Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeInstructProtein: Aligning Human and Protein Language via Knowledge Instruction
Large Language Models (LLMs) have revolutionized the field of natural language processing, but they fall short in comprehending biological sequences such as proteins. To address this challenge, we propose InstructProtein, an innovative LLM that possesses bidirectional generation capabilities in both human and protein languages: (i) taking a protein sequence as input to predict its textual function description and (ii) using natural language to prompt protein sequence generation. To achieve this, we first pre-train an LLM on both protein and natural language corpora, enabling it to comprehend individual languages. Then supervised instruction tuning is employed to facilitate the alignment of these two distinct languages. Herein, we introduce a knowledge graph-based instruction generation framework to construct a high-quality instruction dataset, addressing annotation imbalance and instruction deficits in existing protein-text corpus. In particular, the instructions inherit the structural relations between proteins and function annotations in knowledge graphs, which empowers our model to engage in the causal modeling of protein functions, akin to the chain-of-thought processes in natural languages. Extensive experiments on bidirectional protein-text generation tasks show that InstructProtein outperforms state-of-the-art LLMs by large margins. Moreover, InstructProtein serves as a pioneering step towards text-based protein function prediction and sequence design, effectively bridging the gap between protein and human language understanding.
Building a Llama2-finetuned LLM for Odia Language Utilizing Domain Knowledge Instruction Set
Building LLMs for languages other than English is in great demand due to the unavailability and performance of multilingual LLMs, such as understanding the local context. The problem is critical for low-resource languages due to the need for instruction sets. In a multilingual country like India, there is a need for LLMs supporting Indic languages to provide generative AI and LLM-based technologies and services to its citizens. This paper presents our approach of i) generating a large Odia instruction set, including domain knowledge data suitable for LLM fine-tuning, and ii) building a Llama2-finetuned model tailored for enhanced performance in the Odia domain. The proposed work will help researchers build an instruction set and LLM, particularly for Indic languages. We will release the model and instruction set for the public for research and noncommercial purposes.
Financial Knowledge Large Language Model
Artificial intelligence is making significant strides in the finance industry, revolutionizing how data is processed and interpreted. Among these technologies, large language models (LLMs) have demonstrated substantial potential to transform financial services by automating complex tasks, enhancing customer service, and providing detailed financial analysis. Firstly, we introduce IDEA-FinBench, an evaluation benchmark specifically tailored for assessing financial knowledge in large language models (LLMs). This benchmark utilizes questions from two globally respected and authoritative financial professional exams, aimimg to comprehensively evaluate the capability of LLMs to directly address exam questions pertinent to the finance sector. Secondly, we propose IDEA-FinKER, a Financial Knowledge Enhancement framework designed to facilitate the rapid adaptation of general LLMs to the financial domain, introducing a retrieval-based few-shot learning method for real-time context-level knowledge injection, and a set of high-quality financial knowledge instructions for fine-tuning any general LLM. Finally, we present IDEA-FinQA, a financial question-answering system powered by LLMs. This system is structured around a scheme of real-time knowledge injection and factual enhancement using external knowledge. IDEA-FinQA is comprised of three main modules: the data collector, the data querying module, and LLM-based agents tasked with specific functions.
BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models
Large Language Models (LLMs) like ChatGPT and GPT-4 are versatile and capable of addressing a diverse range of tasks. However, general LLMs, which are developed on open-domain data, may lack the domain-specific knowledge essential for tasks in vertical domains, such as legal, medical, etc. To address this issue, previous approaches either conduct continuous pre-training with domain-specific data or employ retrieval augmentation to support general LLMs. Unfortunately, these strategies are either cost-intensive or unreliable in practical applications. To this end, we present a novel framework named BLADE, which enhances Black-box LArge language models with small Domain-spEcific models. BLADE consists of a black-box LLM and a small domain-specific LM. The small LM preserves domain-specific knowledge and offers specialized insights, while the general LLM contributes robust language comprehension and reasoning capabilities. Specifically, our method involves three steps: 1) pre-training the small LM with domain-specific data, 2) fine-tuning this model using knowledge instruction data, and 3) joint Bayesian optimization of the general LLM and the small LM. Extensive experiments conducted on public legal and medical benchmarks reveal that BLADE significantly outperforms existing approaches. This shows the potential of BLADE as an effective and cost-efficient solution in adapting general LLMs for vertical domains.
Balancing Continuous Pre-Training and Instruction Fine-Tuning: Optimizing Instruction-Following in LLMs
Large Language Models (LLMs) for public use require continuous pre-training to remain up-to-date with the latest data. The models also need to be fine-tuned with specific instructions to maintain their ability to follow instructions accurately. Typically, LLMs are released in two versions: the Base LLM, pre-trained on diverse data, and the instruction-refined LLM, additionally trained with specific instructions for better instruction following. The question arises as to which model should undergo continuous pre-training to maintain its instruction-following abilities while also staying current with the latest data. In this study, we delve into the intricate relationship between continuous pre-training and instruction fine-tuning of the LLMs and investigate the impact of continuous pre-training on the instruction following abilities of both the base and its instruction finetuned model. Further, the instruction fine-tuning process is computationally intense and requires a substantial number of hand-annotated examples for the model to learn effectively. This study aims to find the most compute-efficient strategy to gain up-to-date knowledge and instruction-following capabilities without requiring any instruction data and fine-tuning. We empirically prove our findings on the LLaMa 3, 3.1 and Qwen 2, 2.5 family of base and instruction models, providing a comprehensive exploration of our hypotheses across varying sizes of pre-training data corpus and different LLMs settings.
Llama-3.1-FoundationAI-SecurityLLM-8B-Instruct Technical Report
Large language models (LLMs) have shown remarkable success across many domains, yet their integration into cybersecurity applications remains limited due to a lack of general-purpose cybersecurity data, representational complexity, and safety and regulatory concerns. To address this gap, we previously introduced Foundation-Sec-8B, a cybersecurity-focused LLM suitable for fine-tuning on downstream tasks. That model, however, was not designed for chat-style interactions or instruction-following. In this report, we release Foundation-Sec-8B-Instruct: a model specifically trained for general-purpose cybersecurity dialogue. Built on Foundation-Sec-8B, it combines domain-specific knowledge with instruction-following, conversational capabilities, and alignment with human preferences to produce high-quality, relevant responses. Comprehensive evaluations show that Foundation-Sec-8B-Instruct outperforms Llama 3.1-8B-Instruct on a range of cybersecurity tasks while matching its instruction-following performance. It is also competitive with GPT-4o-mini on cyber threat intelligence and instruction-following tasks. We envision Foundation-Sec-8B-Instruct becoming an indispensable assistant in the daily workflows of cybersecurity professionals. We release the model publicly at https://huggingface.co/fdtn-ai/Foundation-Sec-8B-Instruct.
