) across six families (Qwen2.5, Llama-3.1, Gemma-3, etc). Our best model, **KO-REAson-35B**, achieves state-of-the-art performance, with the highest overall average score (64.0 \pm 25), ranking first on 5/9 benchmarks and second on the remainder. Samller and mid-sized models also benefit substantially, with an average improvement of +18.6 points across teh evaluated nine benchmarks. Ablations show **Language-Mixed CoT** is more effective than monolingual CoT, also resulting in cross-lingual and mult-modal performance gains. We release our data-curation pipeline, evaluation system, datasets, and models to advance research on language-specific reasoning. Data and model collection: https://huggingface.co/KOREAson.

KOREAson KO-REAson
·
Oct 5, 2025 2

Unmasking the Reality of PII Masking Models: Performance Gaps and the Call for Accountability

Privacy Masking is a critical concept under data privacy involving anonymization and de-anonymization of personally identifiable information (PII). Privacy masking techniques rely on Named Entity Recognition (NER) approaches under NLP support in identifying and classifying named entities in each text. NER approaches, however, have several limitations including (a) content sensitivity including ambiguous, polysemic, context dependent or domain specific content, (b) phrasing variabilities including nicknames and alias, informal expressions, alternative representations, emerging expressions, evolving naming conventions and (c) formats or syntax variations, typos, misspellings. However, there are a couple of PII datasets that have been widely used by researchers and the open-source community to train models on PII detection or masking. These datasets have been used to train models including Piiranha and Starpii, which have been downloaded over 300k and 580k times on HuggingFace. We examine the quality of the PII masking by these models given the limitations of the datasets and of the NER approaches. We curate a dataset of 17K unique, semi-synthetic sentences containing 16 types of PII by compiling information from across multiple jurisdictions including India, U.K and U.S. We generate sentences (using language models) containing these PII at five different NER detection feature dimensions - (1) Basic Entity Recognition, (2) Contextual Entity Disambiguation, (3) NER in Noisy & Real-World Data, (4) Evolving & Novel Entities Detection and (5) Cross-Lingual or multi-lingual NER) and 1 in adversarial context. We present the results and exhibit the privacy exposure caused by such model use (considering the extent of lifetime downloads of these models). We conclude by highlighting the gaps in measuring performance of the models and the need for contextual disclosure in model cards for such models.

  • 2 authors
·
Apr 5, 2025

Zero-Shot Tokenizer Transfer

Language models (LMs) are bound to their tokenizer, which maps raw text to a sequence of vocabulary items (tokens). This restricts their flexibility: for example, LMs trained primarily on English may still perform well in other natural and programming languages, but have vastly decreased efficiency due to their English-centric tokenizer. To mitigate this, we should be able to swap the original LM tokenizer with an arbitrary one, on the fly, without degrading performance. Hence, in this work we define a new problem: Zero-Shot Tokenizer Transfer (ZeTT). The challenge at the core of ZeTT is finding embeddings for the tokens in the vocabulary of the new tokenizer. Since prior heuristics for initializing embeddings often perform at chance level in a ZeTT setting, we propose a new solution: we train a hypernetwork taking a tokenizer as input and predicting the corresponding embeddings. We empirically demonstrate that the hypernetwork generalizes to new tokenizers both with encoder (e.g., XLM-R) and decoder LLMs (e.g., Mistral-7B). Our method comes close to the original models' performance in cross-lingual and coding tasks while markedly reducing the length of the tokenized sequence. We also find that the remaining gap can be quickly closed by continued training on less than 1B tokens. Finally, we show that a ZeTT hypernetwork trained for a base (L)LM can also be applied to fine-tuned variants without extra training. Overall, our results make substantial strides toward detaching LMs from their tokenizer.

