new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 2

4DTAM: Non-Rigid Tracking and Mapping via Dynamic Surface Gaussians

We propose the first 4D tracking and mapping method that jointly performs camera localization and non-rigid surface reconstruction via differentiable rendering. Our approach captures 4D scenes from an online stream of color images with depth measurements or predictions by jointly optimizing scene geometry, appearance, dynamics, and camera ego-motion. Although natural environments exhibit complex non-rigid motions, 4D-SLAM remains relatively underexplored due to its inherent challenges; even with 2.5D signals, the problem is ill-posed because of the high dimensionality of the optimization space. To overcome these challenges, we first introduce a SLAM method based on Gaussian surface primitives that leverages depth signals more effectively than 3D Gaussians, thereby achieving accurate surface reconstruction. To further model non-rigid deformations, we employ a warp-field represented by a multi-layer perceptron (MLP) and introduce a novel camera pose estimation technique along with surface regularization terms that facilitate spatio-temporal reconstruction. In addition to these algorithmic challenges, a significant hurdle in 4D SLAM research is the lack of reliable ground truth and evaluation protocols, primarily due to the difficulty of 4D capture using commodity sensors. To address this, we present a novel open synthetic dataset of everyday objects with diverse motions, leveraging large-scale object models and animation modeling. In summary, we open up the modern 4D-SLAM research by introducing a novel method and evaluation protocols grounded in modern vision and rendering techniques.

  • 3 authors
·
May 28, 2025

STARNet: Sensor Trustworthiness and Anomaly Recognition via Approximated Likelihood Regret for Robust Edge Autonomy

Complex sensors such as LiDAR, RADAR, and event cameras have proliferated in autonomous robotics to enhance perception and understanding of the environment. Meanwhile, these sensors are also vulnerable to diverse failure mechanisms that can intricately interact with their operation environment. In parallel, the limited availability of training data on complex sensors also affects the reliability of their deep learning-based prediction flow, where their prediction models can fail to generalize to environments not adequately captured in the training set. To address these reliability concerns, this paper introduces STARNet, a Sensor Trustworthiness and Anomaly Recognition Network designed to detect untrustworthy sensor streams that may arise from sensor malfunctions and/or challenging environments. We specifically benchmark STARNet on LiDAR and camera data. STARNet employs the concept of approximated likelihood regret, a gradient-free framework tailored for low-complexity hardware, especially those with only fixed-point precision capabilities. Through extensive simulations, we demonstrate the efficacy of STARNet in detecting untrustworthy sensor streams in unimodal and multimodal settings. In particular, the network shows superior performance in addressing internal sensor failures, such as cross-sensor interference and crosstalk. In diverse test scenarios involving adverse weather and sensor malfunctions, we show that STARNet enhances prediction accuracy by approximately 10% by filtering out untrustworthy sensor streams. STARNet is publicly available at https://github.com/sinatayebati/STARNet.

  • 6 authors
·
Sep 19, 2023

SMARTIES: Spectrum-Aware Multi-Sensor Auto-Encoder for Remote Sensing Images

From optical sensors to microwave radars, leveraging the complementary strengths of remote sensing (RS) sensors is crucial for achieving dense spatio-temporal monitoring of our planet. In contrast, recent deep learning models, whether task-specific or foundational, are often specific to single sensors or to fixed combinations: adapting such models to different sensory inputs requires both architectural changes and re-training, limiting scalability and generalization across multiple RS sensors. On the contrary, a single model able to modulate its feature representations to accept diverse sensors as input would pave the way to agile and flexible multi-sensor RS data processing. To address this, we introduce SMARTIES, a generic and versatile foundation model lifting sensor-specific/dependent efforts and enabling scalability and generalization to diverse RS sensors: SMARTIES projects data from heterogeneous sensors into a shared spectrum-aware space, enabling the use of arbitrary combinations of bands both for training and inference. To obtain sensor-agnostic representations, we train a single, unified transformer model reconstructing masked multi-sensor data with cross-sensor token mixup. On both single- and multi-modal tasks across diverse sensors, SMARTIES outperforms previous models that rely on sensor-specific pretraining. Our code and pretrained models are available at https://gsumbul.github.io/SMARTIES.

  • 4 authors
·
Jun 24, 2025

Grape detection, segmentation and tracking using deep neural networks and three-dimensional association

Agricultural applications such as yield prediction, precision agriculture and automated harvesting need systems able to infer the crop state from low-cost sensing devices. Proximal sensing using affordable cameras combined with computer vision has seen a promising alternative, strengthened after the advent of convolutional neural networks (CNNs) as an alternative for challenging pattern recognition problems in natural images. Considering fruit growing monitoring and automation, a fundamental problem is the detection, segmentation and counting of individual fruits in orchards. Here we show that for wine grapes, a crop presenting large variability in shape, color, size and compactness, grape clusters can be successfully detected, segmented and tracked using state-of-the-art CNNs. In a test set containing 408 grape clusters from images taken on a trellis-system based vineyard, we have reached an F 1 -score up to 0.91 for instance segmentation, a fine separation of each cluster from other structures in the image that allows a more accurate assessment of fruit size and shape. We have also shown as clusters can be identified and tracked along video sequences recording orchard rows. We also present a public dataset containing grape clusters properly annotated in 300 images and a novel annotation methodology for segmentation of complex objects in natural images. The presented pipeline for annotation, training, evaluation and tracking of agricultural patterns in images can be replicated for different crops and production systems. It can be employed in the development of sensing components for several agricultural and environmental applications.

