6 STMA: A Spatio-Temporal Memory Agent for Long-Horizon Embodied Task Planning A key objective of embodied intelligence is enabling agents to perform long-horizon tasks in dynamic environments while maintaining robust decision-making and adaptability. To achieve this goal, we propose the Spatio-Temporal Memory Agent (STMA), a novel framework designed to enhance task planning and execution by integrating spatio-temporal memory. STMA is built upon three critical components: (1) a spatio-temporal memory module that captures historical and environmental changes in real time, (2) a dynamic knowledge graph that facilitates adaptive spatial reasoning, and (3) a planner-critic mechanism that iteratively refines task strategies. We evaluate STMA in the TextWorld environment on 32 tasks, involving multi-step planning and exploration under varying levels of complexity. Experimental results demonstrate that STMA achieves a 31.25% improvement in success rate and a 24.7% increase in average score compared to the state-of-the-art model. The results highlight the effectiveness of spatio-temporal memory in advancing the memory capabilities of embodied agents. 7 authors · Feb 14 2
- A Novel Kuhnian Ontology for Epistemic Classification of STM Scholarly Articles Despite rapid gains in scale, research evaluation still relies on opaque, lagging proxies. To serve the scientific community, we pursue transparency: reproducible, auditable epistemic classification useful for funding and policy. Here we formalize KGX3 as a scenario-based model for mapping Kuhnian stages from research papers, prove determinism of the classification pipeline, and define the epistemic manifold that yields paradigm maps. We report validation across recent corpora, operational complexity at global scale, and governance that preserves interpretability while protecting core IP. The system delivers early, actionable signals of drift, crisis, and shift unavailable to citation metrics or citations-anchored NLP. KGX3 is the latest iteration of a deterministic epistemic engine developed since 2019, originating as Soph.io (2020), advanced as iKuhn (2024), and field-tested through Preprint Watch in 2025. 1 authors · Feb 9, 2020
1 Real Time Bearing Fault Diagnosis Based on Convolutional Neural Network and STM32 Microcontroller With the rapid development of big data and edge computing, many researchers focus on improving the accuracy of bearing fault classification using deep learning models, and implementing the deep learning classification model on limited resource platforms such as STM32. To this end, this paper realizes the identification of bearing fault vibration signal based on convolutional neural network, the fault identification accuracy of the optimised model can reach 98.9%. In addition, this paper successfully applies the convolutional neural network model to STM32H743VI microcontroller, the running time of each diagnosis is 19ms. Finally, a complete real-time communication framework between the host computer and the STM32 is designed, which can perfectly complete the data transmission through the serial port and display the diagnosis results on the TFT-LCD screen. 1 authors · Apr 14, 2023