  • 3 authors
·
May 13, 2024 3

Improving the Consistency in Cross-Lingual Cross-Modal Retrieval with 1-to-K Contrastive Learning

Cross-lingual Cross-modal Retrieval (CCR) is an essential task in web search, which aims to break the barriers between modality and language simultaneously and achieves image-text retrieval in the multi-lingual scenario with a single model. In recent years, excellent progress has been made based on cross-lingual cross-modal pre-training; particularly, the methods based on contrastive learning on large-scale data have significantly improved retrieval tasks. However, these methods directly follow the existing pre-training methods in the cross-lingual or cross-modal domain, leading to two problems of inconsistency in CCR: The methods with cross-lingual style suffer from the intra-modal error propagation, resulting in inconsistent recall performance across languages in the whole dataset. The methods with cross-modal style suffer from the inter-modal optimization direction bias, resulting in inconsistent rank across languages within each instance, which cannot be reflected by Recall@K. To solve these problems, we propose a simple but effective 1-to-K contrastive learning method, which treats each language equally and eliminates error propagation and optimization bias. In addition, we propose a new evaluation metric, Mean Rank Variance (MRV), to reflect the rank inconsistency across languages within each instance. Extensive experiments on four CCR datasets show that our method improves both recall rates and MRV with smaller-scale pre-trained data, achieving the new state-of-art.

  • 5 authors
·
Jun 26, 2024

xPQA: Cross-Lingual Product Question Answering across 12 Languages

Product Question Answering (PQA) systems are key in e-commerce applications to provide responses to customers' questions as they shop for products. While existing work on PQA focuses mainly on English, in practice there is need to support multiple customer languages while leveraging product information available in English. To study this practical industrial task, we present xPQA, a large-scale annotated cross-lingual PQA dataset in 12 languages across 9 branches, and report results in (1) candidate ranking, to select the best English candidate containing the information to answer a non-English question; and (2) answer generation, to generate a natural-sounding non-English answer based on the selected English candidate. We evaluate various approaches involving machine translation at runtime or offline, leveraging multilingual pre-trained LMs, and including or excluding xPQA training data. We find that (1) In-domain data is essential as cross-lingual rankers trained on other domains perform poorly on the PQA task; (2) Candidate ranking often prefers runtime-translation approaches while answer generation prefers multilingual approaches; (3) Translating offline to augment multilingual models helps candidate ranking mainly on languages with non-Latin scripts; and helps answer generation mainly on languages with Latin scripts. Still, there remains a significant performance gap between the English and the cross-lingual test sets.

  • 4 authors
·
May 16, 2023

Cross-lingual transfer of multilingual models on low resource African Languages

Large multilingual models have significantly advanced natural language processing (NLP) research. However, their high resource demands and potential biases from diverse data sources have raised concerns about their effectiveness across low-resource languages. In contrast, monolingual models, trained on a single language, may better capture the nuances of the target language, potentially providing more accurate results. This study benchmarks the cross-lingual transfer capabilities from a high-resource language to a low-resource language for both, monolingual and multilingual models, focusing on Kinyarwanda and Kirundi, two Bantu languages. We evaluate the performance of transformer based architectures like Multilingual BERT (mBERT), AfriBERT, and BantuBERTa against neural-based architectures such as BiGRU, CNN, and char-CNN. The models were trained on Kinyarwanda and tested on Kirundi, with fine-tuning applied to assess the extent of performance improvement and catastrophic forgetting. AfriBERT achieved the highest cross-lingual accuracy of 88.3% after fine-tuning, while BiGRU emerged as the best-performing neural model with 83.3% accuracy. We also analyze the degree of forgetting in the original language post-fine-tuning. While monolingual models remain competitive, this study highlights that multilingual models offer strong cross-lingual transfer capabilities in resource limited settings.

  • 4 authors
·
Sep 17, 2024

TaCo: Enhancing Cross-Lingual Transfer for Low-Resource Languages in LLMs through Translation-Assisted Chain-of-Thought Processes