  • 4 authors
·
Jul 26, 2019

Deep Open-Set Recognition for Silicon Wafer Production Monitoring

The chips contained in any electronic device are manufactured over circular silicon wafers, which are monitored by inspection machines at different production stages. Inspection machines detect and locate any defect within the wafer and return a Wafer Defect Map (WDM), i.e., a list of the coordinates where defects lie, which can be considered a huge, sparse, and binary image. In normal conditions, wafers exhibit a small number of randomly distributed defects, while defects grouped in specific patterns might indicate known or novel categories of failures in the production line. Needless to say, a primary concern of semiconductor industries is to identify these patterns and intervene as soon as possible to restore normal production conditions. Here we address WDM monitoring as an open-set recognition problem to accurately classify WDM in known categories and promptly detect novel patterns. In particular, we propose a comprehensive pipeline for wafer monitoring based on a Submanifold Sparse Convolutional Network, a deep architecture designed to process sparse data at an arbitrary resolution, which is trained on the known classes. To detect novelties, we define an outlier detector based on a Gaussian Mixture Model fitted on the latent representation of the classifier. Our experiments on a real dataset of WDMs show that directly processing full-resolution WDMs by Submanifold Sparse Convolutions yields superior classification performance on known classes than traditional Convolutional Neural Networks, which require a preliminary binning to reduce the size of the binary images representing WDMs. Moreover, our solution outperforms state-of-the-art open-set recognition solutions in detecting novelties.

  • 5 authors
·
Aug 30, 2022

Hierarchical State Space Models for Continuous Sequence-to-Sequence Modeling

Reasoning from sequences of raw sensory data is a ubiquitous problem across fields ranging from medical devices to robotics. These problems often involve using long sequences of raw sensor data (e.g. magnetometers, piezoresistors) to predict sequences of desirable physical quantities (e.g. force, inertial measurements). While classical approaches are powerful for locally-linear prediction problems, they often fall short when using real-world sensors. These sensors are typically non-linear, are affected by extraneous variables (e.g. vibration), and exhibit data-dependent drift. For many problems, the prediction task is exacerbated by small labeled datasets since obtaining ground-truth labels requires expensive equipment. In this work, we present Hierarchical State-Space Models (HiSS), a conceptually simple, new technique for continuous sequential prediction. HiSS stacks structured state-space models on top of each other to create a temporal hierarchy. Across six real-world sensor datasets, from tactile-based state prediction to accelerometer-based inertial measurement, HiSS outperforms state-of-the-art sequence models such as causal Transformers, LSTMs, S4, and Mamba by at least 23% on MSE. Our experiments further indicate that HiSS demonstrates efficient scaling to smaller datasets and is compatible with existing data-filtering techniques. Code, datasets and videos can be found on https://hiss-csp.github.io.

  • 7 authors
·
Feb 15, 2024 1

Human-like Bots for Tactical Shooters Using Compute-Efficient Sensors

Artificial intelligence (AI) has enabled agents to master complex video games, from first-person shooters like Counter-Strike to real-time strategy games such as StarCraft II and racing games like Gran Turismo. While these achievements are notable, applying these AI methods in commercial video game production remains challenging due to computational constraints. In commercial scenarios, the majority of computational resources are allocated to 3D rendering, leaving limited capacity for AI methods, which often demand high computational power, particularly those relying on pixel-based sensors. Moreover, the gaming industry prioritizes creating human-like behavior in AI agents to enhance player experience, unlike academic models that focus on maximizing game performance. This paper introduces a novel methodology for training neural networks via imitation learning to play a complex, commercial-standard, VALORANT-like 2v2 tactical shooter game, requiring only modest CPU hardware during inference. Our approach leverages an innovative, pixel-free perception architecture using a small set of ray-cast sensors, which capture essential spatial information efficiently. These sensors allow AI to perform competently without the computational overhead of traditional methods. Models are trained to mimic human behavior using supervised learning on human trajectory data, resulting in realistic and engaging AI agents. Human evaluation tests confirm that our AI agents provide human-like gameplay experiences while operating efficiently under computational constraints. This offers a significant advancement in AI model development for tactical shooter games and possibly other genres.

  • 15 authors
·
Dec 30, 2024

DynST: Dynamic Sparse Training for Resource-Constrained Spatio-Temporal Forecasting

The ever-increasing sensor service, though opening a precious path and providing a deluge of earth system data for deep-learning-oriented earth science, sadly introduce a daunting obstacle to their industrial level deployment. Concretely, earth science systems rely heavily on the extensive deployment of sensors, however, the data collection from sensors is constrained by complex geographical and social factors, making it challenging to achieve comprehensive coverage and uniform deployment. To alleviate the obstacle, traditional approaches to sensor deployment utilize specific algorithms to design and deploy sensors. These methods dynamically adjust the activation times of sensors to optimize the detection process across each sub-region. Regrettably, formulating an activation strategy generally based on historical observations and geographic characteristics, which make the methods and resultant models were neither simple nor practical. Worse still, the complex technical design may ultimately lead to a model with weak generalizability. In this paper, we introduce for the first time the concept of spatio-temporal data dynamic sparse training and are committed to adaptively, dynamically filtering important sensor distributions. To our knowledge, this is the first proposal (termed DynST) of an industry-level deployment optimization concept at the data level. However, due to the existence of the temporal dimension, pruning of spatio-temporal data may lead to conflicts at different timestamps. To achieve this goal, we employ dynamic merge technology, along with ingenious dimensional mapping to mitigate potential impacts caused by the temporal aspect. During the training process, DynST utilize iterative pruning and sparse training, repeatedly identifying and dynamically removing sensor perception areas that contribute the least to future predictions.

  • 8 authors
·
Mar 5, 2024

Incremental Semi-supervised Federated Learning for Health Inference via Mobile Sensing

Mobile sensing appears as a promising solution for health inference problem (e.g., influenza-like symptom recognition) by leveraging diverse smart sensors to capture fine-grained information about human behaviors and ambient contexts. Centralized training of machine learning models can place mobile users' sensitive information under privacy risks due to data breach and misexploitation. Federated Learning (FL) enables mobile devices to collaboratively learn global models without the exposure of local private data. However, there are challenges of on-device FL deployment using mobile sensing: 1) long-term and continuously collected mobile sensing data may exhibit domain shifts as sensing objects (e.g. humans) have varying behaviors as a result of internal and/or external stimulus; 2) model retraining using all available data may increase computation and memory burden; and 3) the sparsity of annotated crowd-sourced data causes supervised FL to lack robustness. In this work, we propose FedMobile, an incremental semi-supervised federated learning algorithm, to train models semi-supervisedly and incrementally in a decentralized online fashion. We evaluate FedMobile using a real-world mobile sensing dataset for influenza-like symptom recognition. Our empirical results show that FedMobile-trained models achieve the best results in comparison to the selected baseline methods.