LawGPT: A Chinese Legal Knowledge-Enhanced Large Language Model
Large language models (LLMs), including both proprietary and open-source models, have showcased remarkable capabilities in addressing a wide range of downstream tasks. Nonetheless, when it comes to practical Chinese legal tasks, these models fail to meet the actual requirements. Proprietary models do not ensure data privacy for sensitive legal cases, while open-source models demonstrate unsatisfactory performance due to their lack of legal knowledge. To address this problem, we introduce LawGPT, the first open-source model specifically designed for Chinese legal applications. LawGPT comprises two key components: legal-oriented pre-training and legal supervised fine-tuning. Specifically, we employ large-scale Chinese legal documents for legal-oriented pre-training to incorporate legal domain knowledge. To further improve the model's performance on downstream legal tasks, we create a knowledge-driven instruction dataset for legal supervised fine-tuning. Our experimental results demonstrate that LawGPT outperforms the open-source LLaMA 7B model. Our code and resources are publicly available at https://github.com/pengxiao-song/LaWGPT and have received 5.7K stars on GitHub.
LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions
Large language models (LLMs) with instruction finetuning demonstrate superior generative capabilities. However, these models are resource intensive. To alleviate this issue, we explore distilling knowledge from instruction-tuned LLMs to much smaller ones. To this end, we carefully develop a large set of 2.58M instructions based on both existing and newly-generated instructions. In addition to being sizeable, we design our instructions to cover a broad set of topics to ensure. A thorough investigation of our instruction data demonstrate their diversity, and we generate responses for these instructions using gpt-3.5-turbo. We then exploit the instructions to tune a host of models, dubbed LaMini-LM, of varying sizes, both from the encoder-decoder as well as the decoder-only families. We evaluate our models both automatically (on 15 different NLP benchmarks) and manually. Results show that our proposed LaMini-LM are on par with competitive baselines while being nearly 10 times smaller in size.
Prompting is not Enough: Exploring Knowledge Integration and Controllable Generation
Open-domain question answering (OpenQA) represents a cornerstone in natural language processing (NLP), primarily focused on extracting answers from unstructured textual data. With the rapid advancements in Large Language Models (LLMs), LLM-based OpenQA methods have reaped the benefits of emergent understanding and answering capabilities enabled by massive parameters compared to traditional methods. However, most of these methods encounter two critical challenges: how to integrate knowledge into LLMs effectively and how to adaptively generate results with specific answer formats for various task situations. To address these challenges, we propose a novel framework named GenKI, which aims to improve the OpenQA performance by exploring Knowledge Integration and controllable Generation on LLMs simultaneously. Specifically, we first train a dense passage retrieval model to retrieve associated knowledge from a given knowledge base. Subsequently, we introduce a novel knowledge integration model that incorporates the retrieval knowledge into instructions during fine-tuning to intensify the model. Furthermore, to enable controllable generation in LLMs, we leverage a certain fine-tuned LLM and an ensemble based on text consistency incorporating all coherence, fluency, and answer format assurance. Finally, extensive experiments conducted on the TriviaQA, MSMARCO, and CMRC2018 datasets, featuring diverse answer formats, have demonstrated the effectiveness of GenKI with comparison of state-of-the-art baselines. Moreover, ablation studies have disclosed a linear relationship between the frequency of retrieved knowledge and the model's ability to recall knowledge accurately against the ground truth. Our code of GenKI is available at https://github.com/USTC-StarTeam/GenKI
Can LLMs be Good Graph Judger for Knowledge Graph Construction?
In real-world scenarios, most of the data obtained from information retrieval (IR) system is unstructured. Converting natural language sentences into structured Knowledge Graphs (KGs) remains a critical challenge. The quality of constructed KGs may also impact the performance of some KG-dependent domains like GraphRAG systems and recommendation systems. Recently, Large Language Models (LLMs) have demonstrated impressive capabilities in addressing a wide range of natural language processing tasks. However, there are still challenges when utilizing LLMs to address the task of generating structured KGs. And we have identified three limitations with respect to existing KG construction methods. (1)There is a large amount of information and excessive noise in real-world documents, which could result in extracting messy information. (2)Native LLMs struggle to effectively extract accuracy knowledge from some domain-specific documents. (3)Hallucinations phenomenon cannot be overlooked when utilizing LLMs directly as an unsupervised method for constructing KGs. In this paper, we propose GraphJudger, a knowledge graph construction framework to address the aforementioned challenges. We introduce three innovative modules in our method, which are entity-centric iterative text denoising, knowledge aware instruction tuning and graph judgement, respectively. We seek to utilize the capacity of LLMs to function as a graph judger, a capability superior to their role only as a predictor for KG construction problems. Experiments conducted on two general text-graph pair datasets and one domain-specific text-graph pair dataset show superior performances compared to baseline methods. The code of our proposed method is available at https://github.com/hhy-huang/GraphJudger.
Improving Generalization of Image Captioning with Unsupervised Prompt Learning
Pretrained visual-language models have demonstrated impressive zero-shot abilities in image captioning, when accompanied by hand-crafted prompts. Meanwhile, hand-crafted prompts utilize human prior knowledge to guide the model. However, due to the diversity between different domains, such hand-crafted prompt that provide invariant prior knowledge may result in mode collapse for some domains. Some researches attempted to incorporate expert knowledge and instruction datasets, but the results were costly and led to hallucinations. In this paper, we propose an unsupervised prompt learning method to improve Generalization of Image Captioning (GeneIC), which learns a domain-specific prompt vector for the target domain without requiring annotated data. GeneIC aligns visual and language modalities with a pre-trained Contrastive Language-Image Pre-Training (CLIP) model, thus optimizing the domain-specific prompt vector from two aspects: attribute and semantic consistency. Specifically, GeneIC first generates attribute-transferred images with differing attributes, while retaining semantic similarity with original images. Then, GeneIC uses CLIP to measure the similarity between the images and the generated sentences. By exploring the variable and invariant features in the original images and attribute-transferred images, attribute consistency constrains the attribute change direction of both images and sentences to learn domain-specific knowledge. The semantic consistency directly measures the similarity between the generated sentences and images to ensure the accuracy and comprehensiveness of the generated sentences. Consequently, GeneIC only optimizes the prompt vectors, which effectively retains the knowledge in the large model and introduces domain-specific knowledge.