LLMs such as ChatGPT and PaLM can be utilized to train on a new language and revitalize low-resource languages. However, it is evidently very costly to pretrain pr fine-tune LLMs to adopt new languages. Another challenge is the limitation of benchmark datasets and the metrics used to measure the performance of models in multilingual settings. This paper proposes cost-effective solutions to both of the aforementioned challenges. We introduce the Multilingual Instruction-Tuning Dataset (MITS), which is comprised of the translation of Alpaca-52K, Dolly-15K, and Vicuna Benchmark in 132 languages. Also, we propose a new method called TaCo: Translation-Assisted Cross-Linguality, which make uses of translation in a chain-of-thought process to instruction-tune LLMs on a new languages through a curriculum learning process. As a proof of concept, we experimented with the instruction-tuned Guanaco-33B model and performed further instruction tuning using the TaCo method in three low-resource languages and one high-resource language. Our results show that the TaCo method impresses the GPT-4 with 82% for a low-resource language in the Vicuna Benchmark dataset, and boosts performance by double in contrast to the performance of instruction tuning only. Our results show that TaCo is a promising method for creating multilingual LLMs, even for low-resource languages. We have released our datasets and the model adapters, and encourage the research community to make use of these resources towards advancing work on multilingual LLMs.

  • 2 authors
·
Nov 17, 2023

MonoByte: A Pool of Monolingual Byte-level Language Models

The zero-shot cross-lingual ability of models pretrained on multilingual and even monolingual corpora has spurred many hypotheses to explain this intriguing empirical result. However, due to the costs of pretraining, most research uses public models whose pretraining methodology, such as the choice of tokenization, corpus size, and computational budget, might differ drastically. When researchers pretrain their own models, they often do so under a constrained budget, and the resulting models might underperform significantly compared to SOTA models. These experimental differences led to various inconsistent conclusions about the nature of the cross-lingual ability of these models. To help further research on the topic, we released 10 monolingual byte-level models rigorously pretrained under the same configuration with a large compute budget (equivalent to 420 days on a V100) and corpora that are 4 times larger than the original BERT's. Because they are tokenizer-free, the problem of unseen token embeddings is eliminated, thus allowing researchers to try a wider range of cross-lingual experiments in languages with different scripts. Additionally, we release two models pretrained on non-natural language texts that can be used in sanity-check experiments. Experiments on QA and NLI tasks show that our monolingual models achieve competitive performance to the multilingual one, and hence can be served to strengthen our understanding of cross-lingual transferability in language models.

  • 4 authors
·
Sep 22, 2022 1

BayLing: Bridging Cross-lingual Alignment and Instruction Following through Interactive Translation for Large Language Models

Large language models (LLMs) have demonstrated remarkable prowess in language understanding and generation. Advancing from foundation LLMs to instructionfollowing LLMs, instruction tuning plays a vital role in aligning LLMs to human preferences. However, the existing LLMs are usually focused on English, leading to inferior performance in non-English languages. In order to improve the performance for non-English languages, it is necessary to collect language-specific training data for foundation LLMs and construct language-specific instructions for instruction tuning, both of which are heavy loads. To minimize human workload, we propose to transfer the capabilities of language generation and instruction following from English to other languages through an interactive translation task. We have developed BayLing, an instruction-following LLM by utilizing LLaMA as the foundation LLM and automatically constructing interactive translation instructions for instructing tuning. Extensive assessments demonstrate that BayLing achieves comparable performance to GPT-3.5-turbo, despite utilizing a considerably smaller parameter size of only 13 billion. Experimental results on translation tasks show that BayLing achieves 95% of single-turn translation capability compared to GPT-4 with automatic evaluation and 96% of interactive translation capability compared to GPT-3.5-turbo with human evaluation. To estimate the performance on general tasks, we created a multi-turn instruction test set called BayLing-80. The experimental results on BayLing-80 indicate that BayLing achieves 89% of performance compared to GPT-3.5-turbo. BayLing also demonstrates outstanding performance on knowledge assessment of Chinese GaoKao and English SAT, second only to GPT-3.5-turbo among a multitude of instruction-following LLMs. Demo, homepage, code and models of BayLing are available.

