- Decentralized Distributed Graph Coloring: Cluster Graphs Graph coloring is fundamental to distributed computing. We give the first sub-logarithmic distributed algorithm for coloring cluster graphs. These graphs are obtained from the underlying communication network by contracting nodes and edges, and they appear frequently as components in the study of distributed algorithms. In particular, we give a O(log^* n)-round algorithm to (Δ+1)-color cluster graphs of at least polylogarithmic degree. The previous best bound known was poly(log n) [Flin et al., SODA'24]. This properly generalizes results in the CONGEST model and shows that distributed graph problems can be solved quickly even when the node itself is decentralized. 3 authors · May 13, 2024
1 Spectral Policy Optimization: Coloring your Incorrect Reasoning in GRPO Reinforcement learning (RL) has demonstrated significant success in enhancing reasoning capabilities in large language models (LLMs). One of the most widely used RL methods is Group Relative Policy Optimization (GRPO)~Shao-2024-Deepseekmath, known for its memory efficiency and success in training DeepSeek-R1~Guo-2025-Deepseek. However, GRPO stalls when all sampled responses in a group are incorrect -- referred to as an all-negative-sample group -- as it fails to update the policy, hindering learning progress. The contributions of this paper are two-fold. First, we propose a simple yet effective framework that introduces response diversity within all-negative-sample groups in GRPO using AI feedback. We also provide a theoretical analysis, via a stylized model, showing how this diversification improves learning dynamics. Second, we empirically validate our approach, showing the improved performance across various model sizes (7B, 14B, 32B) in both offline and online learning settings with 10 benchmarks, including base and distilled variants. Our findings highlight that learning from all-negative-sample groups is not only feasible but beneficial, advancing recent insights from Xiong-2025-Minimalist. 5 authors · May 16, 2025
- Constricting the Computational Complexity Gap of the $4$-Coloring Problem in $(P_t,C_3)$-free Graphs The k-Coloring problem on hereditary graph classes has been a deeply researched problem over the last decade. A hereditary graph class is characterized by a (possibly infinite) list of minimal forbidden induced subgraphs. We say that a graph is (H_1,H_2,ldots)-free if it does not contain any of H_1,H_2,ldots as induced subgraphs. The complexity landscape of the problem remains unclear even when restricting to the case k=4 and classes defined by a few forbidden induced subgraphs. While the case of only one forbidden induced subgraph has been completely resolved lately, the complexity when considering two forbidden induced subgraphs still has a couple of unknown cases. In particular, 4-Coloring on (P_6,C_3)-free graphs is polynomial while it is NP-hard on (P_{22},C_3)-free graphs. We provide a reduction showing NP-completeness of 4-Coloring on (P_t,C_3)-free graphs for 19leq tleq 21, thus constricting the gap of cases whose complexity remains unknown. Our proof includes a computer search ensuring that the graph family obtained through the reduction is indeed P_{19}-free. 4 authors · Sep 2, 2025
- Image-to-Image Translation via Group-wise Deep Whitening-and-Coloring Transformation Recently, unsupervised exemplar-based image-to-image translation, conditioned on a given exemplar without the paired data, has accomplished substantial advancements. In order to transfer the information from an exemplar to an input image, existing methods often use a normalization technique, e.g., adaptive instance normalization, that controls the channel-wise statistics of an input activation map at a particular layer, such as the mean and the variance. Meanwhile, style transfer approaches similar task to image translation by nature, demonstrated superior performance by using the higher-order statistics such as covariance among channels in representing a style. In detail, it works via whitening (given a zero-mean input feature, transforming its covariance matrix into the identity). followed by coloring (changing the covariance matrix of the whitened feature to those of the style feature). However, applying this approach in image translation is computationally intensive and error-prone due to the expensive time complexity and its non-trivial backpropagation. In response, this paper proposes an end-to-end approach tailored for image translation that efficiently approximates this transformation with our novel regularization methods. We further extend our approach to a group-wise form for memory and time efficiency as well as image quality. Extensive qualitative and quantitative experiments demonstrate that our proposed method is fast, both in training and inference, and highly effective in reflecting the style of an exemplar. Finally, our code is available at https://github.com/WonwoongCho/GDWCT. 5 authors · Dec 24, 2018