- Self-Blinding and Counterfactual Self-Simulation Mitigate Biases and Sycophancy in Large Language Models Fair decisions require ignoring irrelevant, potentially biasing, information. To achieve this, decision-makers need to approximate what decision they would have made had they not known certain facts, such as the gender or race of a job candidate. This counterfactual self-simulation is notoriously hard for humans, leading to biased judgments even by well-meaning actors. Here we show that large language models (LLMs) suffer from similar limitations in their ability to approximate what decisions they would make under counterfactual knowledge in offsetting gender and race biases and overcoming sycophancy. We show that prompting models to ignore or pretend not to know biasing information fails to offset these biases and occasionally backfires. However, unlike humans, LLMs can be given access to a ground-truth model of their own counterfactual cognition -- their own API. We show that this access to the responses of a blinded replica enables fairer decisions, while providing greater transparency to distinguish implicit from intentionally biased behavior. 2 authors · Jan 20
- Single replica spin-glass phase detection using field variation and machine learning The Sherrington-Kirkpatrick spin-glass model used the replica symmetry method to find the phase transition of the system. In 1979-1980, Parisi proposed a solution based on replica symmetry breaking (RSB), which allowed him to identify the underlying phases of complex systems such as spin-glasses. Regardless of the method used for detection, the intrinsic phase of a system exists whether or not replicas are considered. We introduce a single replica method of spin-glass phase detection using the field's variation experienced by each spin in a system configuration. This method focuses on a single replica with quenched random couplings. Each spin inevitably observes a different field from the others. Our results show that the mean and variance of fields named "Spontaneous Configurational Field" experienced by spins are suitable indicators to explore different ferromagnetic, paramagnetic, and mixed phases. To classify different phases of the system with defined indicators we have developed an algorithm based on machine learning to analyze the desired samples. 4 authors · Nov 7, 2024
15 Reflecting Reality: Enabling Diffusion Models to Produce Faithful Mirror Reflections We tackle the problem of generating highly realistic and plausible mirror reflections using diffusion-based generative models. We formulate this problem as an image inpainting task, allowing for more user control over the placement of mirrors during the generation process. To enable this, we create SynMirror, a large-scale dataset of diverse synthetic scenes with objects placed in front of mirrors. SynMirror contains around 198K samples rendered from 66K unique 3D objects, along with their associated depth maps, normal maps and instance-wise segmentation masks, to capture relevant geometric properties of the scene. Using this dataset, we propose a novel depth-conditioned inpainting method called MirrorFusion, which generates high-quality geometrically consistent and photo-realistic mirror reflections given an input image and a mask depicting the mirror region. MirrorFusion outperforms state-of-the-art methods on SynMirror, as demonstrated by extensive quantitative and qualitative analysis. To the best of our knowledge, we are the first to successfully tackle the challenging problem of generating controlled and faithful mirror reflections of an object in a scene using diffusion based models. SynMirror and MirrorFusion open up new avenues for image editing and augmented reality applications for practitioners and researchers alike. 6 authors · Sep 22, 2024 3