  • 11 authors
·
Jun 19, 2023

Zero-Shot Cross-Lingual Summarization via Large Language Models

Given a document in a source language, cross-lingual summarization (CLS) aims to generate a summary in a different target language. Recently, the emergence of Large Language Models (LLMs), such as GPT-3.5, ChatGPT and GPT-4, has attracted wide attention from the computational linguistics community. However, it is not yet known the performance of LLMs on CLS. In this report, we empirically use various prompts to guide LLMs to perform zero-shot CLS from different paradigms (i.e., end-to-end and pipeline), and provide a preliminary evaluation on the generated summaries. We find that ChatGPT and GPT-4 originally prefer to produce lengthy summaries with detailed information. These two LLMs can further balance informativeness and conciseness with the help of an interactive prompt, significantly improving their CLS performance. Experimental results on three widely-used CLS datasets show that GPT-4 achieves state-of-the-art zero-shot CLS performance, and performs competitively compared with the fine-tuned mBART-50. Moreover, we also find some multi-lingual and bilingual LLMs (i.e., BLOOMZ, ChatGLM-6B, Vicuna-13B and ChatYuan) have limited zero-shot CLS ability. Due to the composite nature of CLS, which requires models to perform summarization and translation simultaneously, accomplishing this task in a zero-shot manner is even a challenge for LLMs. Therefore, we sincerely hope and recommend future LLM research could use CLS as a testbed.

  • 7 authors
·
Feb 27, 2023

Cross-Lingual Consistency: A Novel Inference Framework for Advancing Reasoning in Large Language Models

Chain-of-thought (CoT) has emerged as a critical mechanism for enhancing reasoning capabilities in large language models (LLMs), with self-consistency demonstrating notable promise in boosting performance. However, inherent linguistic biases in multilingual training corpora frequently cause semantic drift and logical inconsistencies, especially in sub-10B parameter LLMs handling complex inference tasks. To overcome these constraints, we propose the Cross-Lingual Consistency (CLC) framework, an innovative inference paradigm that integrates multilingual reasoning paths through majority voting to elevate LLMs' reasoning capabilities. Empirical evaluations on the CMATH dataset reveal CLC's superiority over the conventional self-consistency method, delivering 9.5%, 6.5%, and 6.0% absolute accuracy gains for DeepSeek-Math-7B-Instruct, Qwen2.5-Math-7B-Instruct, and Gemma2-9B-Instruct respectively. Expanding CLC's linguistic scope to 11 diverse languages implies two synergistic benefits: 1) neutralizing linguistic biases in multilingual training corpora through multilingual ensemble voting, 2) escaping monolingual reasoning traps by exploring the broader multilingual solution space. This dual benefits empirically enables more globally optimal reasoning paths compared to monolingual self-consistency baselines, as evidenced by the 4.1%-18.5% accuracy gains using Gemma2-9B-Instruct on the MGSM dataset.

  • 5 authors
·
Apr 2, 2025

Distilling Efficient Language-Specific Models for Cross-Lingual Transfer

Massively multilingual Transformers (MMTs), such as mBERT and XLM-R, are widely used for cross-lingual transfer learning. While these are pretrained to represent hundreds of languages, end users of NLP systems are often interested only in individual languages. For such purposes, the MMTs' language coverage makes them unnecessarily expensive to deploy in terms of model size, inference time, energy, and hardware cost. We thus propose to extract compressed, language-specific models from MMTs which retain the capacity of the original MMTs for cross-lingual transfer. This is achieved by distilling the MMT bilingually, i.e., using data from only the source and target language of interest. Specifically, we use a two-phase distillation approach, termed BiStil: (i) the first phase distils a general bilingual model from the MMT, while (ii) the second, task-specific phase sparsely fine-tunes the bilingual "student" model using a task-tuned variant of the original MMT as its "teacher". We evaluate this distillation technique in zero-shot cross-lingual transfer across a number of standard cross-lingual benchmarks. The key results indicate that the distilled models exhibit minimal degradation in target language performance relative to the base MMT despite being significantly smaller and faster. Furthermore, we find that they outperform multilingually distilled models such as DistilmBERT and MiniLMv2 while having a very modest training budget in comparison, even on a per-language basis. We also show that bilingual models distilled from MMTs greatly outperform bilingual models trained from scratch. Our code and models are available at https://github.com/AlanAnsell/bistil.