From Bytes to Borsch: Fine-Tuning Gemma and Mistral for the Ukrainian Language Representation
In the rapidly advancing field of AI and NLP, generative large language models (LLMs) stand at the forefront of innovation, showcasing unparalleled abilities in text understanding and generation. However, the limited representation of low-resource languages like Ukrainian poses a notable challenge, restricting the reach and relevance of this technology. Our paper addresses this by fine-tuning the open-source Gemma and Mistral LLMs with Ukrainian datasets, aiming to improve their linguistic proficiency and benchmarking them against other existing models capable of processing Ukrainian language. This endeavor not only aims to mitigate language bias in technology but also promotes inclusivity in the digital realm. Our transparent and reproducible approach encourages further NLP research and development. Additionally, we present the Ukrainian Knowledge and Instruction Dataset (UKID) to aid future efforts in language model fine-tuning. Our research not only advances the field of NLP but also highlights the importance of linguistic diversity in AI, which is crucial for cultural preservation, education, and expanding AI's global utility. Ultimately, we advocate for a future where technology is inclusive, enabling AI to communicate effectively across all languages, especially those currently underrepresented.
VSLLaVA: a pipeline of large multimodal foundation model for industrial vibration signal analysis
While Large Multimodal Models (LMMs) excel in general multimodal tasks, they lack the domain-specific knowledge for industrial vibration signal analysis. This paper introduces VSLLaVA, a comprehensive pipeline that utilizes expert knowledge-guided instruction tuning and evaluation to create an end-to-end LMM for signal analysis. To achieve this, we construct a novel Signal-Question-Answer (SQA) dataset using an expert rule-based signal generator. This dataset facilitates a two-stage learning procedure. The first step is efficient instruction fine-tuning with Low-Rank Adaptation (LoRA), which imparts specialized signal identification capabilities. Subsequently, we designed a tailored Group Relative Policy Optimization (GRPO) to refine the reasoning capabilities and enhance classification robustness. Then, a dual-mode evaluation framework is proposed, combining an LLM referee with expert rules for semantic assessment using quantitative metrics for numerical and textual accuracy, which reveals that VSLLaVA significantly improves performance in signal type identification and parameter analysis, and makes progress in the identification and parameter analysis of fault-related signals. This research demonstrates a viable approach for developing specialized foundational models for complex industrial applications and marks a transition from conventional task-specific systems to a cohesive, interactive foundational model.
Back to the Future: Towards Explainable Temporal Reasoning with Large Language Models
Temporal reasoning is a crucial NLP task, providing a nuanced understanding of time-sensitive contexts within textual data. Although recent advancements in LLMs have demonstrated their potential in temporal reasoning, the predominant focus has been on tasks such as temporal expression and temporal relation extraction. These tasks are primarily designed for the extraction of direct and past temporal cues and to engage in simple reasoning processes. A significant gap remains when considering complex reasoning tasks such as event forecasting, which requires multi-step temporal reasoning on events and prediction on the future timestamp. Another notable limitation of existing methods is their incapability to provide an illustration of their reasoning process, hindering explainability. In this paper, we introduce the first task of explainable temporal reasoning, to predict an event's occurrence at a future timestamp based on context which requires multiple reasoning over multiple events, and subsequently provide a clear explanation for their prediction. Our task offers a comprehensive evaluation of both the LLMs' complex temporal reasoning ability, the future event prediction ability, and explainability-a critical attribute for AI applications. To support this task, we present the first multi-source instruction-tuning dataset of explainable temporal reasoning (ExpTime) with 26k derived from the temporal knowledge graph datasets and their temporal reasoning paths, using a novel knowledge-graph-instructed-generation strategy. Based on the dataset, we propose the first open-source LLM series TimeLlaMA based on the foundation LlaMA2, with the ability of instruction following for explainable temporal reasoning. We compare the performance of our method and a variety of LLMs, where our method achieves the state-of-the-art performance of temporal prediction and explanation.
GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images
While recent multimodal large language models (MLLMs) have advanced automated ECG interpretation, they still face two key limitations: (1) insufficient multimodal synergy between time series signals and visual ECG representations, and (2) limited explainability in linking diagnoses to granular waveform evidence. We introduce GEM, the first MLLM unifying ECG time series, 12-lead ECG images and text for grounded and clinician-aligned ECG interpretation. GEM enables feature-grounded analysis, evidence-driven reasoning, and a clinician-like diagnostic process through three core innovations: a dual-encoder framework extracting complementary time series and image features, cross-modal alignment for effective multimodal understanding, and knowledge-guided instruction generation for generating high-granularity grounding data (ECG-Grounding) linking diagnoses to measurable parameters (e.g., QRS/PR Intervals). Additionally, we propose the Grounded ECG Understanding task, a clinically motivated benchmark designed to comprehensively assess the MLLM's capability in grounded ECG understanding. Experimental results on both existing and our proposed benchmarks show GEM significantly improves predictive performance (CSN 7.4% uparrow), explainability (22.7% uparrow), and grounding (24.8% uparrow), making it more suitable for real-world clinical applications. GitHub repository: https://github.com/lanxiang1017/GEM.git
LLM as Dataset Analyst: Subpopulation Structure Discovery with Large Language Model
The distribution of subpopulations is an important property hidden within a dataset. Uncovering and analyzing the subpopulation distribution within datasets provides a comprehensive understanding of the datasets, standing as a powerful tool beneficial to various downstream tasks, including Dataset Subpopulation Organization, Subpopulation Shift, and Slice Discovery. Despite its importance, there has been no work that systematically explores the subpopulation distribution of datasets to our knowledge. To address the limitation and solve all the mentioned tasks in a unified way, we introduce a novel concept of subpopulation structures to represent, analyze, and utilize subpopulation distributions within datasets. To characterize the structures in an interpretable manner, we propose the Subpopulation Structure Discovery with Large Language Models (SSD-LLM) framework, which employs world knowledge and instruction-following capabilities of Large Language Models (LLMs) to linguistically analyze informative image captions and summarize the structures. Furthermore, we propose complete workflows to address downstream tasks, named Task-specific Tuning, showcasing the application of the discovered structure to a spectrum of subpopulation-related tasks, including dataset subpopulation organization, subpopulation shift, and slice discovery. Furthermore, we propose complete workflows to address downstream tasks, named Task-specific Tuning, showcasing the application of the discovered structure to a spectrum of subpopulation-related tasks, including dataset subpopulation organization, subpopulation shift, and slice discovery.
InstructEdit: Instruction-based Knowledge Editing for Large Language Models
Knowledge editing for large language models can offer an efficient solution to alter a model's behavior without negatively impacting the overall performance. However, the current approach encounters issues with limited generalizability across tasks, necessitating one distinct editor for each task, which significantly hinders the broader applications. To address this, we take the first step to analyze the multi-task generalization issue in knowledge editing. Specifically, we develop an instruction-based editing technique, termed InstructEdit, which facilitates the editor's adaptation to various task performances simultaneously using simple instructions. With only one unified editor for each LLM, we empirically demonstrate that InstructEdit can improve the editor's control, leading to an average 14.86% increase in Reliability in multi-task editing setting. Furthermore, experiments involving holdout unseen task illustrate that InstructEdit consistently surpass previous strong baselines. To further investigate the underlying mechanisms of instruction-based knowledge editing, we analyze the principal components of the editing gradient directions, which unveils that instructions can help control optimization direction with stronger OOD generalization. Code and datasets will be available in https://github.com/zjunlp/EasyEdit.
