new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

From Unlearning to UNBRANDING: A Benchmark for Trademark-Safe Text-to-Image Generation

The rapid progress of text-to-image diffusion models raises significant concerns regarding the unauthorized reproduction of trademarked content. While prior work targets general concepts (e.g., styles, celebrities), it fails to address specific brand identifiers. Crucially, we note that brand recognition is multi-dimensional, extending beyond explicit logos to encompass distinctive structural features (e.g., a car's front grille). To tackle this, we introduce unbranding, a novel task for the fine-grained removal of both trademarks and subtle structural brand features, while preserving semantic coherence. To facilitate research, we construct a comprehensive benchmark dataset. Recognizing that existing brand detectors are limited to logos and fail to capture abstract trade dress (e.g., the shape of a Coca-Cola bottle), we introduce a novel evaluation metric based on Vision Language Models (VLMs). This VLM-based metric uses a question-answering framework to probe images for both explicit logos and implicit, holistic brand characteristics. Furthermore, we observe that as model fidelity increases, with newer systems (SDXL, FLUX) synthesizing brand identifiers more readily than older models (Stable Diffusion), the urgency of the unbranding challenge is starkly highlighted. Our results, validated by our VLM metric, confirm unbranding is a distinct, practically relevant problem requiring specialized techniques. Project Page: https://gmum.github.io/UNBRANDING/.

  • 5 authors
·
Dec 15, 2025

kMaX-DeepLab: k-means Mask Transformer

The rise of transformers in vision tasks not only advances network backbone designs, but also starts a brand-new page to achieve end-to-end image recognition (e.g., object detection and panoptic segmentation). Originated from Natural Language Processing (NLP), transformer architectures, consisting of self-attention and cross-attention, effectively learn long-range interactions between elements in a sequence. However, we observe that most existing transformer-based vision models simply borrow the idea from NLP, neglecting the crucial difference between languages and images, particularly the extremely large sequence length of spatially flattened pixel features. This subsequently impedes the learning in cross-attention between pixel features and object queries. In this paper, we rethink the relationship between pixels and object queries and propose to reformulate the cross-attention learning as a clustering process. Inspired by the traditional k-means clustering algorithm, we develop a k-means Mask Xformer (kMaX-DeepLab) for segmentation tasks, which not only improves the state-of-the-art, but also enjoys a simple and elegant design. As a result, our kMaX-DeepLab achieves a new state-of-the-art performance on COCO val set with 58.0% PQ, Cityscapes val set with 68.4% PQ, 44.0% AP, and 83.5% mIoU, and ADE20K val set with 50.9% PQ and 55.2% mIoU without test-time augmentation or external dataset. We hope our work can shed some light on designing transformers tailored for vision tasks. TensorFlow code and models are available at https://github.com/google-research/deeplab2 A PyTorch re-implementation is also available at https://github.com/bytedance/kmax-deeplab

  • 8 authors
·
Jul 8, 2022