  • 5 authors
·
Dec 19, 2023

RFBoost: Understanding and Boosting Deep WiFi Sensing via Physical Data Augmentation

Deep learning shows promising performance in wireless sensing. However, deep wireless sensing (DWS) heavily relies on large datasets. Unfortunately, building comprehensive datasets for DWS is difficult and costly, because wireless data depends on environmental factors and cannot be labeled offline. Despite recent advances in few-shot/cross-domain learning, DWS is still facing data scarcity issues. In this paper, we investigate a distinct perspective of radio data augmentation (RDA) for WiFi sensing and present a data-space solution. Our key insight is that wireless signals inherently exhibit data diversity, contributing more information to be extracted for DWS. We present RFBoost, a simple and effective RDA framework encompassing novel physical data augmentation techniques. We implement RFBoost as a plug-and-play module integrated with existing deep models and evaluate it on multiple datasets. Experimental results demonstrate that RFBoost achieves remarkable average accuracy improvements of 5.4% on existing models without additional data collection or model modifications, and the best-boosted performance outperforms 11 state-of-the-art baseline models without RDA. RFBoost pioneers the study of RDA, an important yet currently underexplored building block for DWS, which we expect to become a standard DWS component of WiFi sensing and beyond. RFBoost is released at https://github.com/aiot-lab/RFBoost.

  • 2 authors
·
Oct 3, 2024

METER-ML: A Multi-Sensor Earth Observation Benchmark for Automated Methane Source Mapping

Reducing methane emissions is essential for mitigating global warming. To attribute methane emissions to their sources, a comprehensive dataset of methane source infrastructure is necessary. Recent advancements with deep learning on remotely sensed imagery have the potential to identify the locations and characteristics of methane sources, but there is a substantial lack of publicly available data to enable machine learning researchers and practitioners to build automated mapping approaches. To help fill this gap, we construct a multi-sensor dataset called METER-ML containing 86,599 georeferenced NAIP, Sentinel-1, and Sentinel-2 images in the U.S. labeled for the presence or absence of methane source facilities including concentrated animal feeding operations, coal mines, landfills, natural gas processing plants, oil refineries and petroleum terminals, and wastewater treatment plants. We experiment with a variety of models that leverage different spatial resolutions, spatial footprints, image products, and spectral bands. We find that our best model achieves an area under the precision recall curve of 0.915 for identifying concentrated animal feeding operations and 0.821 for oil refineries and petroleum terminals on an expert-labeled test set, suggesting the potential for large-scale mapping. We make METER-ML freely available at https://stanfordmlgroup.github.io/projects/meter-ml/ to support future work on automated methane source mapping.

  • 10 authors
·
Jul 22, 2022

Analysis and Applications of Deep Learning with Finite Samples in Full Life-Cycle Intelligence of Nuclear Power Generation

The advent of Industry 4.0 has precipitated the incorporation of Artificial Intelligence (AI) methods within industrial contexts, aiming to realize intelligent manufacturing, operation as well as maintenance, also known as industrial intelligence. However, intricate industrial milieus, particularly those relating to energy exploration and production, frequently encompass data characterized by long-tailed class distribution, sample imbalance, and domain shift. These attributes pose noteworthy challenges to data-centric Deep Learning (DL) techniques, crucial for the realization of industrial intelligence. The present study centers on the intricate and distinctive industrial scenarios of Nuclear Power Generation (NPG), meticulously scrutinizing the application of DL techniques under the constraints of finite data samples. Initially, the paper expounds on potential employment scenarios for AI across the full life-cycle of NPG. Subsequently, we delve into an evaluative exposition of DL's advancement, grounded in the finite sample perspective. This encompasses aspects such as small-sample learning, few-shot learning, zero-shot learning, and open-set recognition, also referring to the unique data characteristics of NPG. The paper then proceeds to present two specific case studies. The first revolves around the automatic recognition of zirconium alloy metallography, while the second pertains to open-set recognition for signal diagnosis of machinery sensors. These cases, spanning the entirety of NPG's life-cycle, are accompanied by constructive outcomes and insightful deliberations. By exploring and applying DL methodologies within the constraints of finite sample availability, this paper not only furnishes a robust technical foundation but also introduces a fresh perspective toward the secure and efficient advancement and exploitation of this advanced energy source.

  • 11 authors
·
Nov 7, 2023

SemiPFL: Personalized Semi-Supervised Federated Learning Framework for Edge Intelligence

Recent advances in wearable devices and Internet-of-Things (IoT) have led to massive growth in sensor data generated in edge devices. Labeling such massive data for classification tasks has proven to be challenging. In addition, data generated by different users bear various personal attributes and edge heterogeneity, rendering it impractical to develop a global model that adapts well to all users. Concerns over data privacy and communication costs also prohibit centralized data accumulation and training. We propose SemiPFL that supports edge users having no label or limited labeled datasets and a sizable amount of unlabeled data that is insufficient to train a well-performing model. In this work, edge users collaborate to train a Hyper-network in the server, generating personalized autoencoders for each user. After receiving updates from edge users, the server produces a set of base models for each user, which the users locally aggregate them using their own labeled dataset. We comprehensively evaluate our proposed framework on various public datasets from a wide range of application scenarios, from wearable health to IoT, and demonstrate that SemiPFL outperforms state-of-art federated learning frameworks under the same assumptions regarding user performance, network footprint, and computational consumption. We also show that the solution performs well for users without label or having limited labeled datasets and increasing performance for increased labeled data and number of users, signifying the effectiveness of SemiPFL for handling data heterogeneity and limited annotation. We also demonstrate the stability of SemiPFL for handling user hardware resource heterogeneity in three real-time scenarios.