World knowledge-enhanced Reasoning Using Instruction-guided Interactor in Autonomous Driving
The Multi-modal Large Language Models (MLLMs) with extensive world knowledge have revitalized autonomous driving, particularly in reasoning tasks within perceivable regions. However, when faced with perception-limited areas (dynamic or static occlusion regions), MLLMs struggle to effectively integrate perception ability with world knowledge for reasoning. These perception-limited regions can conceal crucial safety information, especially for vulnerable road users. In this paper, we propose a framework, which aims to improve autonomous driving performance under perceptionlimited conditions by enhancing the integration of perception capabilities and world knowledge. Specifically, we propose a plug-and-play instruction-guided interaction module that bridges modality gaps and significantly reduces the input sequence length, allowing it to adapt effectively to multi-view video inputs. Furthermore, to better integrate world knowledge with driving-related tasks, we have collected and refined a large-scale multi-modal dataset that includes 2 million natural language QA pairs, 1.7 million grounding task data. To evaluate the model's utilization of world knowledge, we introduce an object-level risk assessment dataset comprising 200K QA pairs, where the questions necessitate multi-step reasoning leveraging world knowledge for resolution. Extensive experiments validate the effectiveness of our proposed method.
KIWI: A Dataset of Knowledge-Intensive Writing Instructions for Answering Research Questions
Large language models (LLMs) adapted to follow user instructions are now widely deployed as conversational agents. In this work, we examine one increasingly common instruction-following task: providing writing assistance to compose a long-form answer. To evaluate the capabilities of current LLMs on this task, we construct KIWI, a dataset of knowledge-intensive writing instructions in the scientific domain. Given a research question, an initial model-generated answer and a set of relevant papers, an expert annotator iteratively issues instructions for the model to revise and improve its answer. We collect 1,260 interaction turns from 234 interaction sessions with three state-of-the-art LLMs. Each turn includes a user instruction, a model response, and a human evaluation of the model response. Through a detailed analysis of the collected responses, we find that all models struggle to incorporate new information into an existing answer, and to perform precise and unambiguous edits. Further, we find that models struggle to judge whether their outputs successfully followed user instructions, with accuracy at least 10 points short of human agreement. Our findings indicate that KIWI will be a valuable resource to measure progress and improve LLMs' instruction-following capabilities for knowledge intensive writing tasks.
Q-Heart: ECG Question Answering via Knowledge-Informed Multimodal LLMs
Electrocardiography (ECG) offers critical cardiovascular insights, such as identifying arrhythmias and myocardial ischemia, but enabling automated systems to answer complex clinical questions directly from ECG signals (ECG-QA) remains a significant challenge. Current approaches often lack robust multimodal reasoning capabilities or rely on generic architectures ill-suited for the nuances of physiological signals. We introduce Q-Heart, a novel multimodal framework designed to bridge this gap. Q-Heart leverages a powerful, adapted ECG encoder and integrates its representations with textual information via a specialized ECG-aware transformer-based mapping layer. Furthermore, Q-Heart leverages dynamic prompting and retrieval of relevant historical clinical reports to guide tuning the language model toward knowledge-aware ECG reasoning. Extensive evaluations on the benchmark ECG-QA dataset show Q-Heart achieves state-of-the-art performance, outperforming existing methods by a 4% improvement in exact match accuracy. Our work demonstrates the effectiveness of combining domain-specific architectural adaptations with knowledge-augmented LLM instruction tuning for complex physiological ECG analysis, paving the way for more capable and potentially interpretable clinical patient care systems.
What Is Seen Cannot Be Unseen: The Disruptive Effect of Knowledge Conflict on Large Language Models
Large language models frequently rely on both contextual input and parametric knowledge to perform tasks. However, these sources can come into conflict, especially when retrieved documents contradict the model's parametric knowledge. We propose a diagnostic framework to systematically evaluate LLM behavior under context-memory conflict, where the contextual information diverges from their parametric beliefs. We construct diagnostic data that elicit these conflicts and analyze model performance across multiple task types. Our findings reveal that (1) knowledge conflict has minimal impact on tasks that do not require knowledge utilization, (2) model performance is consistently higher when contextual and parametric knowledge are aligned, (3) models are unable to fully suppress their internal knowledge even when instructed, and (4) providing rationales that explain the conflict increases reliance on contexts. These insights raise concerns about the validity of model-based evaluation and underscore the need to account for knowledge conflict in the deployment of LLMs.
Interpretable Catastrophic Forgetting of Large Language Model Fine-tuning via Instruction Vector
Fine-tuning large language models (LLMs) can cause them to lose their general capabilities. However, the intrinsic mechanisms behind such forgetting remain unexplored. In this paper, we begin by examining this phenomenon by focusing on knowledge understanding and instruction following, with the latter identified as the main contributor to forgetting during fine-tuning. Consequently, we propose the Instruction Vector (IV) framework to capture model representations highly related to specific instruction-following capabilities, thereby making it possible to understand model-intrinsic forgetting. Through the analysis of IV dynamics pre and post-training, we suggest that fine-tuning mostly adds specialized reasoning patterns instead of erasing previous skills, which may appear as forgetting. Building on this insight, we develop IV-guided training, which aims to preserve original computation graph, thereby mitigating catastrophic forgetting. Empirical tests on three benchmarks confirm the efficacy of this new approach, supporting the relationship between IVs and forgetting. Our code will be made available soon.
Mix-CPT: A Domain Adaptation Framework via Decoupling Knowledge Learning and Format Alignment
Adapting general large language models (LLMs) to specialized domains presents great challenges due to varied data distributions. This adaptation typically requires continual pre-training on massive domain-specific corpora to facilitate knowledge memorization, followed by training to apply this knowledge following human instructions and preferences. However, this method may result in inefficient knowledge memorization due to a lack of awareness of knowledge utilization and imposes substantial demands on LLMs to simultaneously learn knowledge utilization and format alignment with limited training samples. To facilitate the domain adaptation of LLM, we revise this process and propose a new domain adaptation framework including domain knowledge learning and general format alignment, called Mix-CPT. Specifically, we first conduct a knowledge mixture continual pre-training that concurrently focuses on knowledge memorization and utilization, allowing for mutual reinforcement. To avoid catastrophic forgetting during the continual pre-training process, we further incorporate a logit swap self-distillation constraint. Subsequently, leveraging the knowledge and capabilities acquired during continual pre-training, we efficiently perform instruction tuning and alignment with a few general training samples to achieve format alignment. Extensive experiments demonstrate that our proposed Mix-CPT framework can simultaneously improve the task-solving capabilities of LLMs on the target and general domains compared to the traditional adaptation methods.
