Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeNovel $|V_{cb}|$ extraction method via boosted $bc$-tagging with in-situ calibration
We present a novel method for measuring |V_{cb}| at the LHC using an advanced boosted-jet tagger to identify "bc signatures". By associating boosted W rightarrow bc signals with bc-matched jets from top-quark decays, we enable an in-situ calibration of the tagger. This approach significantly suppresses backgrounds while reducing uncertainties in flavor tagging efficiencies -- key to improving measurement precision. Our study is enabled by the development of realistic, AI-based large- and small-radius taggers, Sophon and the newly introduced SophonAK4, validated to match ATLAS and CMS's state-of-the-art taggers. The method complements the conventional small radius jet approach and enables a ~30% improvement in |V_{cb}| precision under HL-LHC projections. As a byproduct, it enhances H^{pm} rightarrow bc search sensitivity by a factor of 2--5 over the recent ATLAS result based on Run 2 data. Our work offers a new perspective for the precision |V_{cb}| measurement and highlights the potential of using advanced tagging models to probe unexplored boosted regimes at the LHC.
Particle Transformer for Jet Tagging
Jet tagging is a critical yet challenging classification task in particle physics. While deep learning has transformed jet tagging and significantly improved performance, the lack of a large-scale public dataset impedes further enhancement. In this work, we present JetClass, a new comprehensive dataset for jet tagging. The JetClass dataset consists of 100 M jets, about two orders of magnitude larger than existing public datasets. A total of 10 types of jets are simulated, including several types unexplored for tagging so far. Based on the large dataset, we propose a new Transformer-based architecture for jet tagging, called Particle Transformer (ParT). By incorporating pairwise particle interactions in the attention mechanism, ParT achieves higher tagging performance than a plain Transformer and surpasses the previous state-of-the-art, ParticleNet, by a large margin. The pre-trained ParT models, once fine-tuned, also substantially enhance the performance on two widely adopted jet tagging benchmarks. The dataset, code and models are publicly available at https://github.com/jet-universe/particle_transformer.
HEP-JEPA: A foundation model for collider physics using joint embedding predictive architecture
We present a transformer architecture-based foundation model for tasks at high-energy particle colliders such as the Large Hadron Collider. We train the model to classify jets using a self-supervised strategy inspired by the Joint Embedding Predictive Architecture. We use the JetClass dataset containing 100M jets of various known particles to pre-train the model with a data-centric approach -- the model uses a fraction of the jet constituents as the context to predict the embeddings of the unseen target constituents. Our pre-trained model fares well with other datasets for standard classification benchmark tasks. We test our model on two additional downstream tasks: top tagging and differentiating light-quark jets from gluon jets. We also evaluate our model with task-specific metrics and baselines and compare it with state-of-the-art models in high-energy physics. Project site: https://hep-jepa.github.io/
Sets are all you need: Ultrafast jet classification on FPGAs for HL-LHC
We study various machine learning based algorithms for performing accurate jet flavor classification on field-programmable gate arrays and demonstrate how latency and resource consumption scale with the input size and choice of algorithm. These architectures provide an initial design for models that could be used for tagging at the CERN LHC during its high-luminosity phase. The high-luminosity upgrade will lead to a five-fold increase in its instantaneous luminosity for proton-proton collisions and, in turn, higher data volume and complexity, such as the availability of jet constituents. Through quantization-aware training and efficient hardware implementations, we show that O(100) ns inference of complex architectures such as deep sets and interaction networks is feasible at a low computational resource cost.
Learning Symmetry-Independent Jet Representations via Jet-Based Joint Embedding Predictive Architecture
In high energy physics, self-supervised learning (SSL) methods have the potential to aid in the creation of machine learning models without the need for labeled datasets for a variety of tasks, including those related to jets -- narrow sprays of particles produced by quarks and gluons in high energy particle collisions. This study introduces an approach to learning jet representations without hand-crafted augmentations using a jet-based joint embedding predictive architecture (J-JEPA), which aims to predict various physical targets from an informative context. As our method does not require hand-crafted augmentation like other common SSL techniques, J-JEPA avoids introducing biases that could harm downstream tasks. Since different tasks generally require invariance under different augmentations, this training without hand-crafted augmentation enables versatile applications, offering a pathway toward a cross-task foundation model. We finetune the representations learned by J-JEPA for jet tagging and benchmark them against task-specific representations.
Scaling Particle Collision Data Analysis
For decades, researchers have developed task-specific models to address scientific challenges across diverse disciplines. Recently, large language models (LLMs) have shown enormous capabilities in handling general tasks; however, these models encounter difficulties in addressing real-world scientific problems, particularly in domains involving large-scale numerical data analysis, such as experimental high energy physics. This limitation is primarily due to BPE tokenization's inefficacy with numerical data. In this paper, we propose a task-agnostic architecture, BBT-Neutron, which employs a binary tokenization method to facilitate pretraining on a mixture of textual and large-scale numerical experimental data. We demonstrate the application of BBT-Neutron to Jet Origin Identification (JoI), a critical categorization challenge in high-energy physics that distinguishes jets originating from various quarks or gluons. Our results indicate that BBT-Neutron achieves comparable performance to state-of-the-art task-specific JoI models. Furthermore, we examine the scaling behavior of BBT-Neutron's performance with increasing data volume, suggesting the potential for BBT-Neutron to serve as a foundational model for particle physics data analysis, with possible extensions to a broad spectrum of scientific computing applications for Big Science experiments, industrial manufacturing and spacial computing. The project code is available at https://github.com/supersymmetry-technologies/bbt-neutron.
A Method to Simultaneously Facilitate All Jet Physics Tasks
Machine learning has become an essential tool in jet physics. Due to their complex, high-dimensional nature, jets can be explored holistically by neural networks in ways that are not possible manually. However, innovations in all areas of jet physics are proceeding in parallel. We show that specially constructed machine learning models trained for a specific jet classification task can improve the accuracy, precision, or speed of all other jet physics tasks. This is demonstrated by training on a particular multiclass generation and classification task and then using the learned representation for different generation and classification tasks, for datasets with a different (full) detector simulation, for jets from a different collision system (pp versus ep), for generative models, for likelihood ratio estimation, and for anomaly detection. We consider, our OmniLearn approach thus as a jet-physics foundation model. It is made publicly available for use in any area where state-of-the-art precision is required for analyses involving jets and their substructure.
Graph Structure from Point Clouds: Geometric Attention is All You Need
The use of graph neural networks has produced significant advances in point cloud problems, such as those found in high energy physics. The question of how to produce a graph structure in these problems is usually treated as a matter of heuristics, employing fully connected graphs or K-nearest neighbors. In this work, we elevate this question to utmost importance as the Topology Problem. We propose an attention mechanism that allows a graph to be constructed in a learned space that handles geometrically the flow of relevance, providing one solution to the Topology Problem. We test this architecture, called GravNetNorm, on the task of top jet tagging, and show that it is competitive in tagging accuracy, and uses far fewer computational resources than all other comparable models.
Is Tokenization Needed for Masked Particle Modelling?
In this work, we significantly enhance masked particle modeling (MPM), a self-supervised learning scheme for constructing highly expressive representations of unordered sets relevant to developing foundation models for high-energy physics. In MPM, a model is trained to recover the missing elements of a set, a learning objective that requires no labels and can be applied directly to experimental data. We achieve significant performance improvements over previous work on MPM by addressing inefficiencies in the implementation and incorporating a more powerful decoder. We compare several pre-training tasks and introduce new reconstruction methods that utilize conditional generative models without data tokenization or discretization. We show that these new methods outperform the tokenized learning objective from the original MPM on a new test bed for foundation models for jets, which includes using a wide variety of downstream tasks relevant to jet physics, such as classification, secondary vertex finding, and track identification.
RODEM Jet Datasets
We present the RODEM Jet Datasets, a comprehensive collection of simulated large-radius jets designed to support the development and evaluation of machine-learning algorithms in particle physics. These datasets encompass a diverse range of jet sources, including quark/gluon jets, jets from the decay of W bosons, top quarks, and heavy new-physics particles. The datasets provide detailed substructure information, including jet kinematics, constituent kinematics, and track displacement details, enabling a wide range of applications in jet tagging, anomaly detection, and generative modelling.
Masked Particle Modeling on Sets: Towards Self-Supervised High Energy Physics Foundation Models
We propose masked particle modeling (MPM) as a self-supervised method for learning generic, transferable, and reusable representations on unordered sets of inputs for use in high energy physics (HEP) scientific data. This work provides a novel scheme to perform masked modeling based pre-training to learn permutation invariant functions on sets. More generally, this work provides a step towards building large foundation models for HEP that can be generically pre-trained with self-supervised learning and later fine-tuned for a variety of down-stream tasks. In MPM, particles in a set are masked and the training objective is to recover their identity, as defined by a discretized token representation of a pre-trained vector quantized variational autoencoder. We study the efficacy of the method in samples of high energy jets at collider physics experiments, including studies on the impact of discretization, permutation invariance, and ordering. We also study the fine-tuning capability of the model, showing that it can be adapted to tasks such as supervised and weakly supervised jet classification, and that the model can transfer efficiently with small fine-tuning data sets to new classes and new data domains.
A Language Model for Particle Tracking
Particle tracking is crucial for almost all physics analysis programs at the Large Hadron Collider. Deep learning models are pervasively used in particle tracking related tasks. However, the current practice is to design and train one deep learning model for one task with supervised learning techniques. The trained models work well for tasks they are trained on but show no or little generalization capabilities. We propose to unify these models with a language model. In this paper, we present a tokenized detector representation that allows us to train a BERT model for particle tracking. The trained BERT model, namely TrackingBERT, offers latent detector module embedding that can be used for other tasks. This work represents the first step towards developing a foundational model for particle detector understanding.
QINNs: Quantum-Informed Neural Networks
Classical deep neural networks can learn rich multi-particle correlations in collider data, but their inductive biases are rarely anchored in physics structure. We propose quantum-informed neural networks (QINNs), a general framework that brings quantum information concepts and quantum observables into purely classical models. While the framework is broad, in this paper, we study one concrete realisation that encodes each particle as a qubit and uses the Quantum Fisher Information Matrix (QFIM) as a compact, basis-independent summary of particle correlations. Using jet tagging as a case study, QFIMs act as lightweight embeddings in graph neural networks, increasing model expressivity and plasticity. The QFIM reveals distinct patterns for QCD and hadronic top jets that align with physical expectations. Thus, QINNs offer a practical, interpretable, and scalable route to quantum-informed analyses, that is, tomography, of particle collisions, particularly by enhancing well-established deep learning approaches.
NRGBoost: Energy-Based Generative Boosted Trees
Despite the rise to dominance of deep learning in unstructured data domains, tree-based methods such as Random Forests (RF) and Gradient Boosted Decision Trees (GBDT) are still the workhorses for handling discriminative tasks on tabular data. We explore generative extensions of these popular algorithms with a focus on explicitly modeling the data density (up to a normalization constant), thus enabling other applications besides sampling. As our main contribution we propose an energy-based generative boosting algorithm that is analogous to the second order boosting implemented in popular packages like XGBoost. We show that, despite producing a generative model capable of handling inference tasks over any input variable, our proposed algorithm can achieve similar discriminative performance to GBDT on a number of real world tabular datasets, outperforming alternative generative approaches. At the same time, we show that it is also competitive with neural network based models for sampling.
Finetuning Foundation Models for Joint Analysis Optimization
In this work we demonstrate that significant gains in performance and data efficiency can be achieved in High Energy Physics (HEP) by moving beyond the standard paradigm of sequential optimization or reconstruction and analysis components. We conceptually connect HEP reconstruction and analysis to modern machine learning workflows such as pretraining, finetuning, domain adaptation and high-dimensional embedding spaces and quantify the gains in the example usecase of searches of heavy resonances decaying via an intermediate di-Higgs system to four b-jets.
Adapting and Evaluating Influence-Estimation Methods for Gradient-Boosted Decision Trees
Influence estimation analyzes how changes to the training data can lead to different model predictions; this analysis can help us better understand these predictions, the models making those predictions, and the data sets they're trained on. However, most influence-estimation techniques are designed for deep learning models with continuous parameters. Gradient-boosted decision trees (GBDTs) are a powerful and widely-used class of models; however, these models are black boxes with opaque decision-making processes. In the pursuit of better understanding GBDT predictions and generally improving these models, we adapt recent and popular influence-estimation methods designed for deep learning models to GBDTs. Specifically, we adapt representer-point methods and TracIn, denoting our new methods TREX and BoostIn, respectively; source code is available at https://github.com/jjbrophy47/tree_influence. We compare these methods to LeafInfluence and other baselines using 5 different evaluation measures on 22 real-world data sets with 4 popular GBDT implementations. These experiments give us a comprehensive overview of how different approaches to influence estimation work in GBDT models. We find BoostIn is an efficient influence-estimation method for GBDTs that performs equally well or better than existing work while being four orders of magnitude faster. Our evaluation also suggests the gold-standard approach of leave-one-out (LOO) retraining consistently identifies the single-most influential training example but performs poorly at finding the most influential set of training examples for a given target prediction.
AeroLite: Tag-Guided Lightweight Generation of Aerial Image Captions
Accurate and automated captioning of aerial imagery is crucial for applications like environmental monitoring, urban planning, and disaster management. However, this task remains challenging due to complex spatial semantics and domain variability. To address these issues, we introduce AeroLite, a lightweight, tag-guided captioning framework designed to equip small-scale language models (1--3B parameters) with robust and interpretable captioning capabilities specifically for remote sensing images. AeroLite leverages GPT-4o to generate a large-scale, semantically rich pseudo-caption dataset by integrating multiple remote sensing benchmarks, including DLRSD, iSAID, LoveDA, WHU, and RSSCN7. To explicitly capture key semantic elements such as orientation and land-use types, AeroLite employs natural language processing techniques to extract relevant semantic tags. These tags are then learned by a dedicated multi-label CLIP encoder, ensuring precise semantic predictions. To effectively fuse visual and semantic information, we propose a novel bridging multilayer perceptron (MLP) architecture, aligning semantic tags with visual embeddings while maintaining minimal computational overhead. AeroLite's flexible design also enables seamless integration with various pretrained large language models. We adopt a two-stage LoRA-based training approach: the initial stage leverages our pseudo-caption dataset to capture broad remote sensing semantics, followed by fine-tuning on smaller, curated datasets like UCM and Sydney Captions to refine domain-specific alignment. Experimental evaluations demonstrate that AeroLite surpasses significantly larger models (e.g., 13B parameters) in standard captioning metrics, including BLEU and METEOR, while maintaining substantially lower computational costs.
Ultra Fast Transformers on FPGAs for Particle Physics Experiments
This work introduces a highly efficient implementation of the transformer architecture on a Field-Programmable Gate Array (FPGA) by using the hls4ml tool. Given the demonstrated effectiveness of transformer models in addressing a wide range of problems, their application in experimental triggers within particle physics becomes a subject of significant interest. In this work, we have implemented critical components of a transformer model, such as multi-head attention and softmax layers. To evaluate the effectiveness of our implementation, we have focused on a particle physics jet flavor tagging problem, employing a public dataset. We recorded latency under 2 mus on the Xilinx UltraScale+ FPGA, which is compatible with hardware trigger requirements at the CERN Large Hadron Collider experiments.
