new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

Large-Scale Chemical Language Representations Capture Molecular Structure and Properties

Models based on machine learning can enable accurate and fast molecular property predictions, which is of interest in drug discovery and material design. Various supervised machine learning models have demonstrated promising performance, but the vast chemical space and the limited availability of property labels make supervised learning challenging. Recently, unsupervised transformer-based language models pretrained on a large unlabelled corpus have produced state-of-the-art results in many downstream natural language processing tasks. Inspired by this development, we present molecular embeddings obtained by training an efficient transformer encoder model, MoLFormer, which uses rotary positional embeddings. This model employs a linear attention mechanism, coupled with highly distributed training, on SMILES sequences of 1.1 billion unlabelled molecules from the PubChem and ZINC datasets. We show that the learned molecular representation outperforms existing baselines, including supervised and self-supervised graph neural networks and language models, on several downstream tasks from ten benchmark datasets. They perform competitively on two others. Further analyses, specifically through the lens of attention, demonstrate that MoLFormer trained on chemical SMILES indeed learns the spatial relationships between atoms within a molecule. These results provide encouraging evidence that large-scale molecular language models can capture sufficient chemical and structural information to predict various distinct molecular properties, including quantum-chemical properties.

  • 6 authors
·
Jun 17, 2021

TITAN: T Cell Receptor Specificity Prediction with Bimodal Attention Networks

Motivation: The activity of the adaptive immune system is governed by T-cells and their specific T-cell receptors (TCR), which selectively recognize foreign antigens. Recent advances in experimental techniques have enabled sequencing of TCRs and their antigenic targets (epitopes), allowing to research the missing link between TCR sequence and epitope binding specificity. Scarcity of data and a large sequence space make this task challenging, and to date only models limited to a small set of epitopes have achieved good performance. Here, we establish a k-nearest-neighbor (K-NN) classifier as a strong baseline and then propose TITAN (Tcr epITope bimodal Attention Networks), a bimodal neural network that explicitly encodes both TCR sequences and epitopes to enable the independent study of generalization capabilities to unseen TCRs and/or epitopes. Results: By encoding epitopes at the atomic level with SMILES sequences, we leverage transfer learning and data augmentation to enrich the input data space and boost performance. TITAN achieves high performance in the prediction of specificity of unseen TCRs (ROC-AUC 0.87 in 10-fold CV) and surpasses the results of the current state-of-the-art (ImRex) by a large margin. Notably, our Levenshtein-distance-based K-NN classifier also exhibits competitive performance on unseen TCRs. While the generalization to unseen epitopes remains challenging, we report two major breakthroughs. First, by dissecting the attention heatmaps, we demonstrate that the sparsity of available epitope data favors an implicit treatment of epitopes as classes. This may be a general problem that limits unseen epitope performance for sufficiently complex models. Second, we show that TITAN nevertheless exhibits significantly improved performance on unseen epitopes and is capable of focusing attention on chemically meaningful molecular structures.

  • 3 authors
·
Apr 21, 2021

Towards Explainable Anticancer Compound Sensitivity Prediction via Multimodal Attention-based Convolutional Encoders

In line with recent advances in neural drug design and sensitivity prediction, we propose a novel architecture for interpretable prediction of anticancer compound sensitivity using a multimodal attention-based convolutional encoder. Our model is based on the three key pillars of drug sensitivity: compounds' structure in the form of a SMILES sequence, gene expression profiles of tumors and prior knowledge on intracellular interactions from protein-protein interaction networks. We demonstrate that our multiscale convolutional attention-based (MCA) encoder significantly outperforms a baseline model trained on Morgan fingerprints, a selection of encoders based on SMILES as well as previously reported state of the art for multimodal drug sensitivity prediction (R2 = 0.86 and RMSE = 0.89). Moreover, the explainability of our approach is demonstrated by a thorough analysis of the attention weights. We show that the attended genes significantly enrich apoptotic processes and that the drug attention is strongly correlated with a standard chemical structure similarity index. Finally, we report a case study of two receptor tyrosine kinase (RTK) inhibitors acting on a leukemia cell line, showcasing the ability of the model to focus on informative genes and submolecular regions of the two compounds. The demonstrated generalizability and the interpretability of our model testify its potential for in-silico prediction of anticancer compound efficacy on unseen cancer cells, positioning it as a valid solution for the development of personalized therapies as well as for the evaluation of candidate compounds in de novo drug design.

  • 6 authors
·
Apr 25, 2019

HELM-BERT: A Transformer for Medium-sized Peptide Property Prediction

Therapeutic peptides have emerged as a pivotal modality in modern drug discovery, occupying a chemically and topologically rich space. While accurate prediction of their physicochemical properties is essential for accelerating peptide development, existing molecular language models rely on representations that fail to capture this complexity. Atom-level SMILES notation generates long token sequences and obscures cyclic topology, whereas amino-acid-level representations cannot encode the diverse chemical modifications central to modern peptide design. To bridge this representational gap, the Hierarchical Editing Language for Macromolecules (HELM) offers a unified framework enabling precise description of both monomer composition and connectivity, making it a promising foundation for peptide language modeling. Here, we propose HELM-BERT, the first encoder-based peptide language model trained on HELM notation. Based on DeBERTa, HELM-BERT is specifically designed to capture hierarchical dependencies within HELM sequences. The model is pre-trained on a curated corpus of 39,079 chemically diverse peptides spanning linear and cyclic structures. HELM-BERT significantly outperforms state-of-the-art SMILES-based language models in downstream tasks, including cyclic peptide membrane permeability prediction and peptide-protein interaction prediction. These results demonstrate that HELM's explicit monomer- and topology-aware representations offer substantial data-efficiency advantages for modeling therapeutic peptides, bridging a long-standing gap between small-molecule and protein language models.

  • 5 authors
·
Dec 28, 2025

zERExtractor:An Automated Platform for Enzyme-Catalyzed Reaction Data Extraction from Scientific Literature

The rapid expansion of enzyme kinetics literature has outpaced the curation capabilities of major biochemical databases, creating a substantial barrier to AI-driven modeling and knowledge discovery. We present zERExtractor, an automated and extensible platform for comprehensive extraction of enzyme-catalyzed reaction and activity data from scientific literature. zERExtractor features a unified, modular architecture that supports plug-and-play integration of state-of-the-art models, including large language models (LLMs), as interchangeable components, enabling continuous system evolution alongside advances in AI. Our pipeline combines domain-adapted deep learning, advanced OCR, semantic entity recognition, and prompt-driven LLM modules, together with human expert corrections, to extract kinetic parameters (e.g., kcat, Km), enzyme sequences, substrate SMILES, experimental conditions, and molecular diagrams from heterogeneous document formats. Through active learning strategies integrating AI-assisted annotation, expert validation, and iterative refinement, the system adapts rapidly to new data sources. We also release a large benchmark dataset comprising over 1,000 annotated tables and 5,000 biological fields from 270 P450-related enzymology publications. Benchmarking demonstrates that zERExtractor consistently outperforms existing baselines in table recognition (Acc 89.9%), molecular image interpretation (up to 99.1%), and relation extraction (accuracy 94.2%). zERExtractor bridges the longstanding data gap in enzyme kinetics with a flexible, plugin-ready framework and high-fidelity extraction, laying the groundwork for future AI-powered enzyme modeling and biochemical knowledge discovery.

  • 12 authors
·
Jul 30, 2025