LLaDA-MoE: A Sparse MoE Diffusion Language Model
We introduce LLaDA-MoE, a large language diffusion model with the Mixture-of-Experts (MoE) architecture, trained from scratch on approximately 20T tokens. LLaDA-MoE achieves competitive performance with significantly reduced computational overhead by maintaining a 7B-parameter capacity while activating only 1.4B parameters during inference. Our empirical evaluation reveals that LLaDA-MoE achieves state-of-the-art performance among diffusion language models with larger parameters, surpassing previous diffusion language models LLaDA, LLaDA 1.5, and Dream across multiple benchmarks. The instruct-tuned model LLaDA-MoE-7B-A1B-Instruct demonstrates capabilities comparable to Qwen2.5-3B-Instruct in knowledge understanding, code generation, mathematical reasoning, agent and alignment tasks, despite using fewer active parameters. Our results show that integrating a sparse MoE architecture into the training objective of masked diffusion language models still brings out MoE's strengths under efficient inference with few active parameters, and opens ample room for further exploration of diffusion language models. LLaDA-MoE models are available at Huggingface.
Diversify and Conquer: Diversity-Centric Data Selection with Iterative Refinement
Finetuning large language models on instruction data is crucial for enhancing pre-trained knowledge and improving instruction-following capabilities. As instruction datasets proliferate, selecting optimal data for effective training becomes increasingly important. This work addresses the question: How can we determine the optimal subset of data for effective training? While existing research often emphasizes local criteria like instance quality for subset selection, we argue that a global approach focused on data diversity is more critical. Our method employs k-means clustering to ensure the selected subset effectively represents the full dataset. We propose an iterative refinement method inspired by active learning techniques to resample instances from clusters, reassessing each cluster's importance and sampling weight in every training iteration. This approach reduces the effect of outliers and automatically filters out clusters containing low-quality data. Through extensive evaluation across natural language reasoning, general world knowledge, code and math reasoning tasks, and by fine-tuning models from various families, we observe consistent improvements, achieving a 7% increase over random selection and a 3.8% improvement over state-of-the-art sampling methods. Our work highlights the significance of diversity-first sampling when finetuning LLMs to enhance performance across a broad array of evaluation tasks. Our code is available at https://github.com/for-ai/iterative-data-selection.
NILE: Internal Consistency Alignment in Large Language Models
As a crucial step to enhance LLMs alignment with human intentions, Instruction Fine-Tuning (IFT) has a high demand on dataset quality. However, existing IFT datasets often contain knowledge that is inconsistent with LLMs' internal knowledge learned from the pre-training phase, which can greatly affect the efficacy of IFT. To address this issue, we introduce NILE (iNternal consIstency aLignmEnt) framework, aimed at optimizing IFT datasets to unlock LLMs' capability further. NILE operates by eliciting target pre-trained LLM's internal knowledge corresponding to instruction data. The internal knowledge is leveraged to revise the answer in IFT datasets. Additionally, we propose a novel Internal Consistency Filtering (ICF) method to filter training samples, ensuring its high consistency with LLM's internal knowledge. Our experiments demonstrate that NILE-aligned IFT datasets sharply boost LLM performance across multiple LLM ability evaluation datasets, achieving up to 66.6% gain on Arena-Hard and 68.5% on Alpaca-Eval V2. Further analysis confirms that each component of the NILE}framework contributes to these substantial performance improvements, and provides compelling evidence that dataset consistency with pre-trained internal knowledge is pivotal for maximizing LLM potential.
R-Tuning: Teaching Large Language Models to Refuse Unknown Questions
Large language models (LLMs) have revolutionized numerous domains with their impressive performance but still face their challenges. A predominant issue is the propensity for these models to generate non-existent facts, a concern termed hallucination. Our research is motivated by the observation that previous instruction tuning methods force the model to complete a sentence no matter whether the model knows the knowledge or not. When the question is out of the parametric knowledge, it will try to make up something and fail to indicate when it lacks knowledge. In this paper, we present a new approach called Refusal-Aware Instruction Tuning (R-Tuning). This approach is formalized by first identifying the knowledge gap between parametric knowledge and the instruction tuning data. Then, we construct the refusal-aware data based on the knowledge intersection, to tune LLMs to refrain from responding to questions beyond its parametric knowledge. Experimental results demonstrate this new instruction tuning approach effectively improves a model's ability to answer known questions and refrain from answering unknown questions. Furthermore, when tested on out-of-domain datasets, the refusal ability was found to be a meta-skill that could be generalized to other tasks. Further analysis surprisingly finds that learning the uncertainty during training displays a better ability to estimate uncertainty than uncertainty-based testing. Our code will be released at https://github.com/shizhediao/R-Tuning.
Prompt Leakage effect and defense strategies for multi-turn LLM interactions
Prompt leakage poses a compelling security and privacy threat in LLM applications. Leakage of system prompts may compromise intellectual property, and act as adversarial reconnaissance for an attacker. A systematic evaluation of prompt leakage threats and mitigation strategies is lacking, especially for multi-turn LLM interactions. In this paper, we systematically investigate LLM vulnerabilities against prompt leakage for 10 closed- and open-source LLMs, across four domains. We design a unique threat model which leverages the LLM sycophancy effect and elevates the average attack success rate (ASR) from 17.7% to 86.2% in a multi-turn setting. Our standardized setup further allows dissecting leakage of specific prompt contents such as task instructions and knowledge documents. We measure the mitigation effect of 7 black-box defense strategies, along with finetuning an open-source model to defend against leakage attempts. We present different combination of defenses against our threat model, including a cost analysis. Our study highlights key takeaways for building secure LLM applications and provides directions for research in multi-turn LLM interactions
Facilitating large language model Russian adaptation with Learned Embedding Propagation
Rapid advancements of large language model (LLM) technologies led to the introduction of powerful open-source instruction-tuned LLMs that have the same text generation quality as the state-of-the-art counterparts such as GPT-4. While the emergence of such models accelerates the adoption of LLM technologies in sensitive-information environments the authors of such models don not disclose the training data necessary for replication of the results thus making the achievements model-exclusive. Since those open-source models are also multilingual this in turn reduces the benefits of training a language specific LLMs as improved inference computation efficiency becomes the only guaranteed advantage of such costly procedure. More cost-efficient options such as vocabulary extension and subsequent continued pre-training are also inhibited by the lack of access to high-quality instruction-tuning data since it is the major factor behind the resulting LLM task-solving capabilities. To address the limitations and cut the costs of the language adaptation pipeline we propose Learned Embedding Propagation (LEP). Unlike existing approaches our method has lower training data size requirements due to minimal impact on existing LLM knowledge which we reinforce using novel ad-hoc embedding propagation procedure that allows to skip the instruction-tuning step and instead implant the new language knowledge directly into any existing instruct-tuned variant. We evaluated four Russian vocabulary adaptations for LLaMa-3-8B and Mistral-7B, showing that LEP is competitive with traditional instruction-tuning methods, achieving performance comparable to OpenChat 3.5 and LLaMa-3-8B-Instruct, with further improvements via self-calibration and continued tuning enhancing task-solving capabilities.