LLM4Tag: Automatic Tagging System for Information Retrieval via Large Language Models
Tagging systems play an essential role in various information retrieval applications such as search engines and recommender systems. Recently, Large Language Models (LLMs) have been applied in tagging systems due to their extensive world knowledge, semantic understanding, and reasoning capabilities. Despite achieving remarkable performance, existing methods still have limitations, including difficulties in retrieving relevant candidate tags comprehensively, challenges in adapting to emerging domain-specific knowledge, and the lack of reliable tag confidence quantification. To address these three limitations above, we propose an automatic tagging system LLM4Tag. First, a graph-based tag recall module is designed to effectively and comprehensively construct a small-scale highly relevant candidate tag set. Subsequently, a knowledge-enhanced tag generation module is employed to generate accurate tags with long-term and short-term knowledge injection. Finally, a tag confidence calibration module is introduced to generate reliable tag confidence scores. Extensive experiments over three large-scale industrial datasets show that LLM4Tag significantly outperforms the state-of-the-art baselines and LLM4Tag has been deployed online for content tagging to serve hundreds of millions of users.
The Machine Learning Landscape of Top Taggers
Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.
Deep Boosting Learning: A Brand-new Cooperative Approach for Image-Text Matching
Image-text matching remains a challenging task due to heterogeneous semantic diversity across modalities and insufficient distance separability within triplets. Different from previous approaches focusing on enhancing multi-modal representations or exploiting cross-modal correspondence for more accurate retrieval, in this paper we aim to leverage the knowledge transfer between peer branches in a boosting manner to seek a more powerful matching model. Specifically, we propose a brand-new Deep Boosting Learning (DBL) algorithm, where an anchor branch is first trained to provide insights into the data properties, with a target branch gaining more advanced knowledge to develop optimal features and distance metrics. Concretely, an anchor branch initially learns the absolute or relative distance between positive and negative pairs, providing a foundational understanding of the particular network and data distribution. Building upon this knowledge, a target branch is concurrently tasked with more adaptive margin constraints to further enlarge the relative distance between matched and unmatched samples. Extensive experiments validate that our DBL can achieve impressive and consistent improvements based on various recent state-of-the-art models in the image-text matching field, and outperform related popular cooperative strategies, e.g., Conventional Distillation, Mutual Learning, and Contrastive Learning. Beyond the above, we confirm that DBL can be seamlessly integrated into their training scenarios and achieve superior performance under the same computational costs, demonstrating the flexibility and broad applicability of our proposed method. Our code is publicly available at: https://github.com/Paranioar/DBL.
Jet-Nemotron: Efficient Language Model with Post Neural Architecture Search
We present Jet-Nemotron, a new family of hybrid-architecture language models, which matches or exceeds the accuracy of leading full-attention models while significantly improving generation throughput. Jet-Nemotron is developed using Post Neural Architecture Search (PostNAS), a novel neural architecture exploration pipeline that enables efficient model design. Unlike prior approaches, PostNAS begins with a pre-trained full-attention model and freezes its MLP weights, allowing efficient exploration of attention block designs. The pipeline includes four key components: (1) learning optimal full-attention layer placement and elimination, (2) linear attention block selection, (3) designing new attention blocks, and (4) performing hardware-aware hyperparameter search. Our Jet-Nemotron-2B model achieves comparable or superior accuracy to Qwen3, Qwen2.5, Gemma3, and Llama3.2 across a comprehensive suite of benchmarks while delivering up to 53.6x generation throughput speedup and 6.1x prefilling speedup. It also achieves higher accuracy on MMLU and MMLU-Pro than recent advanced MoE full-attention models, such as DeepSeek-V3-Small and Moonlight, despite their larger scale with 15B total and 2.2B activated parameters.
M3PT: A Multi-Modal Model for POI Tagging
POI tagging aims to annotate a point of interest (POI) with some informative tags, which facilitates many services related to POIs, including search, recommendation, and so on. Most of the existing solutions neglect the significance of POI images and seldom fuse the textual and visual features of POIs, resulting in suboptimal tagging performance. In this paper, we propose a novel Multi-Modal Model for POI Tagging, namely M3PT, which achieves enhanced POI tagging through fusing the target POI's textual and visual features, and the precise matching between the multi-modal representations. Specifically, we first devise a domain-adaptive image encoder (DIE) to obtain the image embeddings aligned to their gold tags' semantics. Then, in M3PT's text-image fusion module (TIF), the textual and visual representations are fully fused into the POIs' content embeddings for the subsequent matching. In addition, we adopt a contrastive learning strategy to further bridge the gap between the representations of different modalities. To evaluate the tagging models' performance, we have constructed two high-quality POI tagging datasets from the real-world business scenario of Ali Fliggy. Upon the datasets, we conducted the extensive experiments to demonstrate our model's advantage over the baselines of uni-modality and multi-modality, and verify the effectiveness of important components in M3PT, including DIE, TIF and the contrastive learning strategy.
List Items One by One: A New Data Source and Learning Paradigm for Multimodal LLMs
Set-of-Mark (SoM) Prompting unleashes the visual grounding capability of GPT-4V, by enabling the model to associate visual objects with tags inserted on the image. These tags, marked with alphanumerics, can be indexed via text tokens for easy reference. Despite the extraordinary performance from GPT-4V, we observe that other Multimodal Large Language Models (MLLMs) struggle to understand these visual tags. To promote the learning of SoM prompting for open-source models, we propose a new learning paradigm: "list items one by one," which asks the model to enumerate and describe all visual tags placed on the image following the alphanumeric orders of tags. By integrating our curated dataset with other visual instruction tuning datasets, we are able to equip existing MLLMs with the SoM prompting ability. Furthermore, we evaluate our finetuned SoM models on five MLLM benchmarks. We find that this new dataset, even in a relatively small size (10k-30k images with tags), significantly enhances visual reasoning capabilities and reduces hallucinations for MLLMs. Perhaps surprisingly, these improvements persist even when the visual tags are omitted from input images during inference. This suggests the potential of "list items one by one" as a new paradigm for training MLLMs, which strengthens the object-text alignment through the use of visual tags in the training stage. Finally, we conduct analyses by probing trained models to understand the working mechanism of SoM. Our code and data are available at https://github.com/zzxslp/SoM-LLaVA.
AllShowers: One model for all calorimeter showers
Accurate and efficient detector simulation is essential for modern collider experiments. To reduce the high computational cost, various fast machine learning surrogate models have been proposed. Traditional surrogate models for calorimeter shower modeling train separate networks for each particle species, limiting scalability and reuse. We introduce AllShowers, a unified generative model that simulates calorimeter showers across multiple particle types using a single generative model. AllShowers is a continuous normalizing flow model with a Transformer architecture, enabling it to generate complex spatial and energy correlations in variable-length point cloud representations of showers. Trained on a diverse dataset of simulated showers in the highly granular ILD detector, the model demonstrates the ability to generate realistic showers for electrons, photons, and charged and neutral hadrons across a wide range of incident energies and angles without retraining. In addition to unifying shower generation for multiple particle types, AllShowers surpasses the fidelity of previous single-particle-type models for hadronic showers. Key innovations include the use of a layer embedding, allowing the model to learn all relevant calorimeter layer properties; a custom attention masking scheme to reduce computational demands and introduce a helpful inductive bias; and a shower- and layer-wise optimal transport mapping to improve training convergence and sample quality. AllShowers marks a significant step towards a universal model for calorimeter shower simulations in collider experiments.
End-to-end codesign of Hessian-aware quantized neural networks for FPGAs and ASICs
We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NNs) for efficient field-programmable gate array (FPGA) and application-specific integrated circuit (ASIC) hardware. Our approach leverages Hessian-aware quantization (HAWQ) of NNs, the Quantized Open Neural Network Exchange (QONNX) intermediate representation, and the hls4ml tool flow for transpiling NNs into FPGA and ASIC firmware. This makes efficient NN implementations in hardware accessible to nonexperts, in a single open-sourced workflow that can be deployed for real-time machine learning applications in a wide range of scientific and industrial settings. We demonstrate the workflow in a particle physics application involving trigger decisions that must operate at the 40 MHz collision rate of the CERN Large Hadron Collider (LHC). Given the high collision rate, all data processing must be implemented on custom ASIC and FPGA hardware within a strict area and latency. Based on these constraints, we implement an optimized mixed-precision NN classifier for high-momentum particle jets in simulated LHC proton-proton collisions.
#InsTag: Instruction Tagging for Analyzing Supervised Fine-tuning of Large Language Models
Foundation language models obtain the instruction-following ability through supervised fine-tuning (SFT). Diversity and complexity are considered critical factors of a successful SFT dataset, while their definitions remain obscure and lack quantitative analyses. In this work, we propose InsTag, an open-set fine-grained tagger, to tag samples within SFT datasets based on semantics and intentions and define instruction diversity and complexity regarding tags. We obtain 6.6K tags to describe comprehensive user queries. Then we analyze popular open-sourced SFT datasets and find that the model ability grows with more diverse and complex data. Based on this observation, we propose a data selector based on InsTag to select 6K diverse and complex samples from open-source datasets and fine-tune models on InsTag-selected data. The resulting models, TagLM, outperform open-source models based on considerably larger SFT data evaluated by MT-Bench, echoing the importance of query diversity and complexity. We open-source InsTag in https://github.com/OFA-Sys/InsTag.
In-Context Learning for Extreme Multi-Label Classification
Multi-label classification problems with thousands of classes are hard to solve with in-context learning alone, as language models (LMs) might lack prior knowledge about the precise classes or how to assign them, and it is generally infeasible to demonstrate every class in a prompt. We propose a general program, Infer--Retrieve--Rank, that defines multi-step interactions between LMs and retrievers to efficiently tackle such problems. We implement this program using the DSPy programming model, which specifies in-context systems in a declarative manner, and use DSPy optimizers to tune it towards specific datasets by bootstrapping only tens of few-shot examples. Our primary extreme classification program, optimized separately for each task, attains state-of-the-art results across three benchmarks (HOUSE, TECH, TECHWOLF). We apply the same program to a benchmark with vastly different characteristics and attain competitive performance as well (BioDEX). Unlike prior work, our proposed solution requires no finetuning, is easily applicable to new tasks, alleviates prompt engineering, and requires only tens of labeled examples. Our code is public at https://github.com/KarelDO/xmc.dspy.
Astro-HEP-BERT: A bidirectional language model for studying the meanings of concepts in astrophysics and high energy physics
I present Astro-HEP-BERT, a transformer-based language model specifically designed for generating contextualized word embeddings (CWEs) to study the meanings of concepts in astrophysics and high-energy physics. Built on a general pretrained BERT model, Astro-HEP-BERT underwent further training over three epochs using the Astro-HEP Corpus, a dataset I curated from 21.84 million paragraphs extracted from more than 600,000 scholarly articles on arXiv, all belonging to at least one of these two scientific domains. The project demonstrates both the effectiveness and feasibility of adapting a bidirectional transformer for applications in the history, philosophy, and sociology of science (HPSS). The entire training process was conducted using freely available code, pretrained weights, and text inputs, completed on a single MacBook Pro Laptop (M2/96GB). Preliminary evaluations indicate that Astro-HEP-BERT's CWEs perform comparably to domain-adapted BERT models trained from scratch on larger datasets for domain-specific word sense disambiguation and induction and related semantic change analyses. This suggests that retraining general language models for specific scientific domains can be a cost-effective and efficient strategy for HPSS researchers, enabling high performance without the need for extensive training from scratch.
Can GNN be Good Adapter for LLMs?
Recently, large language models (LLMs) have demonstrated superior capabilities in understanding and zero-shot learning on textual data, promising significant advances for many text-related domains. In the graph domain, various real-world scenarios also involve textual data, where tasks and node features can be described by text. These text-attributed graphs (TAGs) have broad applications in social media, recommendation systems, etc. Thus, this paper explores how to utilize LLMs to model TAGs. Previous methods for TAG modeling are based on million-scale LMs. When scaled up to billion-scale LLMs, they face huge challenges in computational costs. Additionally, they also ignore the zero-shot inference capabilities of LLMs. Therefore, we propose GraphAdapter, which uses a graph neural network (GNN) as an efficient adapter in collaboration with LLMs to tackle TAGs. In terms of efficiency, the GNN adapter introduces only a few trainable parameters and can be trained with low computation costs. The entire framework is trained using auto-regression on node text (next token prediction). Once trained, GraphAdapter can be seamlessly fine-tuned with task-specific prompts for various downstream tasks. Through extensive experiments across multiple real-world TAGs, GraphAdapter based on Llama 2 gains an average improvement of approximately 5\% in terms of node classification. Furthermore, GraphAdapter can also adapt to other language models, including RoBERTa, GPT-2. The promising results demonstrate that GNNs can serve as effective adapters for LLMs in TAG modeling.
Name Tagging Under Domain Shift via Metric Learning for Life Sciences
Name tagging is a key component of Information Extraction (IE), particularly in scientific domains such as biomedicine and chemistry, where large language models (LLMs), e.g., ChatGPT, fall short. We investigate the applicability of transfer learning for enhancing a name tagging model trained in the biomedical domain (the source domain) to be used in the chemical domain (the target domain). A common practice for training such a model in a few-shot learning setting is to pretrain the model on the labeled source data, and then, to finetune it on a hand-full of labeled target examples. In our experiments we observed that such a model is prone to mis-labeling the source entities, which can often appear in the text, as the target entities. To alleviate this problem, we propose a model to transfer the knowledge from the source domain to the target domain, however, at the same time, to project the source entities and target entities into separate regions of the feature space. This diminishes the risk of mis-labeling the source entities as the target entities. Our model consists of two stages: 1) entity grouping in the source domain, which incorporates knowledge from annotated events to establish relations between entities, and 2) entity discrimination in the target domain, which relies on pseudo labeling and contrastive learning to enhance discrimination between the entities in the two domains. We carry out our extensive experiments across three source and three target datasets, and demonstrate that our method outperforms the baselines, in some scenarios by 5\% absolute value.
Gradient Boosting Neural Networks: GrowNet
A novel gradient boosting framework is proposed where shallow neural networks are employed as ``weak learners''. General loss functions are considered under this unified framework with specific examples presented for classification, regression, and learning to rank. A fully corrective step is incorporated to remedy the pitfall of greedy function approximation of classic gradient boosting decision tree. The proposed model rendered outperforming results against state-of-the-art boosting methods in all three tasks on multiple datasets. An ablation study is performed to shed light on the effect of each model components and model hyperparameters.