  • 4 authors
·
Mar 15, 2022

Efficient Unified Demosaicing for Bayer and Non-Bayer Patterned Image Sensors

As the physical size of recent CMOS image sensors (CIS) gets smaller, the latest mobile cameras are adopting unique non-Bayer color filter array (CFA) patterns (e.g., Quad, Nona, QxQ), which consist of homogeneous color units with adjacent pixels. These non-Bayer sensors are superior to conventional Bayer CFA thanks to their changeable pixel-bin sizes for different light conditions but may introduce visual artifacts during demosaicing due to their inherent pixel pattern structures and sensor hardware characteristics. Previous demosaicing methods have primarily focused on Bayer CFA, necessitating distinct reconstruction methods for non-Bayer patterned CIS with various CFA modes under different lighting conditions. In this work, we propose an efficient unified demosaicing method that can be applied to both conventional Bayer RAW and various non-Bayer CFAs' RAW data in different operation modes. Our Knowledge Learning-based demosaicing model for Adaptive Patterns, namely KLAP, utilizes CFA-adaptive filters for only 1% key filters in the network for each CFA, but still manages to effectively demosaic all the CFAs, yielding comparable performance to the large-scale models. Furthermore, by employing meta-learning during inference (KLAP-M), our model is able to eliminate unknown sensor-generic artifacts in real RAW data, effectively bridging the gap between synthetic images and real sensor RAW. Our KLAP and KLAP-M methods achieved state-of-the-art demosaicing performance in both synthetic and real RAW data of Bayer and non-Bayer CFAs.

  • 7 authors
·
Jul 20, 2023

PLAIN: Scalable Estimation Architecture for Integrated Sensing and Communication

Integrated sensing and communication (ISAC) is envisioned be to one of the paradigms upon which next-generation mobile networks will be built, extending localization and tracking capabilities, as well as giving birth to environment-aware wireless access. A key aspect of sensing integration is parameter estimation, which involves extracting information about the surrounding environment, such as the direction, distance, and velocity of various objects within. This is typically of a high-dimensional nature, which leads to significant computational complexity, if performed jointly across multiple sensing dimensions, such as space, frequency, and time. Additionally, due to the incorporation of sensing on top of the data transmission, the time window available for sensing is likely to be short, resulting in an estimation problem where only a single snapshot is accessible. In this work, we propose PLAIN, a tensor-based estimation architecture that flexibly scales with multiple sensing dimensions and can handle high dimensionality, limited measurement time, and super-resolution requirements. It consists of three stages: a compression stage, where the high dimensional input is converted into lower dimensionality, without sacrificing resolution; a decoupled estimation stage, where the parameters across the different dimensions are estimated in parallel with low complexity; an input-based fusion stage, where the decoupled parameters are fused together to form a paired multidimensional estimate. We investigate the performance of the architecture for different configurations and compare it against practical sequential and joint estimation baselines, as well as theoretical bounds. Our results show that PLAIN, using tools from tensor algebra, subspace-based processing, and compressed sensing, can scale flexibly with dimensionality, while operating with low complexity and maintaining super-resolution.

  • 3 authors
·
Mar 27, 2025

Digitizing Touch with an Artificial Multimodal Fingertip

Touch is a crucial sensing modality that provides rich information about object properties and interactions with the physical environment. Humans and robots both benefit from using touch to perceive and interact with the surrounding environment (Johansson and Flanagan, 2009; Li et al., 2020; Calandra et al., 2017). However, no existing systems provide rich, multi-modal digital touch-sensing capabilities through a hemispherical compliant embodiment. Here, we describe several conceptual and technological innovations to improve the digitization of touch. These advances are embodied in an artificial finger-shaped sensor with advanced sensing capabilities. Significantly, this fingertip contains high-resolution sensors (~8.3 million taxels) that respond to omnidirectional touch, capture multi-modal signals, and use on-device artificial intelligence to process the data in real time. Evaluations show that the artificial fingertip can resolve spatial features as small as 7 um, sense normal and shear forces with a resolution of 1.01 mN and 1.27 mN, respectively, perceive vibrations up to 10 kHz, sense heat, and even sense odor. Furthermore, it embeds an on-device AI neural network accelerator that acts as a peripheral nervous system on a robot and mimics the reflex arc found in humans. These results demonstrate the possibility of digitizing touch with superhuman performance. The implications are profound, and we anticipate potential applications in robotics (industrial, medical, agricultural, and consumer-level), virtual reality and telepresence, prosthetics, and e-commerce. Toward digitizing touch at scale, we open-source a modular platform to facilitate future research on the nature of touch.

  • 23 authors
·
Nov 4, 2024

YOLOv1 to YOLOv10: A comprehensive review of YOLO variants and their application in the agricultural domain

This survey investigates the transformative potential of various YOLO variants, from YOLOv1 to the state-of-the-art YOLOv10, in the context of agricultural advancements. The primary objective is to elucidate how these cutting-edge object detection models can re-energise and optimize diverse aspects of agriculture, ranging from crop monitoring to livestock management. It aims to achieve key objectives, including the identification of contemporary challenges in agriculture, a detailed assessment of YOLO's incremental advancements, and an exploration of its specific applications in agriculture. This is one of the first surveys to include the latest YOLOv10, offering a fresh perspective on its implications for precision farming and sustainable agricultural practices in the era of Artificial Intelligence and automation. Further, the survey undertakes a critical analysis of YOLO's performance, synthesizes existing research, and projects future trends. By scrutinizing the unique capabilities packed in YOLO variants and their real-world applications, this survey provides valuable insights into the evolving relationship between YOLO variants and agriculture. The findings contribute towards a nuanced understanding of the potential for precision farming and sustainable agricultural practices, marking a significant step forward in the integration of advanced object detection technologies within the agricultural sector.