  • 4 authors
·
Jun 2, 2023

Enhancing Small Language Models for Cross-Lingual Generalized Zero-Shot Classification with Soft Prompt Tuning

In NLP, Zero-Shot Classification (ZSC) has become essential for enabling models to classify text into categories unseen during training, particularly in low-resource languages and domains where labeled data is scarce. While pretrained language models (PLMs) have shown promise in ZSC, they often rely on large training datasets or external knowledge, limiting their applicability in multilingual and low-resource scenarios. Recent approaches leveraging natural language prompts reduce the dependence on large training datasets but struggle to effectively incorporate available labeled data from related classification tasks, especially when these datasets originate from different languages or distributions. Moreover, existing prompt-based methods typically rely on manually crafted prompts in a specific language, limiting their adaptability and effectiveness in cross-lingual settings. To address these challenges, we introduce RoSPrompt, a lightweight and data-efficient approach for training soft prompts that enhance cross-lingual ZSC while ensuring robust generalization across data distribution shifts. RoSPrompt is designed for small multilingual PLMs, enabling them to leverage high-resource languages to improve performance in low-resource settings without requiring extensive fine-tuning or high computational costs. We evaluate our approach on multiple multilingual PLMs across datasets covering 106 languages, demonstrating strong cross-lingual transfer performance and robust generalization capabilities over unseen classes.

  • 5 authors
·
Mar 25, 2025

Linguistic Entity Masking to Improve Cross-Lingual Representation of Multilingual Language Models for Low-Resource Languages

Multilingual Pre-trained Language models (multiPLMs), trained on the Masked Language Modelling (MLM) objective are commonly being used for cross-lingual tasks such as bitext mining. However, the performance of these models is still suboptimal for low-resource languages (LRLs). To improve the language representation of a given multiPLM, it is possible to further pre-train it. This is known as continual pre-training. Previous research has shown that continual pre-training with MLM and subsequently with Translation Language Modelling (TLM) improves the cross-lingual representation of multiPLMs. However, during masking, both MLM and TLM give equal weight to all tokens in the input sequence, irrespective of the linguistic properties of the tokens. In this paper, we introduce a novel masking strategy, Linguistic Entity Masking (LEM) to be used in the continual pre-training step to further improve the cross-lingual representations of existing multiPLMs. In contrast to MLM and TLM, LEM limits masking to the linguistic entity types nouns, verbs and named entities, which hold a higher prominence in a sentence. Secondly, we limit masking to a single token within the linguistic entity span thus keeping more context, whereas, in MLM and TLM, tokens are masked randomly. We evaluate the effectiveness of LEM using three downstream tasks, namely bitext mining, parallel data curation and code-mixed sentiment analysis using three low-resource language pairs English-Sinhala, English-Tamil, and Sinhala-Tamil. Experiment results show that continually pre-training a multiPLM with LEM outperforms a multiPLM continually pre-trained with MLM+TLM for all three tasks.

  • 2 authors
·
Jan 9, 2025

Layer Swapping for Zero-Shot Cross-Lingual Transfer in Large Language Models

Model merging, such as model souping, is the practice of combining different models with the same architecture together without further training. In this work, we present a model merging methodology that addresses the difficulty of fine-tuning Large Language Models (LLMs) for target tasks in non-English languages, where task-specific data is often unavailable. We focus on mathematical reasoning and without in-language math data, facilitate cross-lingual transfer by composing language and math capabilities. Starting from the same pretrained model, we fine-tune separate "experts" on math instruction data in English and on generic instruction data in the target language. We then replace the top and bottom transformer layers of the math expert directly with layers from the language expert, which consequently enhances math performance in the target language. The resulting merged models outperform the individual experts and other merging methods on the math benchmark, MGSM, by 10% across four major languages where math instruction data is scarce. In addition, this layer swapping is simple, inexpensive, and intuitive, as it is based on an interpretative analysis of the most important parameter changes during the fine-tuning of each expert. The ability to successfully re-compose LLMs for cross-lingual transfer in this manner opens up future possibilities to combine model expertise, create modular solutions, and transfer reasoning capabilities across languages all post hoc.

  • 7 authors
·
Oct 2, 2024 3