HyperTrack: Neural Combinatorics for High Energy Physics
Combinatorial inverse problems in high energy physics span enormous algorithmic challenges. This work presents a new deep learning driven clustering algorithm that utilizes a space-time non-local trainable graph constructor, a graph neural network, and a set transformer. The model is trained with loss functions at the graph node, edge and object level, including contrastive learning and meta-supervision. The algorithm can be applied to problems such as charged particle tracking, calorimetry, pile-up discrimination, jet physics, and beyond. We showcase the effectiveness of this cutting-edge AI approach through particle tracking simulations. The code is available online.
Observation of nuclear modification of energy-energy correlators inside jets in heavy ion collisions
Energy-energy correlators are constructed by averaging the number of charged particle pairs within jets, weighted by the product of their transverse momenta, as a function of the angular separation of the particles within a pair. They are sensitive to a multitude of perturbative and nonperturbative quantum chromodynamics phenomena in high-energy particle collisions. Using lead-lead data recorded with the CMS detector, energy-energy correlators inside high transverse momentum jets are measured in heavy ion collisions for the first time. The data are obtained at a nucleon-nucleon center-of-mass energy of 5.02 TeV and correspond to an integrated luminosity of 1.70 nb^{-1}. A similar analysis is done for proton-proton collisions at the same center-of-mass energy to establish a reference. The ratio of lead-lead to proton-proton energy-energy correlators reveals significant jet substructure modifications in the quark-gluon plasma. The results are compared to different models that incorporate either color coherence or medium response effects, where the two effects predict similar substructure modifications.
Solving Key Challenges in Collider Physics with Foundation Models
Foundation Models are neural networks that are capable of simultaneously solving many problems. Large Language Foundation Models like ChatGPT have revolutionized many aspects of daily life, but their impact for science is not yet clear. In this paper, we use a new Foundation Model for hadronic jets to solve three key challenges in collider physics. In particular, we show how experiments can (1) save significant computing power when developing reconstruction algorithms, (2) perform a complete uncertainty quantification for high-dimensional measurements, and (3) search for new physics with model agnostic methods using low-level inputs. In each case, there are significant computational or methodological challenges with current methods that limit the science potential of deep learning algorithms. By solving each problem, we take jet Foundation Models beyond proof-of-principle studies and into the toolkit of practitioners.
Tag2Text: Guiding Vision-Language Model via Image Tagging
This paper presents Tag2Text, a vision language pre-training (VLP) framework, which introduces image tagging into vision-language models to guide the learning of visual-linguistic features. In contrast to prior works which utilize object tags either manually labeled or automatically detected with a limited detector, our approach utilizes tags parsed from its paired text to learn an image tagger and meanwhile provides guidance to vision-language models. Given that, Tag2Text can utilize large-scale annotation-free image tags in accordance with image-text pairs, and provides more diverse tag categories beyond objects. As a result, Tag2Text achieves a superior image tag recognition ability by exploiting fine-grained text information. Moreover, by leveraging tagging guidance, Tag2Text effectively enhances the performance of vision-language models on both generation-based and alignment-based tasks. Across a wide range of downstream benchmarks, Tag2Text achieves state-of-the-art or competitive results with similar model sizes and data scales, demonstrating the efficacy of the proposed tagging guidance.
On Gradient Boosted Decision Trees and Neural Rankers: A Case-Study on Short-Video Recommendations at ShareChat
Practitioners who wish to build real-world applications that rely on ranking models, need to decide which modelling paradigm to follow. This is not an easy choice to make, as the research literature on this topic has been shifting in recent years. In particular, whilst Gradient Boosted Decision Trees (GBDTs) have reigned supreme for more than a decade, the flexibility of neural networks has allowed them to catch up, and recent works report accuracy metrics that are on par. Nevertheless, practical systems require considerations beyond mere accuracy metrics to decide on a modelling approach. This work describes our experiences in balancing some of the trade-offs that arise, presenting a case study on a short-video recommendation application. We highlight (1) neural networks' ability to handle large training data size, user- and item-embeddings allows for more accurate models than GBDTs in this setting, and (2) because GBDTs are less reliant on specialised hardware, they can provide an equally accurate model at a lower cost. We believe these findings are of relevance to researchers in both academia and industry, and hope they can inspire practitioners who need to make similar modelling choices in the future.
Enhancing the Sensitivity for Triple Higgs Boson Searches with Deep Learning Techniques
Using two benchmark models containing extended scalar sectors beyond the Standard Model, we study deep learning techniques to enhance the sensitivity of resonant triple Higgs boson searches in the fully hadronic 6b channel, which suffers from the combinatorial challenge of reconstructing the Higgs bosons correctly from the multiple b-jets. More specifically, we employ the framework of Symmetry Preserving Attention Network (Spa-Net), which takes into account the permutational symmetry when a correct pairing of b-jets is achieved, to tackle both jet pairing and event classification. Significantly improved efficiency is achieved in signal and background discrimination. When comparing with the conventional Dense Neural Networks, Spa-Net results in up to 40\% more stringent limits on resonant production cross-sections. These results highlight the potential of using advanced machine learning techniques to significantly improve the sensitivity of triple Higgs boson searches in the fully hadronic channel.
Lagrangian Coherent Track Initialisation (LCTI)
Advances in time-resolved Particle Tracking Velocimetry (4D-PTV) techniques have been consistently revealed more accurate Lagrangian particle motions. A novel track initialisation technique as a complementary part of 4D-PTV, based on local temporal and spatial coherency of neighbour trajectories, is proposed. The proposed Lagrangian Coherent Track Initialisation (LCTI) applies physics-based Finite Time Lyapunov Exponent (FTLE) to build four frame coherent tracks. We locally determine the boundaries (i.e., ridges) of Lagrangian Coherent Structures (LCS) among neighbour trajectories by using FTLE to distinguish clusters of coherent motions. To evaluate the proposed technique, we created an open-access synthetic Lagrangian and Eulerian dataset of the wake downstream of a smooth cylinder at a Reynolds number equal to 3900 obtained from 3D Direct Numerical Simulation (DNS). The dataset is available to the public. Performance of the proposed method based on three characteristic parameters, temporal scale, particle concentration (i.e., density), and noise ratio, showed robust behaviour in finding true tracks compared to the recent initialisation algorithms. Sensitivity of LCTI to the number of untracked and wrong tracks are also discussed. We address the capability of using the proposed method as a function of a 4D-PTV scheme in the Lagrangian Particle Tracking challenge for a flow with high particle densities. Finally, the LCTI behaviour was assessed in a real jet impingement experiment. LCTI was found to be a reliable tracking tool in complex flow motions, with a strength revealed for flows with high particle concentrations.
HunFlair: An Easy-to-Use Tool for State-of-the-Art Biomedical Named Entity Recognition
Summary: Named Entity Recognition (NER) is an important step in biomedical information extraction pipelines. Tools for NER should be easy to use, cover multiple entity types, highly accurate, and robust towards variations in text genre and style. To this end, we propose HunFlair, an NER tagger covering multiple entity types integrated into the widely used NLP framework Flair. HunFlair outperforms other state-of-the-art standalone NER tools with an average gain of 7.26 pp over the next best tool, can be installed with a single command and is applied with only four lines of code. Availability: HunFlair is freely available through the Flair framework under an MIT license: https://github.com/flairNLP/flair and is compatible with all major operating systems. Contact:{weberple,saengema,alan.akbik}@informatik.hu-berlin.de
Exploring Lightweight Hierarchical Vision Transformers for Efficient Visual Tracking
Transformer-based visual trackers have demonstrated significant progress owing to their superior modeling capabilities. However, existing trackers are hampered by low speed, limiting their applicability on devices with limited computational power. To alleviate this problem, we propose HiT, a new family of efficient tracking models that can run at high speed on different devices while retaining high performance. The central idea of HiT is the Bridge Module, which bridges the gap between modern lightweight transformers and the tracking framework. The Bridge Module incorporates the high-level information of deep features into the shallow large-resolution features. In this way, it produces better features for the tracking head. We also propose a novel dual-image position encoding technique that simultaneously encodes the position information of both the search region and template images. The HiT model achieves promising speed with competitive performance. For instance, it runs at 61 frames per second (fps) on the Nvidia Jetson AGX edge device. Furthermore, HiT attains 64.6% AUC on the LaSOT benchmark, surpassing all previous efficient trackers.
TAGS: A Test-Time Generalist-Specialist Framework with Retrieval-Augmented Reasoning and Verification
Recent advances such as Chain-of-Thought prompting have significantly improved large language models (LLMs) in zero-shot medical reasoning. However, prompting-based methods often remain shallow and unstable, while fine-tuned medical LLMs suffer from poor generalization under distribution shifts and limited adaptability to unseen clinical scenarios. To address these limitations, we present TAGS, a test-time framework that combines a broadly capable generalist with a domain-specific specialist to offer complementary perspectives without any model fine-tuning or parameter updates. To support this generalist-specialist reasoning process, we introduce two auxiliary modules: a hierarchical retrieval mechanism that provides multi-scale exemplars by selecting examples based on both semantic and rationale-level similarity, and a reliability scorer that evaluates reasoning consistency to guide final answer aggregation. TAGS achieves strong performance across nine MedQA benchmarks, boosting GPT-4o accuracy by 13.8%, DeepSeek-R1 by 16.8%, and improving a vanilla 7B model from 14.1% to 23.9%. These results surpass several fine-tuned medical LLMs, without any parameter updates. The code will be available at https://github.com/JianghaoWu/TAGS.
Point cloud-based diffusion models for the Electron-Ion Collider
At high-energy collider experiments, generative models can be used for a wide range of tasks, including fast detector simulations, unfolding, searches of physics beyond the Standard Model, and inference tasks. In particular, it has been demonstrated that score-based diffusion models can generate high-fidelity and accurate samples of jets or collider events. This work expands on previous generative models in three distinct ways. First, our model is trained to generate entire collider events, including all particle species with complete kinematic information. We quantify how well the model learns event-wide constraints such as the conservation of momentum and discrete quantum numbers. We focus on the events at the future Electron-Ion Collider, but we expect that our results can be extended to proton-proton and heavy-ion collisions. Second, previous generative models often relied on image-based techniques. The sparsity of the data can negatively affect the fidelity and sampling time of the model. We address these issues using point clouds and a novel architecture combining edge creation with transformer modules called Point Edge Transformers. Third, we adapt the foundation model OmniLearn, to generate full collider events. This approach may indicate a transition toward adapting and fine-tuning foundation models for downstream tasks instead of training new models from scratch.
FeynTune: Large Language Models for High-Energy Theory
We present specialized Large Language Models for theoretical High-Energy Physics, obtained as 20 fine-tuned variants of the 8-billion parameter Llama-3.1 model. Each variant was trained on arXiv abstracts (through August 2024) from different combinations of hep-th, hep-ph and gr-qc. For a comparative study, we also trained models on datasets that contained abstracts from disparate fields such as the q-bio and cs categories. All models were fine-tuned using two distinct Low-Rank Adaptation fine-tuning approaches and varying dataset sizes, and outperformed the base model on hep-th abstract completion tasks. We compare performance against leading commercial LLMs (ChatGPT, Claude, Gemini, DeepSeek) and derive insights for further developing specialized language models for High-Energy Theoretical Physics.
SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars
In recent years, large language models (LLMs) have transformed natural language understanding through vast datasets and large-scale parameterization. Inspired by this success, we present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis. Stellar spectra, akin to structured language, encode rich physical and chemical information about stars. By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications. As a proof of concept, SpecCLIP involves pre-training on two spectral types--LAMOST low-resolution and Gaia XP--followed by contrastive alignment using the CLIP (Contrastive Language-Image Pre-training) framework, adapted to associate spectra from different instruments. This alignment is complemented by auxiliary decoders that preserve spectrum-specific information and enable translation (prediction) between spectral types, with the former achieved by maximizing mutual information between embeddings and input spectra. The result is a cross-spectrum framework enabling intrinsic calibration and flexible applications across instruments. We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar-parameter estimation and chemical-abundance determination. SpecCLIP also enhances the accuracy and precision of parameter estimates benchmarked against external survey data. Additionally, its similarity search and cross-spectrum prediction capabilities offer potential for anomaly detection. Our results suggest that contrastively trained foundation models enriched with spectrum-aware decoders can advance precision stellar spectroscopy.
AstroM^3: A self-supervised multimodal model for astronomy
While machine-learned models are now routinely employed to facilitate astronomical inquiry, model inputs tend to be limited to a primary data source (namely images or time series) and, in the more advanced approaches, some metadata. Yet with the growing use of wide-field, multiplexed observational resources, individual sources of interest often have a broad range of observational modes available. Here we construct an astronomical multimodal dataset and propose AstroM^3, a self-supervised pre-training approach that enables a model to learn from multiple modalities simultaneously. Specifically, we extend the CLIP (Contrastive Language-Image Pretraining) model to a trimodal setting, allowing the integration of time-series photometry data, spectra, and astrophysical metadata. In a fine-tuning supervised setting, our results demonstrate that CLIP pre-training improves classification performance for time-series photometry, where accuracy increases from 84.6% to 91.5%. Furthermore, CLIP boosts classification accuracy by up to 12.6% when the availability of labeled data is limited, showing the effectiveness of leveraging larger corpora of unlabeled data. In addition to fine-tuned classification, we can use the trained model in other downstream tasks that are not explicitly contemplated during the construction of the self-supervised model. In particular we show the efficacy of using the learned embeddings for misclassifications identification, similarity search, and anomaly detection. One surprising highlight is the "rediscovery" of Mira subtypes and two Rotational variable subclasses using manifold learning and dimension reduction algorithm. To our knowledge this is the first construction of an n>2 mode model in astronomy. Extensions to n>3 modes is naturally anticipated with this approach.
Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representation Learning
Representation learning on text-attributed graphs (TAGs) has become a critical research problem in recent years. A typical example of a TAG is a paper citation graph, where the text of each paper serves as node attributes. Initial graph neural network (GNN) pipelines handled these text attributes by transforming them into shallow or hand-crafted features, such as skip-gram or bag-of-words features. Recent efforts have focused on enhancing these pipelines with language models (LMs), which typically demand intricate designs and substantial computational resources. With the advent of powerful large language models (LLMs) such as GPT or Llama2, which demonstrate an ability to reason and to utilize general knowledge, there is a growing need for techniques which combine the textual modelling abilities of LLMs with the structural learning capabilities of GNNs. Hence, in this work, we focus on leveraging LLMs to capture textual information as features, which can be used to boost GNN performance on downstream tasks. A key innovation is our use of explanations as features: we prompt an LLM to perform zero-shot classification, request textual explanations for its decision-making process, and design an LLM-to-LM interpreter to translate these explanations into informative features for downstream GNNs. Our experiments demonstrate that our method achieves state-of-the-art results on well-established TAG datasets, including Cora, PubMed, ogbn-arxiv, as well as our newly introduced dataset, tape-arxiv23. Furthermore, our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv. Lastly, we believe the versatility of the proposed method extends beyond TAGs and holds the potential to enhance other tasks involving graph-text data. Our codes and datasets are available at: https://github.com/XiaoxinHe/TAPE.