  • 2 authors
·
Jun 14, 2024

Unsupervised Anomaly Detection for Autonomous Robots via Mahalanobis SVDD with Audio-IMU Fusion

Reliable anomaly detection is essential for ensuring the safety of autonomous robots, particularly when conventional detection systems based on vision or LiDAR become unreliable in adverse or unpredictable conditions. In such scenarios, alternative sensing modalities are needed to provide timely and robust feedback. To this end, we explore the use of audio and inertial measurement unit (IMU) sensors to detect underlying anomalies in autonomous mobile robots, such as collisions and internal mechanical faults. Furthermore, to address the challenge of limited labeled anomaly data, we propose an unsupervised anomaly detection framework based on Mahalanobis Support Vector Data Description (M-SVDD). In contrast to conventional SVDD methods that rely on Euclidean distance and assume isotropic feature distributions, our approach employs the Mahalanobis distance to adaptively scale feature dimensions and capture inter-feature correlations, enabling more expressive decision boundaries. In addition, a reconstruction-based auxiliary branch is introduced to preserve feature diversity and prevent representation collapse, further enhancing the robustness of anomaly detection. Extensive experiments on a collected mobile robot dataset and four public datasets demonstrate the effectiveness of the proposed method, as shown in the video https://youtu.be/yh1tn6DDD4A. Code and dataset are available at https://github.com/jamesyang7/M-SVDD.

  • 6 authors
·
May 9, 2025

Comprehensive Performance Evaluation of YOLOv12, YOLO11, YOLOv10, YOLOv9 and YOLOv8 on Detecting and Counting Fruitlet in Complex Orchard Environments

This study systematically performed an extensive real-world evaluation of the performances of all configurations of YOLOv8, YOLOv9, YOLOv10, YOLO11( or YOLOv11), and YOLOv12 object detection algorithms in terms of precision, recall, mean Average Precision at 50\% Intersection over Union (mAP@50), and computational speeds including pre-processing, inference, and post-processing times immature green apple (or fruitlet) detection in commercial orchards. Additionally, this research performed and validated in-field counting of the fruitlets using an iPhone and machine vision sensors. Among the configurations, YOLOv12l recorded the highest recall rate at 0.90, compared to all other configurations of YOLO models. Likewise, YOLOv10x achieved the highest precision score of 0.908, while YOLOv9 Gelan-c attained a precision of 0.903. Analysis of [email protected] revealed that YOLOv9 Gelan-base and YOLOv9 Gelan-e reached peak scores of 0.935, with YOLO11s and YOLOv12l following closely at 0.933 and 0.931, respectively. For counting validation using images captured with an iPhone 14 Pro, the YOLO11n configuration demonstrated outstanding accuracy, recording RMSE values of 4.51 for Honeycrisp, 4.59 for Cosmic Crisp, 4.83 for Scilate, and 4.96 for Scifresh; corresponding MAE values were 4.07, 3.98, 7.73, and 3.85. Similar performance trends were observed with RGB-D sensor data. Moreover, sensor-specific training on Intel Realsense data significantly enhanced model performance. YOLOv11n achieved highest inference speed of 2.4 ms, outperforming YOLOv8n (4.1 ms), YOLOv9 Gelan-s (11.5 ms), YOLOv10n (5.5 ms), and YOLOv12n (4.6 ms), underscoring its suitability for real-time object detection applications. (YOLOv12 architecture, YOLOv11 Architecture, YOLOv12 object detection, YOLOv11 object detecion, YOLOv12 segmentation)

  • 6 authors
·
Jul 1, 2024

SynSpill: Improved Industrial Spill Detection With Synthetic Data

Large-scale Vision-Language Models (VLMs) have transformed general-purpose visual recognition through strong zero-shot capabilities. However, their performance degrades significantly in niche, safety-critical domains such as industrial spill detection, where hazardous events are rare, sensitive, and difficult to annotate. This scarcity -- driven by privacy concerns, data sensitivity, and the infrequency of real incidents -- renders conventional fine-tuning of detectors infeasible for most industrial settings. We address this challenge by introducing a scalable framework centered on a high-quality synthetic data generation pipeline. We demonstrate that this synthetic corpus enables effective Parameter-Efficient Fine-Tuning (PEFT) of VLMs and substantially boosts the performance of state-of-the-art object detectors such as YOLO and DETR. Notably, in the absence of synthetic data (SynSpill dataset), VLMs still generalize better to unseen spill scenarios than these detectors. When SynSpill is used, both VLMs and detectors achieve marked improvements, with their performance becoming comparable. Our results underscore that high-fidelity synthetic data is a powerful means to bridge the domain gap in safety-critical applications. The combination of synthetic generation and lightweight adaptation offers a cost-effective, scalable pathway for deploying vision systems in industrial environments where real data is scarce/impractical to obtain. Project Page: https://synspill.vercel.app

  • 5 authors
·
Aug 13, 2025

Smart Timing for Mining: A Deep Learning Framework for Bitcoin Hardware ROI Prediction

Bitcoin mining hardware acquisition requires strategic timing due to volatile markets, rapid technological obsolescence, and protocol-driven revenue cycles. Despite mining's evolution into a capital-intensive industry, there is little guidance on when to purchase new Application-Specific Integrated Circuit (ASIC) hardware, and no prior computational frameworks address this decision problem. We address this gap by formulating hardware acquisition as a time series classification task, predicting whether purchasing ASIC machines yields profitable (Return on Investment (ROI) >= 1), marginal (0 < ROI < 1), or unprofitable (ROI <= 0) returns within one year. We propose MineROI-Net, an open source Transformer-based architecture designed to capture multi-scale temporal patterns in mining profitability. Evaluated on data from 20 ASIC miners released between 2015 and 2024 across diverse market regimes, MineROI-Net outperforms LSTM-based and TSLANet baselines, achieving 83.7% accuracy and 83.1% macro F1-score. The model demonstrates strong economic relevance, achieving 93.6% precision in detecting unprofitable periods and 98.5% precision for profitable ones, while avoiding misclassification of profitable scenarios as unprofitable and vice versa. These results indicate that MineROI-Net offers a practical, data-driven tool for timing mining hardware acquisitions, potentially reducing financial risk in capital-intensive mining operations. The model is available through: https://github.com/AMAAI-Lab/MineROI-Net.