Internal Causal Mechanisms Robustly Predict Language Model Out-of-Distribution Behaviors
Interpretability research now offers a variety of techniques for identifying abstract internal mechanisms in neural networks. Can such techniques be used to predict how models will behave on out-of-distribution examples? In this work, we provide a positive answer to this question. Through a diverse set of language modeling tasks--including symbol manipulation, knowledge retrieval, and instruction following--we show that the most robust features for correctness prediction are those that play a distinctive causal role in the model's behavior. Specifically, we propose two methods that leverage causal mechanisms to predict the correctness of model outputs: counterfactual simulation (checking whether key causal variables are realized) and value probing (using the values of those variables to make predictions). Both achieve high AUC-ROC in distribution and outperform methods that rely on causal-agnostic features in out-of-distribution settings, where predicting model behaviors is more crucial. Our work thus highlights a novel and significant application for internal causal analysis of language models.
SciLitLLM: How to Adapt LLMs for Scientific Literature Understanding
Scientific literature understanding is crucial for extracting targeted information and garnering insights, thereby significantly advancing scientific discovery. Despite the remarkable success of Large Language Models (LLMs), they face challenges in scientific literature understanding, primarily due to (1) a lack of scientific knowledge and (2) unfamiliarity with specialized scientific tasks. To develop an LLM specialized in scientific literature understanding, we propose a hybrid strategy that integrates continual pre-training (CPT) and supervised fine-tuning (SFT), to simultaneously infuse scientific domain knowledge and enhance instruction-following capabilities for domain-specific tasks.cIn this process, we identify two key challenges: (1) constructing high-quality CPT corpora, and (2) generating diverse SFT instructions. We address these challenges through a meticulous pipeline, including PDF text extraction, parsing content error correction, quality filtering, and synthetic instruction creation. Applying this strategy, we present a suite of LLMs: SciLitLLM, specialized in scientific literature understanding. These models demonstrate promising performance on scientific literature understanding benchmarks. Our contributions are threefold: (1) We present an effective framework that integrates CPT and SFT to adapt LLMs to scientific literature understanding, which can also be easily adapted to other domains. (2) We propose an LLM-based synthesis method to generate diverse and high-quality scientific instructions, resulting in a new instruction set -- SciLitIns -- for supervised fine-tuning in less-represented scientific domains. (3) SciLitLLM achieves promising performance improvements on scientific literature understanding benchmarks.
Unconstrained Model Merging for Enhanced LLM Reasoning
Recent advancements in building domain-specific large language models (LLMs) have shown remarkable success, especially in tasks requiring reasoning abilities like logical inference over complex relationships and multi-step problem solving. However, creating a powerful all-in-one LLM remains challenging due to the need for proprietary data and vast computational resources. As a resource-friendly alternative, we explore the potential of merging multiple expert models into a single LLM. Existing studies on model merging mainly focus on generalist LLMs instead of domain experts, or the LLMs under the same architecture and size. In this work, we propose an unconstrained model merging framework that accommodates both homogeneous and heterogeneous model architectures with a focus on reasoning tasks. A fine-grained layer-wise weight merging strategy is designed for homogeneous models merging, while heterogeneous model merging is built upon the probabilistic distribution knowledge derived from instruction-response fine-tuning data. Across 7 benchmarks and 9 reasoning-optimized LLMs, we reveal key findings that combinatorial reasoning emerges from merging which surpasses simple additive effects. We propose that unconstrained model merging could serve as a foundation for decentralized LLMs, marking a notable progression from the existing centralized LLM framework. This evolution could enhance wider participation and stimulate additional advancement in the field of artificial intelligence, effectively addressing the constraints posed by centralized models.
Learning the Wrong Lessons: Syntactic-Domain Spurious Correlations in Language Models
For an LLM to correctly respond to an instruction it must understand both the semantics and the domain (i.e., subject area) of a given task-instruction pair. However, syntax can also convey implicit information Recent work shows that syntactic templates -- frequent sequences of Part-of-Speech (PoS) tags -- are prevalent in training data and often appear in model outputs. In this work we characterize syntactic templates, domain, and semantics in task-instruction pairs. We identify cases of spurious correlations between syntax and domain, where models learn to associate a domain with syntax during training; this can sometimes override prompt semantics. Using a synthetic training dataset, we find that the syntactic-domain correlation can lower performance (mean 0.51 +/- 0.06) on entity knowledge tasks in OLMo-2 models (1B-13B). We introduce an evaluation framework to detect this phenomenon in trained models, and show that it occurs on a subset of the FlanV2 dataset in open (OLMo-2-7B; Llama-4-Maverick), and closed (GPT-4o) models. Finally, we present a case study on the implications for safety finetuning, showing that unintended syntactic-domain correlations can be used to bypass refusals in OLMo-2-7B Instruct and GPT-4o. Our findings highlight two needs: (1) to explicitly test for syntactic-domain correlations, and (2) to ensure syntactic diversity in training data, specifically within domains, to prevent such spurious correlations.
CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning
The sequential process of conceptualization and instantiation is essential to generalizable commonsense reasoning as it allows the application of existing knowledge to unfamiliar scenarios. However, existing works tend to undervalue the step of instantiation and heavily rely on pre-built concept taxonomies and human annotations to collect both types of knowledge, resulting in a lack of instantiated knowledge to complete reasoning, high cost, and limited scalability. To tackle these challenges, we introduce CANDLE, a distillation framework that iteratively performs contextualized conceptualization and instantiation over commonsense knowledge bases by instructing large language models to generate both types of knowledge with critic filtering. By applying CANDLE to ATOMIC, we construct a comprehensive knowledge base comprising six million conceptualizations and instantiated commonsense knowledge triples. Both types of knowledge are firmly rooted in the original ATOMIC dataset, and intrinsic evaluations demonstrate their exceptional quality and diversity. Empirical results indicate that distilling CANDLE on student models provides benefits across four downstream tasks. Our code, data, and models are publicly available at https://github.com/HKUST-KnowComp/CANDLE.
