- Prime and Reach: Synthesising Body Motion for Gaze-Primed Object Reach Human motion generation is a challenging task that aims to create realistic motion imitating natural human behaviour. We focus on the well-studied behaviour of priming an object/location for pick up or put down -- that is, the spotting of an object/location from a distance, known as gaze priming, followed by the motion of approaching and reaching the target location. To that end, we curate, for the first time, 23.7K gaze-primed human motion sequences for reaching target object locations from five publicly available datasets, i.e., HD-EPIC, MoGaze, HOT3D, ADT, and GIMO. We pre-train a text-conditioned diffusion-based motion generation model, then fine-tune it conditioned on goal pose or location, on our curated sequences. Importantly, we evaluate the ability of the generated motion to imitate natural human movement through several metrics, including the 'Reach Success' and a newly introduced 'Prime Success' metric. On the largest dataset, HD-EPIC, our model achieves 60% prime success and 89% reach success when conditioned on the goal object location. 6 authors · Dec 18
- PRIME: Prioritizing Interpretability in Failure Mode Extraction In this work, we study the challenge of providing human-understandable descriptions for failure modes in trained image classification models. Existing works address this problem by first identifying clusters (or directions) of incorrectly classified samples in a latent space and then aiming to provide human-understandable text descriptions for them. We observe that in some cases, describing text does not match well with identified failure modes, partially owing to the fact that shared interpretable attributes of failure modes may not be captured using clustering in the feature space. To improve on these shortcomings, we propose a novel approach that prioritizes interpretability in this problem: we start by obtaining human-understandable concepts (tags) of images in the dataset and then analyze the model's behavior based on the presence or absence of combinations of these tags. Our method also ensures that the tags describing a failure mode form a minimal set, avoiding redundant and noisy descriptions. Through several experiments on different datasets, we show that our method successfully identifies failure modes and generates high-quality text descriptions associated with them. These results highlight the importance of prioritizing interpretability in understanding model failures. 4 authors · Sep 29, 2023
14 INTELLECT-2: A Reasoning Model Trained Through Globally Decentralized Reinforcement Learning We introduce INTELLECT-2, the first globally distributed reinforcement learning (RL) training run of a 32 billion parameter language model. Unlike traditional centralized training efforts, INTELLECT-2 trains a reasoning model using fully asynchronous RL across a dynamic, heterogeneous swarm of permissionless compute contributors. To enable a training run with this unique infrastructure, we built various components from scratch: we introduce PRIME-RL, our training framework purpose-built for distributed asynchronous reinforcement learning, based on top of novel components such as TOPLOC, which verifies rollouts from untrusted inference workers, and SHARDCAST, which efficiently broadcasts policy weights from training nodes to inference workers. Beyond infrastructure components, we propose modifications to the standard GRPO training recipe and data filtering techniques that were crucial to achieve training stability and ensure that our model successfully learned its training objective, thus improving upon QwQ-32B, the state of the art reasoning model in the 32B parameter range. We open-source INTELLECT-2 along with all of our code and data, hoping to encourage and enable more open research in the field of decentralized training. 14 authors · May 12 2
61 Process Reinforcement through Implicit Rewards Dense process rewards have proven a more effective alternative to the sparse outcome-level rewards in the inference-time scaling of large language models (LLMs), particularly in tasks requiring complex multi-step reasoning. While dense rewards also offer an appealing choice for the reinforcement learning (RL) of LLMs since their fine-grained rewards have the potential to address some inherent issues of outcome rewards, such as training efficiency and credit assignment, this potential remains largely unrealized. This can be primarily attributed to the challenges of training process reward models (PRMs) online, where collecting high-quality process labels is prohibitively expensive, making them particularly vulnerable to reward hacking. To address these challenges, we propose PRIME (Process Reinforcement through IMplicit rEwards), which enables online PRM updates using only policy rollouts and outcome labels through implict process rewards. PRIME combines well with various advantage functions and forgoes the dedicated reward model training phrase that existing approaches require, substantially reducing the development overhead. We demonstrate PRIME's effectiveness on competitional math and coding. Starting from Qwen2.5-Math-7B-Base, PRIME achieves a 15.1% average improvement across several key reasoning benchmarks over the SFT model. Notably, our resulting model, Eurus-2-7B-PRIME, surpasses Qwen2.5-Math-7B-Instruct on seven reasoning benchmarks with 10% of its training data. 23 authors · Feb 3 2
5 Evaluating the Critical Risks of Amazon's Nova Premier under the Frontier Model Safety Framework Nova Premier is Amazon's most capable multimodal foundation model and teacher for model distillation. It processes text, images, and video with a one-million-token context window, enabling analysis of large codebases, 400-page documents, and 90-minute videos in a single prompt. We present the first comprehensive evaluation of Nova Premier's critical risk profile under the Frontier Model Safety Framework. Evaluations target three high-risk domains -- Chemical, Biological, Radiological & Nuclear (CBRN), Offensive Cyber Operations, and Automated AI R&D -- and combine automated benchmarks, expert red-teaming, and uplift studies to determine whether the model exceeds release thresholds. We summarize our methodology and report core findings. Based on this evaluation, we find that Nova Premier is safe for public release as per our commitments made at the 2025 Paris AI Safety Summit. We will continue to enhance our safety evaluation and mitigation pipelines as new risks and capabilities associated with frontier models are identified. 7 authors · Jul 7 1