Modeling Performance of Data Collection Systems for High-Energy Physics

Exponential increases in scientific experimental data are outstripping the rate of progress in silicon technology. As a result, heterogeneous combinations of architectures and process or device technologies are increasingly important to meet the computing demands of future scientific experiments. However, the complexity of heterogeneous computing systems requires systematic modeling to understand performance. We present a model which addresses this need by framing key aspects of data collection pipelines and constraints, and combines them with the important vectors of technology that shape alternatives, computing metrics that allow complex alternatives to be compared. For instance, a data collection pipeline may be characterized by parameters such as sensor sampling rates, amount of data collected, and the overall relevancy of retrieved samples. Alternatives to this pipeline are enabled by hardware development vectors including advancing CMOS, GPUs, neuromorphic computing, and edge computing. By calculating metrics for each alternative such as overall F1 score, power, hardware cost, and energy expended per relevant sample, this model allows alternate data collection systems to be rigorously compared. To demonstrate this model's capability, we apply it to the CMS experiment (and planned HL-LHC upgrade) to evaluate and compare the application of novel technologies in the data acquisition system (DAQ). We demonstrate that improvements to early stages in the DAQ are highly beneficial, greatly reducing the resources required at later stages of processing (such as a 60% power reduction) and increasing the amount of relevant data retrieved from the experiment per unit power (improving from 0.065 to 0.31 samples/kJ) However, we predict further advances will be required in order to meet overall power and cost constraints for the DAQ.

  • 3 authors
·
Jun 27, 2024

Analog and Multi-modal Manufacturing Datasets Acquired on the Future Factories Platform V2

This paper presents two industry-grade datasets captured during an 8-hour continuous operation of the manufacturing assembly line at the Future Factories Lab, University of South Carolina, on 08/13/2024. The datasets adhere to industry standards, covering communication protocols, actuators, control mechanisms, transducers, sensors, and cameras. Data collection utilized both integrated and external sensors throughout the laboratory, including sensors embedded within the actuators and externally installed devices. Additionally, high-performance cameras captured key aspects of the operation. In a prior experiment [1], a 30-hour continuous run was conducted, during which all anomalies were documented. Maintenance procedures were subsequently implemented to reduce potential errors and operational disruptions. The two datasets include: (1) a time-series analog dataset, and (2) a multi-modal time-series dataset containing synchronized system data and images. These datasets aim to support future research in advancing manufacturing processes by providing a platform for testing novel algorithms without the need to recreate physical manufacturing environments. Moreover, the datasets are open-source and designed to facilitate the training of artificial intelligence models, streamlining research by offering comprehensive, ready-to-use resources for various applications and projects.

  • 11 authors
·
Feb 7, 2025

Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware

Methane is a potent greenhouse gas, and detecting its leaks early via hyperspectral satellite imagery can help mitigate climate change. Meanwhile, many existing missions operate in manual tasking regimes only, thus missing potential events of interest. To overcome slow downlink rates cost-effectively, onboard detection is a viable solution. However, traditional methane enhancement methods are too computationally demanding for resource-limited onboard hardware. This work accelerates methane detection by focusing on efficient, low-power algorithms. We test fast target detection methods (ACE, CEM) that have not been previously used for methane detection and propose a Mag1c-SAS - a significantly faster variant of the current state-of-the-art algorithm for methane detection: Mag1c. To explore their true detection potential, we integrate them with a machine learning model (U-Net, LinkNet). Our results identify two promising candidates (Mag1c-SAS and CEM), both acceptably accurate for the detection of strong plumes and computationally efficient enough for onboard deployment: one optimized more for accuracy, the other more for speed, achieving up to ~100x and ~230x faster computation than original Mag1c on resource-limited hardware. Additionally, we propose and evaluate three band selection strategies. One of them can outperform the method traditionally used in the field while using fewer channels, leading to even faster processing without compromising accuracy. This research lays the foundation for future advancements in onboard methane detection with minimal hardware requirements, improving timely data delivery. The produced code, data, and models are open-sourced and can be accessed from https://github.com/zaitra/methane-filters-benchmark.

  • 3 authors
·
Jul 2, 2025

Quantization Robustness to Input Degradations for Object Detection

Post-training quantization (PTQ) is crucial for deploying efficient object detection models, like YOLO, on resource-constrained devices. However, the impact of reduced precision on model robustness to real-world input degradations such as noise, blur, and compression artifacts is a significant concern. This paper presents a comprehensive empirical study evaluating the robustness of YOLO models (nano to extra-large scales) across multiple precision formats: FP32, FP16 (TensorRT), Dynamic UINT8 (ONNX), and Static INT8 (TensorRT). We introduce and evaluate a degradation-aware calibration strategy for Static INT8 PTQ, where the TensorRT calibration process is exposed to a mix of clean and synthetically degraded images. Models were benchmarked on the COCO dataset under seven distinct degradation conditions (including various types and levels of noise, blur, low contrast, and JPEG compression) and a mixed-degradation scenario. Results indicate that while Static INT8 TensorRT engines offer substantial speedups (~1.5-3.3x) with a moderate accuracy drop (~3-7% mAP50-95) on clean data, the proposed degradation-aware calibration did not yield consistent, broad improvements in robustness over standard clean-data calibration across most models and degradations. A notable exception was observed for larger model scales under specific noise conditions, suggesting model capacity may influence the efficacy of this calibration approach. These findings highlight the challenges in enhancing PTQ robustness and provide insights for deploying quantized detectors in uncontrolled environments. All code and evaluation tables are available at https://github.com/AllanK24/QRID.