Language models are weak learners
A central notion in practical and theoretical machine learning is that of a weak learner, classifiers that achieve better-than-random performance (on any given distribution over data), even by a small margin. Such weak learners form the practical basis for canonical machine learning methods such as boosting. In this work, we illustrate that prompt-based large language models can operate effectively as said weak learners. Specifically, we illustrate the use of a large language model (LLM) as a weak learner in a boosting algorithm applied to tabular data. We show that by providing (properly sampled according to the distribution of interest) text descriptions of tabular data samples, LLMs can produce a summary of the samples that serves as a template for classification and achieves the aim of acting as a weak learner on this task. We incorporate these models into a boosting approach, which in some settings can leverage the knowledge within the LLM to outperform traditional tree-based boosting. The model outperforms both few-shot learning and occasionally even more involved fine-tuning procedures, particularly for tasks involving small numbers of data points. The results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
NGBoost: Natural Gradient Boosting for Probabilistic Prediction
We present Natural Gradient Boosting (NGBoost), an algorithm for generic probabilistic prediction via gradient boosting. Typical regression models return a point estimate, conditional on covariates, but probabilistic regression models output a full probability distribution over the outcome space, conditional on the covariates. This allows for predictive uncertainty estimation -- crucial in applications like healthcare and weather forecasting. NGBoost generalizes gradient boosting to probabilistic regression by treating the parameters of the conditional distribution as targets for a multiparameter boosting algorithm. Furthermore, we show how the Natural Gradient is required to correct the training dynamics of our multiparameter boosting approach. NGBoost can be used with any base learner, any family of distributions with continuous parameters, and any scoring rule. NGBoost matches or exceeds the performance of existing methods for probabilistic prediction while offering additional benefits in flexibility, scalability, and usability. An open-source implementation is available at github.com/stanfordmlgroup/ngboost.
Tags2Parts: Discovering Semantic Regions from Shape Tags
We propose a novel method for discovering shape regions that strongly correlate with user-prescribed tags. For example, given a collection of chairs tagged as either "has armrest" or "lacks armrest", our system correctly highlights the armrest regions as the main distinctive parts between the two chair types. To obtain point-wise predictions from shape-wise tags we develop a novel neural network architecture that is trained with tag classification loss, but is designed to rely on segmentation to predict the tag. Our network is inspired by U-Net, but we replicate shallow U structures several times with new skip connections and pooling layers, and call the resulting architecture "WU-Net". We test our method on segmentation benchmarks and show that even with weak supervision of whole shape tags, our method can infer meaningful semantic regions, without ever observing shape segmentations. Further, once trained, the model can process shapes for which the tag is entirely unknown. As a bonus, our architecture is directly operational under full supervision and performs strongly on standard benchmarks. We validate our method through experiments with many variant architectures and prior baselines, and demonstrate several applications.
mR^2AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA
Advanced Multimodal Large Language Models (MLLMs) struggle with recent Knowledge-based VQA tasks, such as INFOSEEK and Encyclopedic-VQA, due to their limited and frozen knowledge scope, often leading to ambiguous and inaccurate responses. Thus, multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge, effectively expanding the knowledge scope. However, current mRAG methods have inherent drawbacks, including: 1) Performing retrieval even when external knowledge is not needed. 2) Lacking of identification of evidence that supports the query. 3) Increasing model complexity due to additional information filtering modules or rules. To address these shortcomings, we propose a novel generalized framework called multimodal Retrieval-Reflection-Augmented Generation (mR^2AG), which achieves adaptive retrieval and useful information localization to enable answers through two easy-to-implement reflection operations, preventing high model complexity. In mR^2AG, Retrieval-Reflection is designed to distinguish different user queries and avoids redundant retrieval calls, and Relevance-Reflection is introduced to guide the MLLM in locating beneficial evidence of the retrieved content and generating answers accordingly. In addition, mR^2AG can be integrated into any well-trained MLLM with efficient fine-tuning on the proposed mR^2AG Instruction-Tuning dataset (mR^2AG-IT). mR^2AG significantly outperforms state-of-the-art MLLMs (e.g., GPT-4v/o) and RAG-based MLLMs on INFOSEEK and Encyclopedic-VQA, while maintaining the exceptional capabilities of base MLLMs across a wide range of Visual-dependent tasks.
Active Retrieval Augmented Generation
Despite the remarkable ability of large language models (LMs) to comprehend and generate language, they have a tendency to hallucinate and create factually inaccurate output. Augmenting LMs by retrieving information from external knowledge resources is one promising solution. Most existing retrieval augmented LMs employ a retrieve-and-generate setup that only retrieves information once based on the input. This is limiting, however, in more general scenarios involving generation of long texts, where continually gathering information throughout generation is essential. In this work, we provide a generalized view of active retrieval augmented generation, methods that actively decide when and what to retrieve across the course of the generation. We propose Forward-Looking Active REtrieval augmented generation (FLARE), a generic method which iteratively uses a prediction of the upcoming sentence to anticipate future content, which is then utilized as a query to retrieve relevant documents to regenerate the sentence if it contains low-confidence tokens. We test FLARE along with baselines comprehensively over 4 long-form knowledge-intensive generation tasks/datasets. FLARE achieves superior or competitive performance on all tasks, demonstrating the effectiveness of our method. Code and datasets are available at https://github.com/jzbjyb/FLARE.
GraphCLIP: Enhancing Transferability in Graph Foundation Models for Text-Attributed Graphs
Recently, research on Text-Attributed Graphs (TAGs) has gained significant attention due to the prevalence of free-text node features in real-world applications and the advancements in Large Language Models (LLMs) that bolster TAG methodologies. However, current TAG approaches face two primary challenges: (i) Heavy reliance on label information and (ii) Limited cross-domain zero/few-shot transferability. These issues constrain the scaling of both data and model size, owing to high labor costs and scaling laws, complicating the development of graph foundation models with strong transferability. In this work, we propose the GraphCLIP framework to address these challenges by learning graph foundation models with strong cross-domain zero/few-shot transferability through a self-supervised contrastive graph-summary pretraining method. Specifically, we generate and curate large-scale graph-summary pair data with the assistance of LLMs, and introduce a novel graph-summary pretraining method, combined with invariant learning, to enhance graph foundation models with strong cross-domain zero-shot transferability. For few-shot learning, we propose a novel graph prompt tuning technique aligned with our pretraining objective to mitigate catastrophic forgetting and minimize learning costs. Extensive experiments show the superiority of GraphCLIP in both zero-shot and few-shot settings, while evaluations across various downstream tasks confirm the versatility of GraphCLIP. Our code is available at: https://github.com/ZhuYun97/GraphCLIP
MUST: The First Dataset and Unified Framework for Multispectral UAV Single Object Tracking
UAV tracking faces significant challenges in real-world scenarios, such as small-size targets and occlusions, which limit the performance of RGB-based trackers. Multispectral images (MSI), which capture additional spectral information, offer a promising solution to these challenges. However, progress in this field has been hindered by the lack of relevant datasets. To address this gap, we introduce the first large-scale Multispectral UAV Single Object Tracking dataset (MUST), which includes 250 video sequences spanning diverse environments and challenges, providing a comprehensive data foundation for multispectral UAV tracking. We also propose a novel tracking framework, UNTrack, which encodes unified spectral, spatial, and temporal features from spectrum prompts, initial templates, and sequential searches. UNTrack employs an asymmetric transformer with a spectral background eliminate mechanism for optimal relationship modeling and an encoder that continuously updates the spectrum prompt to refine tracking, improving both accuracy and efficiency. Extensive experiments show that our proposed UNTrack outperforms state-of-the-art UAV trackers. We believe our dataset and framework will drive future research in this area. The dataset is available on https://github.com/q2479036243/MUST-Multispectral-UAV-Single-Object-Tracking.
HQ-CLIP: Leveraging Large Vision-Language Models to Create High-Quality Image-Text Datasets and CLIP Models
Large-scale but noisy image-text pair data have paved the way for the success of Contrastive Language-Image Pretraining (CLIP). As the foundation vision encoder, CLIP in turn serves as the cornerstone for most large vision-language models (LVLMs). This interdependence naturally raises an interesting question: Can we reciprocally leverage LVLMs to enhance the quality of image-text pair data, thereby opening the possibility of a self-reinforcing cycle for continuous improvement? In this work, we take a significant step toward this vision by introducing an LVLM-driven data refinement pipeline. Our framework leverages LVLMs to process images and their raw alt-text, generating four complementary textual formulas: long positive descriptions, long negative descriptions, short positive tags, and short negative tags. Applying this pipeline to the curated DFN-Large dataset yields VLM-150M, a refined dataset enriched with multi-grained annotations. Based on this dataset, we further propose a training paradigm that extends conventional contrastive learning by incorporating negative descriptions and short tags as additional supervised signals. The resulting model, namely HQ-CLIP, demonstrates remarkable improvements across diverse benchmarks. Within a comparable training data scale, our approach achieves state-of-the-art performance in zero-shot classification, cross-modal retrieval, and fine-grained visual understanding tasks. In retrieval benchmarks, HQ-CLIP even surpasses standard CLIP models trained on the DFN-2B dataset, which contains 10times more training data than ours. All code, data, and models are available at https://zxwei.site/hqclip.
InPars: Data Augmentation for Information Retrieval using Large Language Models
The information retrieval community has recently witnessed a revolution due to large pretrained transformer models. Another key ingredient for this revolution was the MS MARCO dataset, whose scale and diversity has enabled zero-shot transfer learning to various tasks. However, not all IR tasks and domains can benefit from one single dataset equally. Extensive research in various NLP tasks has shown that using domain-specific training data, as opposed to a general-purpose one, improves the performance of neural models. In this work, we harness the few-shot capabilities of large pretrained language models as synthetic data generators for IR tasks. We show that models finetuned solely on our unsupervised dataset outperform strong baselines such as BM25 as well as recently proposed self-supervised dense retrieval methods. Furthermore, retrievers finetuned on both supervised and our synthetic data achieve better zero-shot transfer than models finetuned only on supervised data. Code, models, and data are available at https://github.com/zetaalphavector/inpars .
ELIP: Enhanced Visual-Language Foundation Models for Image Retrieval
The objective in this paper is to improve the performance of text-to-image retrieval. To this end, we introduce a new framework that can boost the performance of large-scale pre-trained vision-language models, so that they can be used for text-to-image re-ranking. The approach, Enhanced Language-Image Pre-training (ELIP), uses the text query, via a simple MLP mapping network, to predict a set of visual prompts to condition the ViT image encoding. ELIP can easily be applied to the commonly used CLIP, SigLIP and BLIP-2 networks. To train the architecture with limited computing resources, we develop a 'student friendly' best practice, involving global hard sample mining, and curation of a large-scale dataset. On the evaluation side, we set up two new out-of-distribution (OOD) benchmarks, Occluded COCO and ImageNet-R, to assess the zero-shot generalisation of the models to different domains. The results demonstrate that ELIP significantly boosts CLIP/SigLIP/SigLIP-2 text-to-image retrieval performance and outperforms BLIP-2 on several benchmarks, as well as providing an easy means to adapt to OOD datasets.
PhysBERT: A Text Embedding Model for Physics Scientific Literature
The specialized language and complex concepts in physics pose significant challenges for information extraction through Natural Language Processing (NLP). Central to effective NLP applications is the text embedding model, which converts text into dense vector representations for efficient information retrieval and semantic analysis. In this work, we introduce PhysBERT, the first physics-specific text embedding model. Pre-trained on a curated corpus of 1.2 million arXiv physics papers and fine-tuned with supervised data, PhysBERT outperforms leading general-purpose models on physics-specific tasks including the effectiveness in fine-tuning for specific physics subdomains.
Recognize Anything: A Strong Image Tagging Model
We present the Recognize Anything Model (RAM): a strong foundation model for image tagging. RAM can recognize any common category with high accuracy. RAM introduces a new paradigm for image tagging, leveraging large-scale image-text pairs for training instead of manual annotations. The development of RAM comprises four key steps. Firstly, annotation-free image tags are obtained at scale through automatic text semantic parsing. Subsequently, a preliminary model is trained for automatic annotation by unifying the caption and tagging tasks, supervised by the original texts and parsed tags, respectively. Thirdly, a data engine is employed to generate additional annotations and clean incorrect ones. Lastly, the model is retrained with the processed data and fine-tuned using a smaller but higher-quality dataset. We evaluate the tagging capabilities of RAM on numerous benchmarks and observe impressive zero-shot performance, significantly outperforming CLIP and BLIP. Remarkably, RAM even surpasses the fully supervised manners and exhibits competitive performance with the Google API. We are releasing the RAM at https://recognize-anything.github.io/ to foster the advancements of large models in computer vision.
Physics-Informed Calibration of Aeromagnetic Compensation in Magnetic Navigation Systems using Liquid Time-Constant Networks
Magnetic navigation (MagNav) is a rising alternative to the Global Positioning System (GPS) and has proven useful for aircraft navigation. Traditional aircraft navigation systems, while effective, face limitations in precision and reliability in certain environments and against attacks. Airborne MagNav leverages the Earth's magnetic field to provide accurate positional information. However, external magnetic fields induced by aircraft electronics and Earth's large-scale magnetic fields disrupt the weaker signal of interest. We introduce a physics-informed approach using Tolles-Lawson coefficients for compensation and Liquid Time-Constant Networks (LTCs) to remove complex, noisy signals derived from the aircraft's magnetic sources. Using real flight data with magnetometer measurements and aircraft measurements, we observe up to a 64% reduction in aeromagnetic compensation error (RMSE nT), outperforming conventional models. This significant improvement underscores the potential of a physics-informed, machine learning approach for extracting clean, reliable, and accurate magnetic signals for MagNav positional estimation.
Joint Music and Language Attention Models for Zero-shot Music Tagging
Music tagging is a task to predict the tags of music recordings. However, previous music tagging research primarily focuses on close-set music tagging tasks which can not be generalized to new tags. In this work, we propose a zero-shot music tagging system modeled by a joint music and language attention (JMLA) model to address the open-set music tagging problem. The JMLA model consists of an audio encoder modeled by a pretrained masked autoencoder and a decoder modeled by a Falcon7B. We introduce preceiver resampler to convert arbitrary length audio into fixed length embeddings. We introduce dense attention connections between encoder and decoder layers to improve the information flow between the encoder and decoder layers. We collect a large-scale music and description dataset from the internet. We propose to use ChatGPT to convert the raw descriptions into formalized and diverse descriptions to train the JMLA models. Our proposed JMLA system achieves a zero-shot audio tagging accuracy of 64.82% on the GTZAN dataset, outperforming previous zero-shot systems and achieves comparable results to previous systems on the FMA and the MagnaTagATune datasets.
Embedded Named Entity Recognition using Probing Classifiers
Extracting semantic information from generated text is a useful tool for applications such as automated fact checking or retrieval augmented generation. Currently, this requires either separate models during inference, which increases computational cost, or destructive fine-tuning of the language model. Instead, we propose directly embedding information extraction capabilities into pre-trained language models using probing classifiers, enabling efficient simultaneous text generation and information extraction. For this, we introduce an approach called EMBER and show that it enables named entity recognition in decoder-only language models without fine-tuning them and while incurring minimal additional computational cost at inference time. Specifically, our experiments using GPT-2 show that EMBER maintains high token generation rates during streaming text generation, with only a negligible decrease in speed of around 1% compared to a 43.64% slowdown measured for a baseline using a separate NER model. Code and data are available at https://github.com/nicpopovic/EMBER.