PMC-LLaMA: Towards Building Open-source Language Models for Medicine
Recently, Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding. While demonstrating proficiency in everyday conversations and question-answering situations, these models frequently struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge. In this paper, we describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA. Our contributions are threefold: (i) we systematically investigate the process of adapting a general-purpose foundation language model towards medical domain, this involves data-centric knowledge injection through the integration of 4.8M biomedical academic papers and 30K medical textbooks, as well as comprehensive fine-tuning for alignment with domain-specific instructions; (ii) we contribute a large-scale, comprehensive dataset for instruction tuning. This dataset encompasses medical question-answering (QA), rationale for reasoning, and conversational dialogues, comprising a total of 202M tokens; (iii) we conduct thorough ablation studies to demonstrate the effectiveness of each proposed component. While evaluating on various public medical question-answering benchmarks, our lightweight PMCLLaMA, which consists of only 13 billion parameters, exhibits superior performance, even surpassing ChatGPT. All models, codes, datasets can be found in https://github.com/chaoyi-wu/PMC-LLaMA.
Instruction-tuned Language Models are Better Knowledge Learners
In order for large language model (LLM)-based assistants to effectively adapt to evolving information needs, it must be possible to update their factual knowledge through continued training on new data. The standard recipe for doing so involves continued pre-training on new documents followed by instruction-tuning on question-answer (QA) pairs. However, we find that LLMs trained with this recipe struggle to answer questions, even though the perplexity of documents is minimized. We found that QA pairs are generally straightforward, while documents are more complex, weaving many factual statements together in an intricate manner. Therefore, we hypothesize that it is beneficial to expose LLMs to QA pairs before continued pre-training on documents so that the process of encoding knowledge from complex documents takes into account how this knowledge is accessed through questions. Based on this, we propose pre-instruction-tuning (PIT), a method that instruction-tunes on questions prior to training on documents. This contrasts with standard instruction-tuning, which learns how to extract knowledge after training on documents. Extensive experiments and ablation studies demonstrate that PIT significantly enhances the ability of LLMs to absorb knowledge from new documents, outperforming standard instruction-tuning by 17.8%.
UniHGKR: Unified Instruction-aware Heterogeneous Knowledge Retrievers
Existing information retrieval (IR) models often assume a homogeneous structure for knowledge sources and user queries, limiting their applicability in real-world settings where retrieval is inherently heterogeneous and diverse. In this paper, we introduce UniHGKR, a unified instruction-aware heterogeneous knowledge retriever that (1) builds a unified retrieval space for heterogeneous knowledge and (2) follows diverse user instructions to retrieve knowledge of specified types. UniHGKR consists of three principal stages: heterogeneous self-supervised pretraining, text-anchored embedding alignment, and instruction-aware retriever fine-tuning, enabling it to generalize across varied retrieval contexts. This framework is highly scalable, with a BERT-based version and a UniHGKR-7B version trained on large language models. Also, we introduce CompMix-IR, the first native heterogeneous knowledge retrieval benchmark. It includes two retrieval scenarios with various instructions, over 9,400 question-answer (QA) pairs, and a corpus of 10 million entries, covering four different types of data. Extensive experiments show that UniHGKR consistently outperforms state-of-the-art methods on CompMix-IR, achieving up to 6.36% and 54.23% relative improvements in two scenarios, respectively. Finally, by equipping our retriever for open-domain heterogeneous QA systems, we achieve a new state-of-the-art result on the popular ConvMix task, with an absolute improvement of up to 4.80 points.
Raw Text is All you Need: Knowledge-intensive Multi-turn Instruction Tuning for Large Language Model
Instruction tuning as an effective technique aligns the outputs of large language models (LLMs) with human preference. But how to generate the seasonal multi-turn dialogues from raw documents for instruction tuning still requires further exploration. In this paper, we present a novel framework named R2S that leverages the CoD-Chain of Dialogue logic to guide large language models (LLMs) in generating knowledge-intensive multi-turn dialogues for instruction tuning. By integrating raw documents from both open-source datasets and domain-specific web-crawled documents into a benchmark K-BENCH, we cover diverse areas such as Wikipedia (English), Science (Chinese), and Artifacts (Chinese). Our approach first decides the logic flow of the current dialogue and then prompts LLMs to produce key phrases for sourcing relevant response content. This methodology enables the creation of the G I NSTRUCT instruction dataset, retaining raw document knowledge within dialoguestyle interactions. Utilizing this dataset, we fine-tune GLLM, a model designed to transform raw documents into structured multi-turn dialogues, thereby injecting comprehensive domain knowledge into the SFT model for enhanced instruction tuning. This work signifies a stride towards refining the adaptability and effectiveness of LLMs in processing and generating more accurate, contextually nuanced responses across various fields.
Self-Tuning: Instructing LLMs to Effectively Acquire New Knowledge through Self-Teaching
Large language models (LLMs) often struggle to provide up-to-date information due to their one-time training and the constantly evolving nature of the world. To keep LLMs current, existing approaches typically involve continued pre-training on new documents. However, they frequently face difficulties in extracting stored knowledge. Motivated by the remarkable success of the Feynman Technique in efficient human learning, we introduce Self-Tuning, a learning framework aimed at improving an LLM's ability to effectively acquire new knowledge from raw documents through self-teaching. Specifically, we develop a Self-Teaching strategy that augments the documents with a set of knowledge-intensive tasks created in a self-supervised manner, focusing on three crucial aspects: memorization, comprehension, and self-reflection. Additionally, we introduce three Wiki-Newpages-2023-QA datasets to facilitate an in-depth analysis of an LLM's knowledge acquisition ability concerning memorization, extraction, and reasoning. Extensive experimental results on Llama2 family models reveal that Self-Tuning consistently exhibits superior performance across all knowledge acquisition tasks and excels in preserving previous knowledge.
CrossIn: An Efficient Instruction Tuning Approach for Cross-Lingual Knowledge Alignment
Multilingual proficiency presents a significant challenge for large language models (LLMs). English-centric models are usually suboptimal in other languages, particularly those that are linguistically distant from English. This performance discrepancy mainly stems from the imbalanced distribution of training data across languages during pre-training and instruction tuning stages. To address this problem, we propose a novel approach called CrossIn, which utilizes a mixed composition of cross-lingual instruction tuning data. Our method leverages the compressed representation shared by various languages to efficiently enhance the model's task-solving capabilities and multilingual proficiency within a single process. In addition, we introduce a multi-task and multi-faceted benchmark to evaluate the effectiveness of CrossIn. Experimental results demonstrate that our method substantially improves performance across tasks and languages, and we provide extensive insights into the impact of cross-lingual data volume and the integration of translation data on enhancing multilingual consistency and accuracy.