  • 3 authors
·
Aug 27, 2025 2

EVPropNet: Detecting Drones By Finding Propellers For Mid-Air Landing And Following

The rapid rise of accessibility of unmanned aerial vehicles or drones pose a threat to general security and confidentiality. Most of the commercially available or custom-built drones are multi-rotors and are comprised of multiple propellers. Since these propellers rotate at a high-speed, they are generally the fastest moving parts of an image and cannot be directly "seen" by a classical camera without severe motion blur. We utilize a class of sensors that are particularly suitable for such scenarios called event cameras, which have a high temporal resolution, low-latency, and high dynamic range. In this paper, we model the geometry of a propeller and use it to generate simulated events which are used to train a deep neural network called EVPropNet to detect propellers from the data of an event camera. EVPropNet directly transfers to the real world without any fine-tuning or retraining. We present two applications of our network: (a) tracking and following an unmarked drone and (b) landing on a near-hover drone. We successfully evaluate and demonstrate the proposed approach in many real-world experiments with different propeller shapes and sizes. Our network can detect propellers at a rate of 85.1% even when 60% of the propeller is occluded and can run at upto 35Hz on a 2W power budget. To our knowledge, this is the first deep learning-based solution for detecting propellers (to detect drones). Finally, our applications also show an impressive success rate of 92% and 90% for the tracking and landing tasks respectively.

  • 6 authors
·
Jun 28, 2021

Hardware Acceleration for Real-Time Wildfire Detection Onboard Drone Networks

Early wildfire detection in remote and forest areas is crucial for minimizing devastation and preserving ecosystems. Autonomous drones offer agile access to remote, challenging terrains, equipped with advanced imaging technology that delivers both high-temporal and detailed spatial resolution, making them valuable assets in the early detection and monitoring of wildfires. However, the limited computation and battery resources of Unmanned Aerial Vehicles (UAVs) pose significant challenges in implementing robust and efficient image classification models. Current works in this domain often operate offline, emphasizing the need for solutions that can perform inference in real time, given the constraints of UAVs. To address these challenges, this paper aims to develop a real-time image classification and fire segmentation model. It presents a comprehensive investigation into hardware acceleration using the Jetson Nano P3450 and the implications of TensorRT, NVIDIA's high-performance deep-learning inference library, on fire classification accuracy and speed. The study includes implementations of Quantization Aware Training (QAT), Automatic Mixed Precision (AMP), and post-training mechanisms, comparing them against the latest baselines for fire segmentation and classification. All experiments utilize the FLAME dataset - an image dataset collected by low-altitude drones during a prescribed forest fire. This work contributes to the ongoing efforts to enable real-time, on-board wildfire detection capabilities for UAVs, addressing speed and the computational and energy constraints of these crucial monitoring systems. The results show a 13% increase in classification speed compared to similar models without hardware optimization. Comparatively, loss and accuracy are within 1.225% of the original values.

  • 2 authors
·
Jan 15, 2024

Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning

Having accurate, detailed, and up-to-date information about the location and behavior of animals in the wild would revolutionize our ability to study and conserve ecosystems. We investigate the ability to automatically, accurately, and inexpensively collect such data, which could transform many fields of biology, ecology, and zoology into "big data" sciences. Motion sensor "camera traps" enable collecting wildlife pictures inexpensively, unobtrusively, and frequently. However, extracting information from these pictures remains an expensive, time-consuming, manual task. We demonstrate that such information can be automatically extracted by deep learning, a cutting-edge type of artificial intelligence. We train deep convolutional neural networks to identify, count, and describe the behaviors of 48 species in the 3.2-million-image Snapshot Serengeti dataset. Our deep neural networks automatically identify animals with over 93.8% accuracy, and we expect that number to improve rapidly in years to come. More importantly, if our system classifies only images it is confident about, our system can automate animal identification for 99.3% of the data while still performing at the same 96.6% accuracy as that of crowdsourced teams of human volunteers, saving more than 8.4 years (at 40 hours per week) of human labeling effort (i.e. over 17,000 hours) on this 3.2-million-image dataset. Those efficiency gains immediately highlight the importance of using deep neural networks to automate data extraction from camera-trap images. Our results suggest that this technology could enable the inexpensive, unobtrusive, high-volume, and even real-time collection of a wealth of information about vast numbers of animals in the wild.

  • 7 authors
·
Mar 16, 2017

A Sentinel-2 multi-year, multi-country benchmark dataset for crop classification and segmentation with deep learning

In this work we introduce Sen4AgriNet, a Sentinel-2 based time series multi country benchmark dataset, tailored for agricultural monitoring applications with Machine and Deep Learning. Sen4AgriNet dataset is annotated from farmer declarations collected via the Land Parcel Identification System (LPIS) for harmonizing country wide labels. These declarations have only recently been made available as open data, allowing for the first time the labeling of satellite imagery from ground truth data. We proceed to propose and standardise a new crop type taxonomy across Europe that address Common Agriculture Policy (CAP) needs, based on the Food and Agriculture Organization (FAO) Indicative Crop Classification scheme. Sen4AgriNet is the only multi-country, multi-year dataset that includes all spectral information. It is constructed to cover the period 2016-2020 for Catalonia and France, while it can be extended to include additional countries. Currently, it contains 42.5 million parcels, which makes it significantly larger than other available archives. We extract two sub-datasets to highlight its value for diverse Deep Learning applications; the Object Aggregated Dataset (OAD) and the Patches Assembled Dataset (PAD). OAD capitalizes zonal statistics of each parcel, thus creating a powerful label-to-features instance for classification algorithms. On the other hand, PAD structure generalizes the classification problem to parcel extraction and semantic segmentation and labeling. The PAD and OAD are examined under three different scenarios to showcase and model the effects of spatial and temporal variability across different years and different countries.