Sequential Training of Neural Networks with Gradient Boosting
This paper presents a novel technique based on gradient boosting to train the final layers of a neural network (NN). Gradient boosting is an additive expansion algorithm in which a series of models are trained sequentially to approximate a given function. A neural network can also be seen as an additive expansion where the scalar product of the responses of the last hidden layer and its weights provide the final output of the network. Instead of training the network as a whole, the proposed algorithm trains the network sequentially in T steps. First, the bias term of the network is initialized with a constant approximation that minimizes the average loss of the data. Then, at each step, a portion of the network, composed of J neurons, is trained to approximate the pseudo-residuals on the training data computed from the previous iterations. Finally, the T partial models and bias are integrated as a single NN with T times J neurons in the hidden layer. Extensive experiments in classification and regression tasks, as well as in combination with deep neural networks, are carried out showing a competitive generalization performance with respect to neural networks trained with different standard solvers, such as Adam, L-BFGS, SGD and deep models. Furthermore, we show that the proposed method design permits to switch off a number of hidden units during test (the units that were last trained) without a significant reduction of its generalization ability. This permits the adaptation of the model to different classification speed requirements on the fly.
Enhancing CLIP with CLIP: Exploring Pseudolabeling for Limited-Label Prompt Tuning
Fine-tuning vision-language models (VLMs) like CLIP to downstream tasks is often necessary to optimize their performance. However, a major obstacle is the limited availability of labeled data. We study the use of pseudolabels, i.e., heuristic labels for unlabeled data, to enhance CLIP via prompt tuning. Conventional pseudolabeling trains a model on labeled data and then generates labels for unlabeled data. VLMs' zero-shot capabilities enable a ``second generation'' of pseudolabeling approaches that do not require task-specific training on labeled data. By using zero-shot pseudolabels as a source of supervision, we observe that learning paradigms such as semi-supervised, transductive zero-shot, and unsupervised learning can all be seen as optimizing the same loss function. This unified view enables the development of versatile training strategies that are applicable across learning paradigms. We investigate them on image classification tasks where CLIP exhibits limitations, by varying prompt modalities, e.g., textual or visual prompts, and learning paradigms. We find that (1) unexplored prompt tuning strategies that iteratively refine pseudolabels consistently improve CLIP accuracy, by 19.5 points in semi-supervised learning, by 28.4 points in transductive zero-shot learning, and by 15.2 points in unsupervised learning, and (2) unlike conventional semi-supervised pseudolabeling, which exacerbates model biases toward classes with higher-quality pseudolabels, prompt tuning leads to a more equitable distribution of per-class accuracy. The code to reproduce the experiments is at github.com/BatsResearch/menghini-enhanceCLIPwithCLIP-code.
Deep Multiple Instance Learning for Zero-shot Image Tagging
In-line with the success of deep learning on traditional recognition problem, several end-to-end deep models for zero-shot recognition have been proposed in the literature. These models are successful to predict a single unseen label given an input image, but does not scale to cases where multiple unseen objects are present. In this paper, we model this problem within the framework of Multiple Instance Learning (MIL). To the best of our knowledge, we propose the first end-to-end trainable deep MIL framework for the multi-label zero-shot tagging problem. Due to its novel design, the proposed framework has several interesting features: (1) Unlike previous deep MIL models, it does not use any off-line procedure (e.g., Selective Search or EdgeBoxes) for bag generation. (2) During test time, it can process any number of unseen labels given their semantic embedding vectors. (3) Using only seen labels per image as weak annotation, it can produce a bounding box for each predicted labels. We experiment with the NUS-WIDE dataset and achieve superior performance across conventional, zero-shot and generalized zero-shot tagging tasks.
Condensed Gradient Boosting
This paper presents a computationally efficient variant of gradient boosting for multi-class classification and multi-output regression tasks. Standard gradient boosting uses a 1-vs-all strategy for classifications tasks with more than two classes. This strategy translates in that one tree per class and iteration has to be trained. In this work, we propose the use of multi-output regressors as base models to handle the multi-class problem as a single task. In addition, the proposed modification allows the model to learn multi-output regression problems. An extensive comparison with other multi-ouptut based gradient boosting methods is carried out in terms of generalization and computational efficiency. The proposed method showed the best trade-off between generalization ability and training and predictions speeds.
Letter of Intent: The Accelerator Neutrino Neutron Interaction Experiment (ANNIE)
Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors.
Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)
Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors.
Unveiling the Potential of Multimodal Retrieval Augmented Generation with Planning
Multimodal Retrieval Augmented Generation (MRAG) systems, while promising for enhancing Multimodal Large Language Models (MLLMs), often rely on rigid, single-step retrieval methods. This limitation hinders their ability to effectively address real-world scenarios that demand adaptive information acquisition and query refinement. To overcome this, we introduce the novel task of Multimodal Retrieval Augmented Generation Planning (MRAG Planning), focusing on optimizing MLLM performance while minimizing computational overhead. We present CogPlanner, a versatile framework inspired by human cognitive processes. CogPlanner iteratively refines queries and selects retrieval strategies, enabling both parallel and sequential modeling approaches. To rigorously evaluate MRAG Planning, we introduce CogBench, a new benchmark specifically designed for this task. CogBench facilitates the integration of lightweight CogPlanner with resource-efficient MLLMs. Our experimental findings demonstrate that CogPlanner surpasses existing MRAG baselines, achieving significant improvements in both accuracy and efficiency with minimal computational overhead.
Multicalibration as Boosting for Regression
We study the connection between multicalibration and boosting for squared error regression. First we prove a useful characterization of multicalibration in terms of a ``swap regret'' like condition on squared error. Using this characterization, we give an exceedingly simple algorithm that can be analyzed both as a boosting algorithm for regression and as a multicalibration algorithm for a class H that makes use only of a standard squared error regression oracle for H. We give a weak learning assumption on H that ensures convergence to Bayes optimality without the need to make any realizability assumptions -- giving us an agnostic boosting algorithm for regression. We then show that our weak learning assumption on H is both necessary and sufficient for multicalibration with respect to H to imply Bayes optimality. We also show that if H satisfies our weak learning condition relative to another class C then multicalibration with respect to H implies multicalibration with respect to C. Finally we investigate the empirical performance of our algorithm experimentally using an open source implementation that we make available. Our code repository can be found at https://github.com/Declancharrison/Level-Set-Boosting.
Improving Zero-Shot Generalization for CLIP with Synthesized Prompts
With the growing interest in pretrained vision-language models like CLIP, recent research has focused on adapting these models to downstream tasks. Despite achieving promising results, most existing methods require labeled data for all classes, which may not hold in real-world applications due to the long tail and Zipf's law. For example, some classes may lack labeled data entirely, such as emerging concepts. To address this problem, we propose a plug-and-play generative approach called SyntHesIzed Prompts~(SHIP) to improve existing fine-tuning methods. Specifically, we follow variational autoencoders to introduce a generator that reconstructs the visual features by inputting the synthesized prompts and the corresponding class names to the textual encoder of CLIP. In this manner, we easily obtain the synthesized features for the remaining label-only classes. Thereafter, we fine-tune CLIP with off-the-shelf methods by combining labeled and synthesized features. Extensive experiments on base-to-new generalization, cross-dataset transfer learning, and generalized zero-shot learning demonstrate the superiority of our approach. The code is available at https://github.com/mrflogs/SHIP.
Interaction Matching for Long-Tail Multi-Label Classification
We present an elegant and effective approach for addressing limitations in existing multi-label classification models by incorporating interaction matching, a concept shown to be useful for ad-hoc search result ranking. By performing soft n-gram interaction matching, we match labels with natural language descriptions (which are common to have in most multi-labeling tasks). Our approach can be used to enhance existing multi-label classification approaches, which are biased toward frequently-occurring labels. We evaluate our approach on two challenging tasks: automatic medical coding of clinical notes and automatic labeling of entities from software tutorial text. Our results show that our method can yield up to an 11% relative improvement in macro performance, with most of the gains stemming labels that appear infrequently in the training set (i.e., the long tail of labels).
RIGHT: Retrieval-augmented Generation for Mainstream Hashtag Recommendation
Automatic mainstream hashtag recommendation aims to accurately provide users with concise and popular topical hashtags before publication. Generally, mainstream hashtag recommendation faces challenges in the comprehensive difficulty of newly posted tweets in response to new topics, and the accurate identification of mainstream hashtags beyond semantic correctness. However, previous retrieval-based methods based on a fixed predefined mainstream hashtag list excel in producing mainstream hashtags, but fail to understand the constant flow of up-to-date information. Conversely, generation-based methods demonstrate a superior ability to comprehend newly posted tweets, but their capacity is constrained to identifying mainstream hashtags without additional features. Inspired by the recent success of the retrieval-augmented technique, in this work, we attempt to adopt this framework to combine the advantages of both approaches. Meantime, with the help of the generator component, we could rethink how to further improve the quality of the retriever component at a low cost. Therefore, we propose RetrIeval-augmented Generative Mainstream HashTag Recommender (RIGHT), which consists of three components: 1) a retriever seeks relevant hashtags from the entire tweet-hashtags set; 2) a selector enhances mainstream identification by introducing global signals; and 3) a generator incorporates input tweets and selected hashtags to directly generate the desired hashtags. The experimental results show that our method achieves significant improvements over state-of-the-art baselines. Moreover, RIGHT can be easily integrated into large language models, improving the performance of ChatGPT by more than 10%.
Blazar Boosted ALP and vector portal Dark matter confronting light mediator searches
The trouble in detecting low mass dark matter due to its low kinetic energy can be ameliorated in the boosted dark matter framework, where a sub-population of galactic dark matter attains very high energy after being up-scattered by energetic standard model particles. However, in such a scenario the upper limits on the cross-section obtained hitherto are typically large. Hence in the minimal extension of standard model where new mediators act as a portal between the dark and visible sectors, the direct detection limits for sub-GeV dark matter might lie within the exclusion region of other ground based searches of the mediator. To evade this deadlock, we allude to blazar boosted dark matter electron scattering in multi-ton neutrino detector Super kamiokande. We consider minimal models such as axion like particle (ALP) and vector portal dark matter being upscattered by high energy blazar jet and analyse the interesting parameter reaches from Super kamiokande in the parameter space of the mediator, surpassing the existing constraints. Besides, this scenario exhibits stronger limits for previously unexplored ALP mediated sub-MeV dark matter search which is difficult due to associated momentum suppression.
Strong Baseline: Multi-UAV Tracking via YOLOv12 with BoT-SORT-ReID
Detecting and tracking multiple unmanned aerial vehicles (UAVs) in thermal infrared video is inherently challenging due to low contrast, environmental noise, and small target sizes. This paper provides a straightforward approach to address multi-UAV tracking in thermal infrared video, leveraging recent advances in detection and tracking. Instead of relying on the YOLOv5 with the DeepSORT pipeline, we present a tracking framework built on YOLOv12 and BoT-SORT, enhanced with tailored training and inference strategies. We evaluate our approach following the metrics from the 4th Anti-UAV Challenge and demonstrate competitive performance. Notably, we achieve strong results without using contrast enhancement or temporal information fusion to enrich UAV features, highlighting our approach as a "Strong Baseline" for the multi-UAV tracking task. We provide implementation details, in-depth experimental analysis, and a discussion of potential improvements. The code is available at https://github.com/wish44165/YOLOv12-BoT-SORT-ReID .
PEEB: Part-based Image Classifiers with an Explainable and Editable Language Bottleneck
CLIP-based classifiers rely on the prompt containing a {class name} that is known to the text encoder. Therefore, they perform poorly on new classes or the classes whose names rarely appear on the Internet (e.g., scientific names of birds). For fine-grained classification, we propose PEEB - an explainable and editable classifier to (1) express the class name into a set of text descriptors that describe the visual parts of that class; and (2) match the embeddings of the detected parts to their textual descriptors in each class to compute a logit score for classification. In a zero-shot setting where the class names are unknown, PEEB outperforms CLIP by a huge margin (~10x in top-1 accuracy). Compared to part-based classifiers, PEEB is not only the state-of-the-art (SOTA) on the supervised-learning setting (88.80% and 92.20% accuracy on CUB-200 and Dogs-120, respectively) but also the first to enable users to edit the text descriptors to form a new classifier without any re-training. Compared to concept bottleneck models, PEEB is also the SOTA in both zero-shot and supervised-learning settings.
GeAR: Generation Augmented Retrieval
Document retrieval techniques form the foundation for the development of large-scale information systems. The prevailing methodology is to construct a bi-encoder and compute the semantic similarity. However, such scalar similarity is difficult to reflect enough information and impedes our comprehension of the retrieval results. In addition, this computational process mainly emphasizes the global semantics and ignores the fine-grained semantic relationship between the query and the complex text in the document. In this paper, we propose a new method called Generation Augmented Retrieval (GeAR) that incorporates well-designed fusion and decoding modules. This enables GeAR to generate the relevant text from documents based on the fused representation of the query and the document, thus learning to "focus on" the fine-grained information. Also when used as a retriever, GeAR does not add any computational burden over bi-encoders. To support the training of the new framework, we have introduced a pipeline to efficiently synthesize high-quality data by utilizing large language models. GeAR exhibits competitive retrieval and localization performance across diverse scenarios and datasets. Moreover, the qualitative analysis and the results generated by GeAR provide novel insights into the interpretation of retrieval results. The code, data, and models will be released after completing technical review to facilitate future research.
Evaluation of Surrogate Models for Multi-fin Flapping Propulsion Systems
The aim of this study is to develop surrogate models for quick, accurate prediction of thrust forces generated through flapping fin propulsion for given operating conditions and fin geometries. Different network architectures and configurations are explored to model the training data separately for the lead fin and rear fin of a tandem fin setup. We progressively improve the data representation of the input parameter space for model predictions. The models are tested on three unseen fin geometries and the predictions validated with computational fluid dynamics (CFD) data. Finally, the orders of magnitude gains in computational performance of these surrogate models, compared to experimental and CFD runs, vs their tradeoff with accuracy is discussed within the context of this tandem fin configuration.
Fair Densities via Boosting the Sufficient Statistics of Exponential Families
We introduce a boosting algorithm to pre-process data for fairness. Starting from an initial fair but inaccurate distribution, our approach shifts towards better data fitting while still ensuring a minimal fairness guarantee. To do so, it learns the sufficient statistics of an exponential family with boosting-compliant convergence. Importantly, we are able to theoretically prove that the learned distribution will have a representation rate and statistical rate data fairness guarantee. Unlike recent optimization based pre-processing methods, our approach can be easily adapted for continuous domain features. Furthermore, when the weak learners are specified to be decision trees, the sufficient statistics of the learned distribution can be examined to provide clues on sources of (un)fairness. Empirical results are present to display the quality of result on real-world data.
