new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

MV-CoRe: Multimodal Visual-Conceptual Reasoning for Complex Visual Question Answering

Complex Visual Question Answering (Complex VQA) tasks, which demand sophisticated multi-modal reasoning and external knowledge integration, present significant challenges for existing large vision-language models (LVLMs) often limited by their reliance on high-level global features. To address this, we propose MV-CoRe (Multimodal Visual-Conceptual Reasoning), a novel model designed to enhance Complex VQA performance through the deep fusion of diverse visual and linguistic information. MV-CoRe meticulously integrates global embeddings from pre-trained Vision Large Models (VLMs) and Language Large Models (LLMs) with fine-grained semantic-aware visual features, including object detection characteristics and scene graph representations. An innovative Multimodal Fusion Transformer then processes and deeply integrates these diverse feature sets, enabling rich cross-modal attention and facilitating complex reasoning. We evaluate MV-CoRe on challenging Complex VQA benchmarks, including GQA, A-OKVQA, and OKVQA, after training on VQAv2. Our experimental results demonstrate that MV-CoRe consistently outperforms established LVLM baselines, achieving an overall accuracy of 77.5% on GQA. Ablation studies confirm the critical contribution of both object and scene graph features, and human evaluations further validate MV-CoRe's superior factual correctness and reasoning depth, underscoring its robust capabilities for deep visual and conceptual understanding.

  • 4 authors
·
Aug 9

Animate3D: Animating Any 3D Model with Multi-view Video Diffusion

Recent advances in 4D generation mainly focus on generating 4D content by distilling pre-trained text or single-view image-conditioned models. It is inconvenient for them to take advantage of various off-the-shelf 3D assets with multi-view attributes, and their results suffer from spatiotemporal inconsistency owing to the inherent ambiguity in the supervision signals. In this work, we present Animate3D, a novel framework for animating any static 3D model. The core idea is two-fold: 1) We propose a novel multi-view video diffusion model (MV-VDM) conditioned on multi-view renderings of the static 3D object, which is trained on our presented large-scale multi-view video dataset (MV-Video). 2) Based on MV-VDM, we introduce a framework combining reconstruction and 4D Score Distillation Sampling (4D-SDS) to leverage the multi-view video diffusion priors for animating 3D objects. Specifically, for MV-VDM, we design a new spatiotemporal attention module to enhance spatial and temporal consistency by integrating 3D and video diffusion models. Additionally, we leverage the static 3D model's multi-view renderings as conditions to preserve its identity. For animating 3D models, an effective two-stage pipeline is proposed: we first reconstruct motions directly from generated multi-view videos, followed by the introduced 4D-SDS to refine both appearance and motion. Qualitative and quantitative experiments demonstrate that Animate3D significantly outperforms previous approaches. Data, code, and models will be open-released.

  • 6 authors
·
Jul 16, 2024 2