  • 4 authors
·
Apr 2, 2022

ComProScanner: A multi-agent based framework for composition-property structured data extraction from scientific literature

Since the advent of various pre-trained large language models, extracting structured knowledge from scientific text has experienced a revolutionary change compared with traditional machine learning or natural language processing techniques. Despite these advances, accessible automated tools that allow users to construct, validate, and visualise datasets from scientific literature extraction remain scarce. We therefore developed ComProScanner, an autonomous multi-agent platform that facilitates the extraction, validation, classification, and visualisation of machine-readable chemical compositions and properties, integrated with synthesis data from journal articles for comprehensive database creation. We evaluated our framework using 100 journal articles against 10 different LLMs, including both open-source and proprietary models, to extract highly complex compositions associated with ceramic piezoelectric materials and corresponding piezoelectric strain coefficients (d33), motivated by the lack of a large dataset for such materials. DeepSeek-V3-0324 outperformed all models with a significant overall accuracy of 0.82. This framework provides a simple, user-friendly, readily-usable package for extracting highly complex experimental data buried in the literature to build machine learning or deep learning datasets.

A Cost-Effective LLM-based Approach to Identify Wildlife Trafficking in Online Marketplaces

Wildlife trafficking remains a critical global issue, significantly impacting biodiversity, ecological stability, and public health. Despite efforts to combat this illicit trade, the rise of e-commerce platforms has made it easier to sell wildlife products, putting new pressure on wild populations of endangered and threatened species. The use of these platforms also opens a new opportunity: as criminals sell wildlife products online, they leave digital traces of their activity that can provide insights into trafficking activities as well as how they can be disrupted. The challenge lies in finding these traces. Online marketplaces publish ads for a plethora of products, and identifying ads for wildlife-related products is like finding a needle in a haystack. Learning classifiers can automate ad identification, but creating them requires costly, time-consuming data labeling that hinders support for diverse ads and research questions. This paper addresses a critical challenge in the data science pipeline for wildlife trafficking analytics: generating quality labeled data for classifiers that select relevant data. While large language models (LLMs) can directly label advertisements, doing so at scale is prohibitively expensive. We propose a cost-effective strategy that leverages LLMs to generate pseudo labels for a small sample of the data and uses these labels to create specialized classification models. Our novel method automatically gathers diverse and representative samples to be labeled while minimizing the labeling costs. Our experimental evaluation shows that our classifiers achieve up to 95% F1 score, outperforming LLMs at a lower cost. We present real use cases that demonstrate the effectiveness of our approach in enabling analyses of different aspects of wildlife trafficking.

  • 7 authors
·
Apr 29, 2025

AutoIOT: LLM-Driven Automated Natural Language Programming for AIoT Applications

The advent of Large Language Models (LLMs) has profoundly transformed our lives, revolutionizing interactions with AI and lowering the barrier to AI usage. While LLMs are primarily designed for natural language interaction, the extensive embedded knowledge empowers them to comprehend digital sensor data. This capability enables LLMs to engage with the physical world through IoT sensors and actuators, performing a myriad of AIoT tasks. Consequently, this evolution triggers a paradigm shift in conventional AIoT application development, democratizing its accessibility to all by facilitating the design and development of AIoT applications via natural language. However, some limitations need to be addressed to unlock the full potential of LLMs in AIoT application development. First, existing solutions often require transferring raw sensor data to LLM servers, which raises privacy concerns, incurs high query fees, and is limited by token size. Moreover, the reasoning processes of LLMs are opaque to users, making it difficult to verify the robustness and correctness of inference results. This paper introduces AutoIOT, an LLM-based automated program generator for AIoT applications. AutoIOT enables users to specify their requirements using natural language (input) and automatically synthesizes interpretable programs with documentation (output). AutoIOT automates the iterative optimization to enhance the quality of generated code with minimum user involvement. AutoIOT not only makes the execution of AIoT tasks more explainable but also mitigates privacy concerns and reduces token costs with local execution of synthesized programs. Extensive experiments and user studies demonstrate AutoIOT's remarkable capability in program synthesis for various AIoT tasks. The synthesized programs can match and even outperform some representative baselines.

  • 4 authors
·
Mar 7, 2025

High and Low Resolution Tradeoffs in Roadside Multimodal Sensing

Balancing cost and performance is crucial when choosing high- versus low-resolution point-cloud roadside sensors. For example, LiDAR delivers dense point cloud, while 4D millimeter-wave radar, though spatially sparser, embeds velocity cues that help distinguish objects and come at a lower price. Unfortunately, the sensor placement strategies will influence point cloud density and distribution across the coverage area. Compounding the first challenge is the fact that different sensor mixtures often demand distinct neural network architectures to maximize their complementary strengths. Without an evaluation framework that establishes a benchmark for comparison, it is imprudent to make claims regarding whether marginal gains result from higher resolution and new sensing modalities or from the algorithms. We present an ex-ante evaluation that addresses the two challenges. First, we realized a simulation tool that builds on integer programming to automatically compare different sensor placement strategies against coverage and cost jointly. Additionally, inspired by human multi-sensory integration, we propose a modular framework to assess whether reductions in spatial resolution can be compensated by informational richness in detecting traffic participants. Extensive experimental testing on the proposed framework shows that fusing velocity-encoded radar with low-resolution LiDAR yields marked gains (14 percent AP for pedestrians and an overall mAP improvement of 1.5 percent across six categories) at lower cost than high-resolution LiDAR alone. Notably, these marked gains hold regardless of the specific deep neural modules employed in our frame. The result challenges the prevailing assumption that high resolution are always superior to low-resolution alternatives.

  • 4 authors
·
Oct 2, 2024