SuperWing: a comprehensive transonic wing dataset for data-driven aerodynamic design
Machine-learning surrogate models have shown promise in accelerating aerodynamic design, yet progress toward generalizable predictors for three-dimensional wings has been limited by the scarcity and restricted diversity of existing datasets. Here, we present SuperWing, a comprehensive open dataset of transonic swept-wing aerodynamics comprising 4,239 parameterized wing geometries and 28,856 Reynolds-averaged Navier-Stokes flow field solutions. The wing shapes in the dataset are generated using a simplified yet expressive geometry parameterization that incorporates spanwise variations in airfoil shape, twist, and dihedral, allowing for an enhanced diversity without relying on perturbations of a baseline wing. All shapes are simulated under a broad range of Mach numbers and angles of attack covering the typical flight envelope. To demonstrate the dataset's utility, we benchmark two state-of-the-art Transformers that accurately predict surface flow and achieve a 2.5 drag-count error on held-out samples. Models pretrained on SuperWing further exhibit strong zero-shot generalization to complex benchmark wings such as DLR-F6 and NASA CRM, underscoring the dataset's diversity and potential for practical usage.
GLM-130B: An Open Bilingual Pre-trained Model
We introduce GLM-130B, a bilingual (English and Chinese) pre-trained language model with 130 billion parameters. It is an attempt to open-source a 100B-scale model at least as good as GPT-3 and unveil how models of such a scale can be successfully pre-trained. Over the course of this effort, we face numerous unexpected technical and engineering challenges, particularly on loss spikes and disconvergence. In this paper, we introduce the training process of GLM-130B including its design choices, training strategies for both efficiency and stability, and engineering efforts. The resultant GLM-130B model offers significant outperformance over GPT-3 175B on a wide range of popular English benchmarks while the performance advantage is not observed in OPT-175B and BLOOM-176B. It also consistently and significantly outperforms ERNIE TITAN 3.0 260B -- the largest Chinese language model -- across related benchmarks. Finally, we leverage a unique scaling property of GLM-130B to reach INT4 quantization, without quantization aware training and with almost no performance loss, making it the first among 100B-scale models. More importantly, the property allows its effective inference on 4timesRTX 3090 (24G) or 8timesRTX 2080 Ti (11G) GPUs, the most ever affordable GPUs required for using 100B-scale models. The GLM-130B model weights are publicly accessible and its code, training logs, related toolkit, and lessons learned are open-sourced at https://github.com/THUDM/GLM-130B .
Improving Generative Model-based Unfolding with Schrödinger Bridges
Machine learning-based unfolding has enabled unbinned and high-dimensional differential cross section measurements. Two main approaches have emerged in this research area: one based on discriminative models and one based on generative models. The main advantage of discriminative models is that they learn a small correction to a starting simulation while generative models scale better to regions of phase space with little data. We propose to use Schroedinger Bridges and diffusion models to create SBUnfold, an unfolding approach that combines the strengths of both discriminative and generative models. The key feature of SBUnfold is that its generative model maps one set of events into another without having to go through a known probability density as is the case for normalizing flows and standard diffusion models. We show that SBUnfold achieves excellent performance compared to state of the art methods on a synthetic Z+jets dataset.
LAION-5B: An open large-scale dataset for training next generation image-text models
Groundbreaking language-vision architectures like CLIP and DALL-E proved the utility of training on large amounts of noisy image-text data, without relying on expensive accurate labels used in standard vision unimodal supervised learning. The resulting models showed capabilities of strong text-guided image generation and transfer to downstream tasks, while performing remarkably at zero-shot classification with noteworthy out-of-distribution robustness. Since then, large-scale language-vision models like ALIGN, BASIC, GLIDE, Flamingo and Imagen made further improvements. Studying the training and capabilities of such models requires datasets containing billions of image-text pairs. Until now, no datasets of this size have been made openly available for the broader research community. To address this problem and democratize research on large-scale multi-modal models, we present LAION-5B - a dataset consisting of 5.85 billion CLIP-filtered image-text pairs, of which 2.32B contain English language. We show successful replication and fine-tuning of foundational models like CLIP, GLIDE and Stable Diffusion using the dataset, and discuss further experiments enabled with an openly available dataset of this scale. Additionally we provide several nearest neighbor indices, an improved web-interface for dataset exploration and subset generation, and detection scores for watermark, NSFW, and toxic content detection. Announcement page https://laion.ai/laion-5b-a-new-era-of-open-large-scale-multi-modal-datasets/
Show Less, Instruct More: Enriching Prompts with Definitions and Guidelines for Zero-Shot NER
Recently, several specialized instruction-tuned Large Language Models (LLMs) for Named Entity Recognition (NER) have emerged. Compared to traditional NER approaches, these models have strong generalization capabilities. Existing LLMs mainly focus on zero-shot NER in out-of-domain distributions, being fine-tuned on an extensive number of entity classes that often highly or completely overlap with test sets. In this work instead, we propose SLIMER, an approach designed to tackle never-seen-before named entity tags by instructing the model on fewer examples, and by leveraging a prompt enriched with definition and guidelines. Experiments demonstrate that definition and guidelines yield better performance, faster and more robust learning, particularly when labelling unseen Named Entities. Furthermore, SLIMER performs comparably to state-of-the-art approaches in out-of-domain zero-shot NER, while being trained on a reduced tag set.
Particle Trajectory Representation Learning with Masked Point Modeling
Effective self-supervised learning (SSL) techniques have been key to unlocking large datasets for representation learning. While many promising methods have been developed using online corpora and captioned photographs, their application to scientific domains, where data encodes highly specialized knowledge, remains a challenge. Liquid Argon Time Projection Chambers (LArTPCs) provide high-resolution 3D imaging for fundamental physics, but analysis of their sparse, complex point cloud data often relies on supervised methods trained on large simulations, introducing potential biases. We introduce the Point-based Liquid Argon Masked Autoencoder (PoLAr-MAE), applying masked point modeling to unlabeled LArTPC images using domain-specific volumetric tokenization and energy prediction. We show this SSL approach learns physically meaningful trajectory representations directly from data. This yields remarkable data efficiency: fine-tuning on just 100 labeled events achieves track/shower semantic segmentation performance comparable to the state-of-the-art supervised baseline trained on >100,000 events. Furthermore, internal attention maps exhibit emergent instance segmentation of particle trajectories. While challenges remain, particularly for fine-grained features, we make concrete SSL's potential for building a foundation model for LArTPC image analysis capable of serving as a common base for all data reconstruction tasks. To facilitate further progress, we release PILArNet-M, a large dataset of 1M LArTPC events. Project site: https://youngsm.com/polarmae.
Random Feature Representation Boosting
We introduce Random Feature Representation Boosting (RFRBoost), a novel method for constructing deep residual random feature neural networks (RFNNs) using boosting theory. RFRBoost uses random features at each layer to learn the functional gradient of the network representation, enhancing performance while preserving the convex optimization benefits of RFNNs. In the case of MSE loss, we obtain closed-form solutions to greedy layer-wise boosting with random features. For general loss functions, we show that fitting random feature residual blocks reduces to solving a quadratically constrained least squares problem. We demonstrate, through numerical experiments on 91 tabular datasets for regression and classification, that RFRBoost significantly outperforms traditional RFNNs and end-to-end trained MLP ResNets, while offering substantial computational advantages and theoretical guarantees stemming from boosting theory.
CiteTracker: Correlating Image and Text for Visual Tracking
Existing visual tracking methods typically take an image patch as the reference of the target to perform tracking. However, a single image patch cannot provide a complete and precise concept of the target object as images are limited in their ability to abstract and can be ambiguous, which makes it difficult to track targets with drastic variations. In this paper, we propose the CiteTracker to enhance target modeling and inference in visual tracking by connecting images and text. Specifically, we develop a text generation module to convert the target image patch into a descriptive text containing its class and attribute information, providing a comprehensive reference point for the target. In addition, a dynamic description module is designed to adapt to target variations for more effective target representation. We then associate the target description and the search image using an attention-based correlation module to generate the correlated features for target state reference. Extensive experiments on five diverse datasets are conducted to evaluate the proposed algorithm and the favorable performance against the state-of-the-art methods demonstrates the effectiveness of the proposed tracking method.
GECToR -- Grammatical Error Correction: Tag, Not Rewrite
In this paper, we present a simple and efficient GEC sequence tagger using a Transformer encoder. Our system is pre-trained on synthetic data and then fine-tuned in two stages: first on errorful corpora, and second on a combination of errorful and error-free parallel corpora. We design custom token-level transformations to map input tokens to target corrections. Our best single-model/ensemble GEC tagger achieves an F_{0.5} of 65.3/66.5 on CoNLL-2014 (test) and F_{0.5} of 72.4/73.6 on BEA-2019 (test). Its inference speed is up to 10 times as fast as a Transformer-based seq2seq GEC system. The code and trained models are publicly available.
SLIMER-IT: Zero-Shot NER on Italian Language
Traditional approaches to Named Entity Recognition (NER) frame the task into a BIO sequence labeling problem. Although these systems often excel in the downstream task at hand, they require extensive annotated data and struggle to generalize to out-of-distribution input domains and unseen entity types. On the contrary, Large Language Models (LLMs) have demonstrated strong zero-shot capabilities. While several works address Zero-Shot NER in English, little has been done in other languages. In this paper, we define an evaluation framework for Zero-Shot NER, applying it to the Italian language. Furthermore, we introduce SLIMER-IT, the Italian version of SLIMER, an instruction-tuning approach for zero-shot NER leveraging prompts enriched with definition and guidelines. Comparisons with other state-of-the-art models, demonstrate the superiority of SLIMER-IT on never-seen-before entity tags.
MyCrunchGPT: A chatGPT assisted framework for scientific machine learning
Scientific Machine Learning (SciML) has advanced recently across many different areas in computational science and engineering. The objective is to integrate data and physics seamlessly without the need of employing elaborate and computationally taxing data assimilation schemes. However, preprocessing, problem formulation, code generation, postprocessing and analysis are still time consuming and may prevent SciML from wide applicability in industrial applications and in digital twin frameworks. Here, we integrate the various stages of SciML under the umbrella of ChatGPT, to formulate MyCrunchGPT, which plays the role of a conductor orchestrating the entire workflow of SciML based on simple prompts by the user. Specifically, we present two examples that demonstrate the potential use of MyCrunchGPT in optimizing airfoils in aerodynamics, and in obtaining flow fields in various geometries in interactive mode, with emphasis on the validation stage. To demonstrate the flow of the MyCrunchGPT, and create an infrastructure that can facilitate a broader vision, we built a webapp based guided user interface, that includes options for a comprehensive summary report. The overall objective is to extend MyCrunchGPT to handle diverse problems in computational mechanics, design, optimization and controls, and general scientific computing tasks involved in SciML, hence using it as a research assistant tool but also as an educational tool. While here the examples focus in fluid mechanics, future versions will target solid mechanics and materials science, geophysics, systems biology and bioinformatics.
Falcon-H1: A Family of Hybrid-Head Language Models Redefining Efficiency and Performance
In this report, we introduce Falcon-H1, a new series of large language models (LLMs) featuring hybrid architecture designs optimized for both high performance and efficiency across diverse use cases. Unlike earlier Falcon models built solely on Transformer or Mamba architectures, Falcon-H1 adopts a parallel hybrid approach that combines Transformer-based attention with State Space Models (SSMs), known for superior long-context memory and computational efficiency. We systematically revisited model design, data strategy, and training dynamics, challenging conventional practices in the field. Falcon-H1 is released in multiple configurations, including base and instruction-tuned variants at 0.5B, 1.5B, 1.5B-deep, 3B, 7B, and 34B parameters. Quantized instruction-tuned models are also available, totaling over 30 checkpoints on Hugging Face Hub. Falcon-H1 models demonstrate state-of-the-art performance and exceptional parameter and training efficiency. The flagship Falcon-H1-34B matches or outperforms models up to 70B scale, such as Qwen3-32B, Qwen2.5-72B, and Llama3.3-70B, while using fewer parameters and less data. Smaller models show similar trends: the Falcon-H1-1.5B-Deep rivals current leading 7B-10B models, and Falcon-H1-0.5B performs comparably to typical 7B models from 2024. These models excel across reasoning, mathematics, multilingual tasks, instruction following, and scientific knowledge. With support for up to 256K context tokens and 18 languages, Falcon-H1 is suitable for a wide range of applications. All models are released under a permissive open-source license, underscoring our commitment to accessible and impactful AI research.
Learning in Imperfect Environment: Multi-Label Classification with Long-Tailed Distribution and Partial Labels
Conventional multi-label classification (MLC) methods assume that all samples are fully labeled and identically distributed. Unfortunately, this assumption is unrealistic in large-scale MLC data that has long-tailed (LT) distribution and partial labels (PL). To address the problem, we introduce a novel task, Partial labeling and Long-Tailed Multi-Label Classification (PLT-MLC), to jointly consider the above two imperfect learning environments. Not surprisingly, we find that most LT-MLC and PL-MLC approaches fail to solve the PLT-MLC, resulting in significant performance degradation on the two proposed PLT-MLC benchmarks. Therefore, we propose an end-to-end learning framework: COrrection rightarrow ModificatIon rightarrow balanCe, abbreviated as \method{}. Our bootstrapping philosophy is to simultaneously correct the missing labels (Correction) with convinced prediction confidence over a class-aware threshold and to learn from these recall labels during training. We next propose a novel multi-focal modifier loss that simultaneously addresses head-tail imbalance and positive-negative imbalance to adaptively modify the attention to different samples (Modification) under the LT class distribution. In addition, we develop a balanced training strategy by distilling the model's learning effect from head and tail samples, and thus design a balanced classifier (Balance) conditioned on the head and tail learning effect to maintain stable performance for all samples. Our experimental study shows that the proposed significantly outperforms general MLC, LT-MLC and PL-MLC methods in terms of effectiveness and robustness on our newly created PLT-MLC datasets.
RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs
Large language models (LLMs) typically utilize the top-k contexts from a retriever in retrieval-augmented generation (RAG). In this work, we propose a novel instruction fine-tuning framework RankRAG, which instruction-tunes a single LLM for the dual purpose of context ranking and answer generation in RAG. In particular, the instruction-tuned LLMs work surprisingly well by adding a small fraction of ranking data into the training blend, and outperform existing expert ranking models, including the same LLM exclusively fine-tuned on a large amount of ranking data. For generation, we compare our model with many strong baselines, including GPT-4-0613, GPT-4-turbo-2024-0409, and ChatQA-1.5, an open-sourced model with the state-of-the-art performance on RAG benchmarks. Specifically, our Llama3-RankRAG significantly outperforms Llama3-ChatQA-1.5 and GPT-4 models on nine knowledge-intensive benchmarks. In addition, it also performs comparably to GPT-4 on five RAG benchmarks in the biomedical domain without instruction fine-tuning on biomedical data, demonstrating its superb capability for generalization to new domains.
