10 HiF-VLA: Hindsight, Insight and Foresight through Motion Representation for Vision-Language-Action Models Vision-Language-Action (VLA) models have recently enabled robotic manipulation by grounding visual and linguistic cues into actions. However, most VLAs assume the Markov property, relying only on the current observation and thus suffering from temporal myopia that degrades long-horizon coherence. In this work, we view motion as a more compact and informative representation of temporal context and world dynamics, capturing inter-state changes while filtering static pixel-level noise. Building on this idea, we propose HiF-VLA (Hindsight, Insight, and Foresight for VLAs), a unified framework that leverages motion for bidirectional temporal reasoning. HiF-VLA encodes past dynamics through hindsight priors, anticipates future motion via foresight reasoning, and integrates both through a hindsight-modulated joint expert to enable a ''think-while-acting'' paradigm for long-horizon manipulation. As a result, HiF-VLA surpasses strong baselines on LIBERO-Long and CALVIN ABC-D benchmarks, while incurring negligible additional inference latency. Furthermore, HiF-VLA achieves substantial improvements in real-world long-horizon manipulation tasks, demonstrating its broad effectiveness in practical robotic settings. Westlake Robotics Technology (Hangzhou) Co., Ltd. · Dec 10 2
- MomentSeg: Moment-Centric Sampling for Enhanced Video Pixel Understanding Referring Video Object Segmentation (RefVOS) seeks to segment target objects in videos guided by natural language descriptions, demanding both temporal reasoning and fine-grained visual comprehension. Existing sampling strategies for LLM-based approaches typically rely on either handcrafted heuristics or external keyframe models. The former often overlooks essential temporal cues, while the latter increases system complexity. To address this, we propose a unified framework that jointly optimizes Temporal Sentence Grounding (TSG) and RefVOS, naturally incorporating key moment grounding capability. During training, we introduce a novel TSG paradigm that employs a dedicated [FIND] token for key moment identification through temporal token similarity matching, thereby avoiding the need for external timestamp encodings. For inference, we design a Moment-Centric Sampling (MCS) strategy that densely samples informative moments while sparsely sampling non-essential frames, preserving both motion details and global context. To further enhance tracking stability, we develop Bidirectional Anchor-updated Propagation (BAP), which leverages the most relevant moment as start point for high-quality mask initialization and dynamically updates at sampled points to mitigate accumulated errors. Code and model will be available at: https://github.com/Dmmm1997/MomentSeg 5 authors · Oct 10
1 Scaling up Masked Diffusion Models on Text Masked diffusion models (MDMs) have shown promise in language modeling, yet their scalability and effectiveness in core language tasks, such as text generation and language understanding, remain underexplored. This paper establishes the first scaling law for MDMs, demonstrating a scaling rate comparable to autoregressive models (ARMs) and a relatively small compute gap. Motivated by their scalability, we train a family of MDMs with up to 1.1 billion (B) parameters to systematically evaluate their performance against ARMs of comparable or larger sizes. Fully leveraging the probabilistic formulation of MDMs, we propose a simple yet effective unsupervised classifier-free guidance that effectively exploits large-scale unpaired data, boosting performance for conditional inference. In language understanding, the 1.1B MDM outperforms the 1.1B TinyLlama model trained on the same data across four of eight zero-shot benchmarks. Notably, it achieves competitive math reasoning ability with the 7B Llama-2 model on the GSM8K dataset. In text generation, MDMs with 16 times more pre-training time offer a flexible trade-off against ARMs with the accelerated sampling technique KV-Cache: MDMs match ARMs in performance while being 1.4 times faster during sampling. Moreover, MDMs address challenging tasks for ARMs by effectively handling bidirectional reasoning and adapting to temporal shifts in data. Notably, a 1.1B MDM breaks the reverse curse encountered by much larger ARMs with significantly more data and computation, such as 13B Llama-2 and 175B GPT-3. Our code is available at https://github.com/ML-GSAI/SMDM. 8 authors · Oct 24, 2024