LoFT: Parameter-Efficient Fine-Tuning for Long-tailed Semi-Supervised Learning in Open-World Scenarios
Long-tailed learning has garnered increasing attention due to its wide applicability in real-world scenarios. Among existing approaches, Long-Tailed Semi-Supervised Learning (LTSSL) has emerged as an effective solution by incorporating a large amount of unlabeled data into the imbalanced labeled dataset. However, most prior LTSSL methods are designed to train models from scratch, which often leads to issues such as overconfidence and low-quality pseudo-labels. To address these challenges, we extend LTSSL into the foundation model fine-tuning paradigm and propose a novel framework: LoFT (Long-tailed semi-supervised learning via parameter-efficient Fine-Tuning). We demonstrate that fine-tuned foundation models can generate more reliable pseudolabels, thereby benefiting imbalanced learning. Furthermore, we explore a more practical setting by investigating semi-supervised learning under open-world conditions, where the unlabeled data may include out-of-distribution (OOD) samples. To handle this problem, we propose LoFT-OW (LoFT under Open-World scenarios) to improve the discriminative ability. Experimental results on multiple benchmarks demonstrate that our method achieves superior performance compared to previous approaches, even when utilizing only 1\% of the unlabeled data compared with previous works.
Reading Order Matters: Information Extraction from Visually-rich Documents by Token Path Prediction
Recent advances in multimodal pre-trained models have significantly improved information extraction from visually-rich documents (VrDs), in which named entity recognition (NER) is treated as a sequence-labeling task of predicting the BIO entity tags for tokens, following the typical setting of NLP. However, BIO-tagging scheme relies on the correct order of model inputs, which is not guaranteed in real-world NER on scanned VrDs where text are recognized and arranged by OCR systems. Such reading order issue hinders the accurate marking of entities by BIO-tagging scheme, making it impossible for sequence-labeling methods to predict correct named entities. To address the reading order issue, we introduce Token Path Prediction (TPP), a simple prediction head to predict entity mentions as token sequences within documents. Alternative to token classification, TPP models the document layout as a complete directed graph of tokens, and predicts token paths within the graph as entities. For better evaluation of VrD-NER systems, we also propose two revised benchmark datasets of NER on scanned documents which can reflect real-world scenarios. Experiment results demonstrate the effectiveness of our method, and suggest its potential to be a universal solution to various information extraction tasks on documents.
PromptBoosting: Black-Box Text Classification with Ten Forward Passes
We describe PromptBoosting, a query-efficient procedure for building a text classifier from a neural language model (LM) without access to the LM's parameters, gradients, or hidden representations. This form of "black-box" classifier training has become increasingly important as the cost of training and inference in large-scale LMs grows. But existing black-box LM classifier learning approaches are themselves computationally inefficient, typically specializing LMs to the target task by searching in a large space of (discrete or continuous) prompts using zeroth-order optimization methods. Instead of directly optimizing in prompt space, PromptBoosting obtains a small pool of prompts via a gradient-free approach and then constructs a large pool of weak learners by pairing these prompts with different elements of the LM's output distribution. These weak learners are then ensembled using the AdaBoost algorithm. The entire learning process requires only a small number of forward passes and no backward pass. Experiments show that PromptBoosting achieves state-of-the-art performance in multiple black-box few-shot classification tasks, and matches or outperforms full fine-tuning in both few-shot and standard learning paradigms, while training 10x faster than existing black-box methods.
Scaling LLaNA: Advancing NeRF-Language Understanding Through Large-Scale Training
Recent advances in Multimodal Large Language Models (MLLMs) have shown remarkable capabilities in understanding both images and 3D data, yet these modalities face inherent limitations in comprehensively representing object geometry and appearance. Neural Radiance Fields (NeRFs) have emerged as a promising alternative, encoding both geometric and photorealistic properties within the weights of a simple Multi-Layer Perceptron (MLP). This work investigates the feasibility and effectiveness of ingesting NeRFs into an MLLM. We introduce LLaNA, the first MLLM able to perform new tasks such as NeRF captioning and Q\&A, by directly processing the weights of a NeRF's MLP. Notably, LLaNA is able to extract information about the represented objects without the need to render images or materialize 3D data structures. In addition, we build the first large-scale NeRF-language dataset, composed by more than 300K NeRFs trained on ShapeNet and Objaverse, with paired textual annotations that enable various NeRF-language tasks. Based on this dataset, we develop a benchmark to evaluate the NeRF understanding capability of our method. Results show that directly processing NeRF weights leads to better performance on NeRF-Language tasks compared to approaches that rely on either 2D or 3D representations derived from NeRFs.
Solar Event Tracking with Deep Regression Networks: A Proof of Concept Evaluation
With the advent of deep learning for computer vision tasks, the need for accurately labeled data in large volumes is vital for any application. The increasingly available large amounts of solar image data generated by the Solar Dynamic Observatory (SDO) mission make this domain particularly interesting for the development and testing of deep learning systems. The currently available labeled solar data is generated by the SDO mission's Feature Finding Team's (FFT) specialized detection modules. The major drawback of these modules is that detection and labeling is performed with a cadence of every 4 to 12 hours, depending on the module. Since SDO image data products are created every 10 seconds, there is a considerable gap between labeled observations and the continuous data stream. In order to address this shortcoming, we trained a deep regression network to track the movement of two solar phenomena: Active Region and Coronal Hole events. To the best of our knowledge, this is the first attempt of solar event tracking using a deep learning approach. Since it is impossible to fully evaluate the performance of the suggested event tracks with the original data (only partial ground truth is available), we demonstrate with several metrics the effectiveness of our approach. With the purpose of generating continuously labeled solar image data, we present this feasibility analysis showing the great promise of deep regression networks for this task.
GLAD: Generative Language-Assisted Visual Tracking for Low-Semantic Templates
Vision-language tracking has gained increasing attention in many scenarios. This task simultaneously deals with visual and linguistic information to localize objects in videos. Despite its growing utility, the development of vision-language tracking methods remains in its early stage. Current vision-language trackers usually employ Transformer architectures for interactive integration of template, search, and text features. However, persistent challenges about low-semantic images including prevalent image blurriness, low resolution and so on, may compromise model performance through degraded cross-modal understanding. To solve this problem, language assistance is usually used to deal with the obstacles posed by low-semantic images. However, due to the existing gap between current textual and visual features, direct concatenation and fusion of these features may have limited effectiveness. To address these challenges, we introduce a pioneering Generative Language-AssisteD tracking model, GLAD, which utilizes diffusion models for the generative multi-modal fusion of text description and template image to bolster compatibility between language and image and enhance template image semantic information. Our approach demonstrates notable improvements over the existing fusion paradigms. Blurry and semantically ambiguous template images can be restored to improve multi-modal features in the generative fusion paradigm. Experiments show that our method establishes a new state-of-the-art on multiple benchmarks and achieves an impressive inference speed. The code and models will be released at: https://github.com/Confetti-lxy/GLAD
Multiple Object Tracking as ID Prediction
Multi-Object Tracking (MOT) has been a long-standing challenge in video understanding. A natural and intuitive approach is to split this task into two parts: object detection and association. Most mainstream methods employ meticulously crafted heuristic techniques to maintain trajectory information and compute cost matrices for object matching. Although these methods can achieve notable tracking performance, they often require a series of elaborate handcrafted modifications while facing complicated scenarios. We believe that manually assumed priors limit the method's adaptability and flexibility in learning optimal tracking capabilities from domain-specific data. Therefore, we introduce a new perspective that treats Multiple Object Tracking as an in-context ID Prediction task, transforming the aforementioned object association into an end-to-end trainable task. Based on this, we propose a simple yet effective method termed MOTIP. Given a set of trajectories carried with ID information, MOTIP directly decodes the ID labels for current detections to accomplish the association process. Without using tailored or sophisticated architectures, our method achieves state-of-the-art results across multiple benchmarks by solely leveraging object-level features as tracking cues. The simplicity and impressive results of MOTIP leave substantial room for future advancements, thereby making it a promising baseline for subsequent research. Our code and checkpoints are released at https://github.com/MCG-NJU/MOTIP.
MixCycle: Mixup Assisted Semi-Supervised 3D Single Object Tracking with Cycle Consistency
3D single object tracking (SOT) is an indispensable part of automated driving. Existing approaches rely heavily on large, densely labeled datasets. However, annotating point clouds is both costly and time-consuming. Inspired by the great success of cycle tracking in unsupervised 2D SOT, we introduce the first semi-supervised approach to 3D SOT. Specifically, we introduce two cycle-consistency strategies for supervision: 1) Self tracking cycles, which leverage labels to help the model converge better in the early stages of training; 2) forward-backward cycles, which strengthen the tracker's robustness to motion variations and the template noise caused by the template update strategy. Furthermore, we propose a data augmentation strategy named SOTMixup to improve the tracker's robustness to point cloud diversity. SOTMixup generates training samples by sampling points in two point clouds with a mixing rate and assigns a reasonable loss weight for training according to the mixing rate. The resulting MixCycle approach generalizes to appearance matching-based trackers. On the KITTI benchmark, based on the P2B tracker, MixCycle trained with 10% labels outperforms P2B trained with 100% labels, and achieves a 28.4% precision improvement when using 1% labels. Our code will be released at https://github.com/Mumuqiao/MixCycle.
Practical Galaxy Morphology Tools from Deep Supervised Representation Learning
Astronomers have typically set out to solve supervised machine learning problems by creating their own representations from scratch. We show that deep learning models trained to answer every Galaxy Zoo DECaLS question learn meaningful semantic representations of galaxies that are useful for new tasks on which the models were never trained. We exploit these representations to outperform several recent approaches at practical tasks crucial for investigating large galaxy samples. The first task is identifying galaxies of similar morphology to a query galaxy. Given a single galaxy assigned a free text tag by humans (e.g. "#diffuse"), we can find galaxies matching that tag for most tags. The second task is identifying the most interesting anomalies to a particular researcher. Our approach is 100% accurate at identifying the most interesting 100 anomalies (as judged by Galaxy Zoo 2 volunteers). The third task is adapting a model to solve a new task using only a small number of newly-labelled galaxies. Models fine-tuned from our representation are better able to identify ring galaxies than models fine-tuned from terrestrial images (ImageNet) or trained from scratch. We solve each task with very few new labels; either one (for the similarity search) or several hundred (for anomaly detection or fine-tuning). This challenges the longstanding view that deep supervised methods require new large labelled datasets for practical use in astronomy. To help the community benefit from our pretrained models, we release our fine-tuning code Zoobot. Zoobot is accessible to researchers with no prior experience in deep learning.
Model Generalization on Text Attribute Graphs: Principles with Large Language Models
Large language models (LLMs) have recently been introduced to graph learning, aiming to extend their zero-shot generalization success to tasks where labeled graph data is scarce. Among these applications, inference over text-attributed graphs (TAGs) presents unique challenges: existing methods struggle with LLMs' limited context length for processing large node neighborhoods and the misalignment between node embeddings and the LLM token space. To address these issues, we establish two key principles for ensuring generalization and derive the framework LLM-BP accordingly: (1) Unifying the attribute space with task-adaptive embeddings, where we leverage LLM-based encoders and task-aware prompting to enhance generalization of the text attribute embeddings; (2) Developing a generalizable graph information aggregation mechanism, for which we adopt belief propagation with LLM-estimated parameters that adapt across graphs. Evaluations on 11 real-world TAG benchmarks demonstrate that LLM-BP significantly outperforms existing approaches, achieving 8.10% improvement with task-conditional embeddings and an additional 1.71% gain from adaptive aggregation. The code and task-adaptive embeddings are publicly available.
Unbiased Gradient Low-Rank Projection
Memory-efficient optimization is critical for training increasingly large language models (LLMs). A popular strategy involves gradient low-rank projection, storing only the projected optimizer states, with GaLore being a representative example. However, a significant drawback of many such methods is their lack of convergence guarantees, as various low-rank projection approaches introduce inherent biases relative to the original optimization algorithms, which contribute to performance gaps compared to full-parameter training. Aiming to tackle this problem, this paper investigates the layerwise sampling technique for debiasing low-rank projection mechanisms. In particular, an instantiation of the paradigm gives rise to a novel and unbiased low-rank optimization method built upon GaLore's mechanism and the Muon algorithm, named GaLore Unbiased with Muon (GUM). We theoretically prove our method matches the convergence guarantees of the base Muon algorithm while preserving the memory efficiency of low-rank techniques. Empirical experiments on LLM fine-tuning and pretraining also demonstrate non-trivial improvements over GaLore and even better performance than full-parameter training. Further investigation shows that the improvement of this technique comes from a more uniform distribution of knowledge inside layers, leading to more efficient utilization of the model parameter space and better memorization.
Large Language Models Meet Text-Attributed Graphs: A Survey of Integration Frameworks and Applications
Large Language Models (LLMs) have achieved remarkable success in natural language processing through strong semantic understanding and generation. However, their black-box nature limits structured and multi-hop reasoning. In contrast, Text-Attributed Graphs (TAGs) provide explicit relational structures enriched with textual context, yet often lack semantic depth. Recent research shows that combining LLMs and TAGs yields complementary benefits: enhancing TAG representation learning and improving the reasoning and interpretability of LLMs. This survey provides the first systematic review of LLM--TAG integration from an orchestration perspective. We introduce a novel taxonomy covering two fundamental directions: LLM for TAG, where LLMs enrich graph-based tasks, and TAG for LLM, where structured graphs improve LLM reasoning. We categorize orchestration strategies into sequential, parallel, and multi-module frameworks, and discuss advances in TAG-specific pretraining, prompting, and parameter-efficient fine-tuning. Beyond methodology, we summarize empirical insights, curate available datasets, and highlight diverse applications across recommendation systems, biomedical analysis, and knowledge-intensive question answering. Finally, we outline open challenges and promising research directions, aiming to guide future work at the intersection of language and graph learning.
UEMM-Air: Make Unmanned Aerial Vehicles Perform More Multi-modal Tasks
The development of multi-modal learning for Unmanned Aerial Vehicles (UAVs) typically relies on a large amount of pixel-aligned multi-modal image data. However, existing datasets face challenges such as limited modalities, high construction costs, and imprecise annotations. To this end, we propose a synthetic multi-modal UAV-based multi-task dataset, UEMM-Air. Specifically, we simulate various UAV flight scenarios and object types using the Unreal Engine (UE). Then we design the UAV's flight logic to automatically collect data from different scenarios, perspectives, and altitudes. Furthermore, we propose a novel heuristic automatic annotation algorithm to generate accurate object detection labels. Finally, we utilize labels to generate text descriptions of images to make our UEMM-Air support more cross-modality tasks. In total, our UEMM-Air consists of 120k pairs of images with 6 modalities and precise annotations. Moreover, we conduct numerous experiments and establish new benchmark results on our dataset. We also found that models pre-trained on UEMM-Air exhibit better performance on downstream tasks compared to other similar datasets. The dataset is publicly available (https://github.com/1e12Leon/UEMM-Air) to support the research of multi-modal tasks on UAVs.
BERTRAM: Improved Word Embeddings Have Big Impact on Contextualized Model Performance
Pretraining deep language models has led to large performance gains in NLP. Despite this success, Schick and Sch\"utze (2020) recently showed that these models struggle to understand rare words. For static word embeddings, this problem has been addressed by separately learning representations for rare words. In this work, we transfer this idea to pretrained language models: We introduce BERTRAM, a powerful architecture based on BERT that is capable of inferring high-quality embeddings for rare words that are suitable as input representations for deep language models. This is achieved by enabling the surface form and contexts of a word to interact with each other in a deep architecture. Integrating BERTRAM into BERT leads to large performance increases due to improved representations of rare and medium frequency words on both a rare word probing task and three downstream tasks.
Modeling of learning curves with applications to pos tagging
An algorithm to estimate the evolution of learning curves on the whole of a training data base, based on the results obtained from a portion and using a functional strategy, is introduced. We approximate iteratively the sought value at the desired time, independently of the learning technique used and once a point in the process, called prediction level, has been passed. The proposal proves to be formally correct with respect to our working hypotheses and includes a reliable proximity condition. This allows the user to fix a convergence threshold with respect to the accuracy finally achievable, which extends the concept of stopping criterion and seems to be effective even in the presence of distorting observations. Our aim is to evaluate the training effort, supporting decision making in order to reduce the need for both human and computational resources during the learning process. The proposal is of interest in at least three operational procedures. The first is the anticipation of accuracy gain, with the purpose of measuring how much work is needed to achieve a certain degree of performance. The second relates the comparison of efficiency between systems at training time, with the objective of completing this task only for the one that best suits our requirements. The prediction of accuracy is also a valuable item of information for customizing systems, since we can estimate in advance the impact of settings on both the performance and the development costs. Using the generation of part-of-speech taggers as an example application, the experimental results are consistent with our expectations.
Meaning at the Planck scale? Contextualized word embeddings for doing history, philosophy, and sociology of science
This paper explores the potential of contextualized word embeddings (CWEs) as a new tool in the history, philosophy, and sociology of science (HPSS) for studying contextual and evolving meanings of scientific concepts. Using the term "Planck" as a test case, I evaluate five BERT-based models with varying degrees of domain-specific pretraining, including my custom model Astro-HEP-BERT, trained on the Astro-HEP Corpus, a dataset containing 21.84 million paragraphs from 600,000 articles in astrophysics and high-energy physics. For this analysis, I compiled two labeled datasets: (1) the Astro-HEP-Planck Corpus, consisting of 2,900 labeled occurrences of "Planck" sampled from 1,500 paragraphs in the Astro-HEP Corpus, and (2) a physics-related Wikipedia dataset comprising 1,186 labeled occurrences of "Planck" across 885 paragraphs. Results demonstrate that the domain-adapted models outperform the general-purpose ones in disambiguating the target term, predicting its known meanings, and generating high-quality sense clusters, as measured by a novel purity indicator I developed. Additionally, this approach reveals semantic shifts in the target term over three decades in the unlabeled Astro-HEP Corpus, highlighting the emergence of the Planck space mission as a dominant sense. The study underscores the importance of domain-specific pretraining for analyzing scientific language and demonstrates the cost-effectiveness of adapting pretrained models for HPSS research. By offering a scalable and transferable method for modeling the meanings of scientific concepts, CWEs open up new avenues for investigating the socio-historical dynamics of scientific discourses.
Fusion-DeepONet: A Data-Efficient Neural Operator for Geometry-Dependent Hypersonic and Supersonic Flows
Shape optimization is essential in aerospace vehicle design, including reentry systems, and propulsion system components, as it directly influences aerodynamic efficiency, structural integrity, and overall mission success. Rapid and accurate prediction of external and internal flows accelerates design iterations. To this end, we develop a new variant of DeepONet, called Fusion-DeepONet as a fast surrogate model for geometry-dependent hypersonic and supersonic flow fields. We evaluated Fusion-DeepONet in learning two external hypersonic flows and a supersonic shape-dependent internal flow problem. First, we compare the performance of Fusion-DeepONet with state-of-the-art neural operators to learn inviscid hypersonic flow around semi-elliptic blunt bodies for two grid types: uniform Cartesian and irregular grids. Fusion-DeepONet provides comparable accuracy to parameter-conditioned U-Net on uniform grids while outperforming MeshGraphNet and Vanilla-DeepONet on irregular grids. Fusion-DeepONet requires significantly fewer trainable parameters than U-Net, MeshGraphNet, and FNO. For the second hypersonic problem, we set up Fusion-DeepONet to map from geometry and free stream Mach number to the temperature field around a reentry capsule traveling at hypersonic speed. This fast surrogate is then improved to predict the spatial derivative of the temperature, resulting in an accurate prediction of heat flux at the surfaces of the capsule. To enhance the accuracy of spatial derivative prediction, we introduce a derivative-enhanced loss term with the least computation overhead. For the third problem, we show that Fusion-DeepONet outperforms MeshGraphNet in learning geometry-dependent supersonic flow in a converging-diverging nozzle configuration. For all the problems, we used high-fidelity simulations with a high-order entropy-stable DGSEM solver to generate training datasets with limited samples.
Inject Semantic Concepts into Image Tagging for Open-Set Recognition
In this paper, we introduce the Recognize Anything Plus Model~(RAM++), a fundamental image recognition model with strong open-set recognition capabilities, by injecting semantic concepts into image tagging training framework. Previous approaches are either image tagging models constrained by limited semantics, or vision-language models with shallow interaction for suboptimal performance in multi-tag recognition. In contrast, RAM++ integrates image-text alignment and image-tagging within a unified fine-grained interaction framework based on image-tags-text triplets. This design enables RAM++ not only excel in identifying predefined categories, but also significantly augment the recognition ability in open-set categories. Moreover, RAM++ employs large language models~(LLMs) to generate diverse visual tag descriptions, pioneering the integration of LLM's knowledge into image tagging training. This approach empowers RAM++ to integrate visual description concepts for open-set recognition during inference. Evaluations on comprehensive image recognition benchmarks demonstrate RAM++ exceeds existing state-of-the-art (SOTA) fundamental image recognition models on most aspects. Specifically, for predefined common-used tag categories, RAM++ showcases 10.2 mAP and 15.4 mAP enhancements over CLIP on OpenImages and ImageNet. For open-set categories beyond predefined, RAM++ records improvements of 5 mAP and 6.4 mAP over CLIP and RAM respectively on OpenImages. For diverse human-object interaction phrases, RAM++ achieves 7.8 mAP and 4.7 mAP improvements on the HICO benchmark. Code, datasets and pre-trained models are available at https://github.com/xinyu1205/recognize-anything.
Breaking the Modality Barrier: Universal Embedding Learning with Multimodal LLMs
The Contrastive Language-Image Pre-training (CLIP) framework has become a widely used approach for multimodal representation learning, particularly in image-text retrieval and clustering. However, its efficacy is constrained by three key limitations: (1) text token truncation, (2) isolated image-text encoding, and (3) deficient compositionality due to bag-of-words behavior. While recent Multimodal Large Language Models (MLLMs) have demonstrated significant advances in generalized vision-language understanding, their potential for learning transferable multimodal representations remains underexplored.In this work, we present UniME (Universal Multimodal Embedding), a novel two-stage framework that leverages MLLMs to learn discriminative representations for diverse downstream tasks. In the first stage, we perform textual discriminative knowledge distillation from a powerful LLM-based teacher model to enhance the embedding capability of the MLLM\'s language component. In the second stage, we introduce hard negative enhanced instruction tuning to further advance discriminative representation learning. Specifically, we initially mitigate false negative contamination and then sample multiple hard negatives per instance within each batch, forcing the model to focus on challenging samples. This approach not only improves discriminative power but also enhances instruction-following ability in downstream tasks. We conduct extensive experiments on the MMEB benchmark and multiple retrieval tasks, including short and long caption retrieval and compositional retrieval. Results demonstrate that UniME achieves consistent performance improvement across all tasks, exhibiting superior discriminative and compositional capabilities.
Visual Prompt Engineering for Medical Vision Language Models in Radiology
Medical image classification in radiology faces significant challenges, particularly in generalizing to unseen pathologies. In contrast, CLIP offers a promising solution by leveraging multimodal learning to improve zero-shot classification performance. However, in the medical domain, lesions can be small and might not be well represented in the embedding space. Therefore, in this paper, we explore the potential of visual prompt engineering to enhance the capabilities of Vision Language Models (VLMs) in radiology. Leveraging BiomedCLIP, trained on extensive biomedical image-text pairs, we investigate the impact of embedding visual markers directly within radiological images to guide the model's attention to critical regions. Our evaluation on the JSRT dataset, focusing on lung nodule malignancy classification, demonstrates that incorporating visual prompts x2013 such as arrows, circles, and contours x2013 significantly improves classification metrics including AUROC, AUPRC, F1 score, and accuracy. Moreover, the study provides attention maps, showcasing enhanced model interpretability and focus on clinically relevant areas. These findings underscore the efficacy of visual prompt engineering as a straightforward yet powerful approach to advance VLM performance in medical image analysis.
EVPropNet: Detecting Drones By Finding Propellers For Mid-Air Landing And Following
The rapid rise of accessibility of unmanned aerial vehicles or drones pose a threat to general security and confidentiality. Most of the commercially available or custom-built drones are multi-rotors and are comprised of multiple propellers. Since these propellers rotate at a high-speed, they are generally the fastest moving parts of an image and cannot be directly "seen" by a classical camera without severe motion blur. We utilize a class of sensors that are particularly suitable for such scenarios called event cameras, which have a high temporal resolution, low-latency, and high dynamic range. In this paper, we model the geometry of a propeller and use it to generate simulated events which are used to train a deep neural network called EVPropNet to detect propellers from the data of an event camera. EVPropNet directly transfers to the real world without any fine-tuning or retraining. We present two applications of our network: (a) tracking and following an unmarked drone and (b) landing on a near-hover drone. We successfully evaluate and demonstrate the proposed approach in many real-world experiments with different propeller shapes and sizes. Our network can detect propellers at a rate of 85.1% even when 60% of the propeller is occluded and can run at upto 35Hz on a 2W power budget. To our knowledge, this is the first deep learning-based solution for detecting propellers (to detect drones). Finally, our applications also show an impressive success rate of 92% and 90% for the tracking and landing tasks respectively.
NV-Retriever: Improving text embedding models with effective hard-negative mining
Text embedding models have been popular for information retrieval applications such as semantic search and Question-Answering systems based on Retrieval-Augmented Generation (RAG). Those models are typically Transformer models that are fine-tuned with contrastive learning objectives. Many papers introduced new embedding model architectures and training approaches, however, one of the key ingredients, the process of mining negative passages, remains poorly explored or described. One of the challenging aspects of fine-tuning embedding models is the selection of high quality hard-negative passages for contrastive learning. In this paper we propose a family of positive-aware mining methods that leverage the positive relevance score for more effective false negatives removal. We also provide a comprehensive ablation study on hard-negative mining methods over their configurations, exploring different teacher and base models. We demonstrate the efficacy of our proposed methods by introducing the NV-Retriever-v1 model, which scores 60.9 on MTEB Retrieval (BEIR) benchmark and 0.65 points higher than previous methods. The model placed 1st when it was published to MTEB Retrieval on July 07, 2024.
Scaling Up Diffusion and Flow-based XGBoost Models
Novel machine learning methods for tabular data generation are often developed on small datasets which do not match the scale required for scientific applications. We investigate a recent proposal to use XGBoost as the function approximator in diffusion and flow-matching models on tabular data, which proved to be extremely memory intensive, even on tiny datasets. In this work, we conduct a critical analysis of the existing implementation from an engineering perspective, and show that these limitations are not fundamental to the method; with better implementation it can be scaled to datasets 370x larger than previously used. Our efficient implementation also unlocks scaling models to much larger sizes which we show directly leads to improved performance on benchmark tasks. We also propose algorithmic improvements that can further benefit resource usage and model performance, including multi-output trees which are well-suited to generative modeling. Finally, we present results on large-scale scientific datasets derived from experimental particle physics as part of the Fast Calorimeter Simulation Challenge. Code is available at https://github.com/layer6ai-labs/calo-forest.
Which Tricks are Important for Learning to Rank?
Nowadays, state-of-the-art learning-to-rank (LTR) methods are based on gradient-boosted decision trees (GBDT). The most well-known algorithm is LambdaMART that was proposed more than a decade ago. Recently, several other GBDT-based ranking algorithms were proposed. In this paper, we conduct a thorough analysis of these methods in a unified setup. In particular, we address the following questions. Is direct optimization of a smoothed ranking loss preferable over optimizing a convex surrogate? How to properly construct and smooth surrogate ranking losses? To address these questions, we compare LambdaMART with YetiRank and StochasticRank methods and their modifications. We also improve the YetiRank approach to allow for optimizing specific ranking loss functions. As a result, we gain insights into learning-to-rank approaches and obtain a new state-of-the-art algorithm.
Robust Object Modeling for Visual Tracking
Object modeling has become a core part of recent tracking frameworks. Current popular tackers use Transformer attention to extract the template feature separately or interactively with the search region. However, separate template learning lacks communication between the template and search regions, which brings difficulty in extracting discriminative target-oriented features. On the other hand, interactive template learning produces hybrid template features, which may introduce potential distractors to the template via the cluttered search regions. To enjoy the merits of both methods, we propose a robust object modeling framework for visual tracking (ROMTrack), which simultaneously models the inherent template and the hybrid template features. As a result, harmful distractors can be suppressed by combining the inherent features of target objects with search regions' guidance. Target-related features can also be extracted using the hybrid template, thus resulting in a more robust object modeling framework. To further enhance robustness, we present novel variation tokens to depict the ever-changing appearance of target objects. Variation tokens are adaptable to object deformation and appearance variations, which can boost overall performance with negligible computation. Experiments show that our ROMTrack sets a new state-of-the-art on multiple benchmarks.
LLaNA: Large Language and NeRF Assistant
Multimodal Large Language Models (MLLMs) have demonstrated an excellent understanding of images and 3D data. However, both modalities have shortcomings in holistically capturing the appearance and geometry of objects. Meanwhile, Neural Radiance Fields (NeRFs), which encode information within the weights of a simple Multi-Layer Perceptron (MLP), have emerged as an increasingly widespread modality that simultaneously encodes the geometry and photorealistic appearance of objects. This paper investigates the feasibility and effectiveness of ingesting NeRF into MLLM. We create LLaNA, the first general-purpose NeRF-language assistant capable of performing new tasks such as NeRF captioning and Q\&A. Notably, our method directly processes the weights of the NeRF's MLP to extract information about the represented objects without the need to render images or materialize 3D data structures. Moreover, we build a dataset of NeRFs with text annotations for various NeRF-language tasks with no human intervention. Based on this dataset, we develop a benchmark to evaluate the NeRF understanding capability of our method. Results show that processing NeRF weights performs favourably against extracting 2D or 3D representations from NeRFs.