Knowledge Distillation of Large Language Models
Knowledge Distillation (KD) is a promising technique for reducing the high computational demand of large language models (LLMs). However, previous KD methods are primarily applied to white-box classification models or training small models to imitate black-box model APIs like ChatGPT. How to effectively distill the knowledge from white-box generative LLMs is still under-explored, which becomes more and more important with the prosperity of LLMs. In this work, we propose MiniLLM that distills smaller language models from generative larger language models. We first replace the forward Kullback-Leibler divergence (KLD) objective in the standard KD approaches with reverse KLD, which is more suitable for KD on generative language models, to prevent the student model from overestimating the low-probability regions of the teacher distribution. Then, we derive an effective optimization approach to learn this objective. Extensive experiments in the instruction-following setting show that the MiniLLM models generate more precise responses with the higher overall quality, lower exposure bias, better calibration, and higher long-text generation performance. Our method is also scalable for different model families with 120M to 13B parameters. We will release our code and model checkpoints at https://aka.ms/MiniLLM.
KnowCoder: Coding Structured Knowledge into LLMs for Universal Information Extraction
In this paper, we propose KnowCoder, a Large Language Model (LLM) to conduct Universal Information Extraction (UIE) via code generation. KnowCoder aims to develop a kind of unified schema representation that LLMs can easily understand and an effective learning framework that encourages LLMs to follow schemas and extract structured knowledge accurately. To achieve these, KnowCoder introduces a code-style schema representation method to uniformly transform different schemas into Python classes, with which complex schema information, such as constraints among tasks in UIE, can be captured in an LLM-friendly manner. We further construct a code-style schema library covering over 30,000 types of knowledge, which is the largest one for UIE, to the best of our knowledge. To ease the learning process of LLMs, KnowCoder contains a two-phase learning framework that enhances its schema understanding ability via code pretraining and its schema following ability via instruction tuning. After code pretraining on around 1.5B automatically constructed data, KnowCoder already attains remarkable generalization ability and achieves relative improvements by 49.8% F1, compared to LLaMA2, under the few-shot setting. After instruction tuning, KnowCoder further exhibits strong generalization ability on unseen schemas and achieves up to 12.5% and 21.9%, compared to sota baselines, under the zero-shot setting and the low resource setting, respectively. Additionally, based on our unified schema representations, various human-annotated datasets can simultaneously be utilized to refine KnowCoder, which achieves significant improvements up to 7.5% under the supervised setting.
Instruct-SkillMix: A Powerful Pipeline for LLM Instruction Tuning
We introduce Instruct-SkillMix, an automated approach for creating diverse, high quality SFT data. The Instruct-SkillMix pipeline involves two stages, each leveraging an existing powerful LLM: (1) Skill extraction: uses the LLM to extract core "skills" for instruction-following, either from existing datasets, or by directly prompting the model; (2) Data generation: uses the powerful LLM to generate (instruction, response) data that exhibit a randomly chosen pair of these skills. Here, the use of random skill combinations promotes diversity and difficulty. Vanilla SFT (i.e., no PPO, DPO, or RL methods) on data generated from Instruct-SkillMix leads to strong gains on instruction following benchmarks such as AlpacaEval 2.0, MT-Bench, and WildBench. With just 4K examples, LLaMA-3-8B-Base achieves 42.76% length-controlled win rate on AlpacaEval 2.0. To our knowledge, this achieves state-of-the-art performance among all models that have only undergone SFT (no RL methods) and competes with proprietary models such as Claude 3 Opus and LLaMA-3.1-405B-Instruct. Ablation studies also suggest plausible reasons for why creating open instruction-tuning datasets via naive crowd-sourcing has proved difficult. Introducing low quality answers ("shirkers") in 20% of Instruct-SkillMix examples causes performance to plummet, sometimes catastrophically. The Instruct-SkillMix pipeline is flexible and is adaptable to other settings.
FuseChat: Knowledge Fusion of Chat Models
While training large language models (LLMs) from scratch can indeed lead to models with distinct capabilities and strengths, it incurs substantial costs and may lead to redundancy in competencies. Knowledge fusion aims to integrate existing LLMs of diverse architectures and capabilities into a more potent LLM through lightweight continual training, thereby reducing the need for costly LLM development. In this work, we propose a new framework for the knowledge fusion of chat LLMs through two main stages, resulting in FuseChat. Firstly, we conduct pairwise knowledge fusion on source chat LLMs of varying structures and scales to create multiple target LLMs with identical structure and size via lightweight fine-tuning. During this process, a statistics-based token alignment approach is introduced as the cornerstone for fusing LLMs with different structures. Secondly, we merge these target LLMs within the parameter space, where we propose a novel method for determining the merging coefficients based on the magnitude of parameter updates before and after fine-tuning. We implement and validate FuseChat using six prominent chat LLMs with diverse architectures and scales, including OpenChat-3.5-7B, Starling-LM-7B-alpha, NH2-SOLAR-10.7B, InternLM2-Chat-20B, Mixtral-8x7B-Instruct, and Qwen-1.5-Chat-72B. Experimental results on two instruction-following benchmarks, AlpacaEval 2.0 and MT-Bench, demonstrate the superiority of FuseChat-7B over baselines of various sizes. Our model is even comparable to the larger Mixtral-8x7B-Instruct and approaches GPT-3.5-Turbo-1106 on MT-Bench. Our code, model weights, and data are public at https://github.com/fanqiwan/FuseAI.
Localized Symbolic Knowledge Distillation for Visual Commonsense Models
Instruction following vision-language (VL) models offer a flexible interface that supports a broad range of multimodal tasks in a zero-shot fashion. However, interfaces that operate on full images do not directly enable the user to "point to" and access specific regions within images. This capability is important not only to support reference-grounded VL benchmarks, but also, for practical applications that require precise within-image reasoning. We build Localized Visual Commonsense models, which allow users to specify (multiple) regions as input. We train our model by sampling localized commonsense knowledge from a large language model (LLM): specifically, we prompt an LLM to collect commonsense knowledge given a global literal image description and a local literal region description automatically generated by a set of VL models. With a separately trained critic model that selects high-quality examples, we find that training on the localized commonsense corpus can successfully distill existing VL models to support a reference-as-input interface. Empirical results and human evaluations in a zero-shot setup demonstrate that our distillation method results in more precise VL models of reasoning compared to a baseline of passing a generated referring expression to an LLM.
EntGPT: Linking Generative Large Language Models with Knowledge Bases
The ability of Large Language Models (LLMs) to generate factually correct output remains relatively unexplored due to the lack of fact-checking and knowledge grounding during training and inference. In this work, we aim to address this challenge through the Entity Disambiguation (ED) task. We first consider prompt engineering, and design a three-step hard-prompting method to probe LLMs' ED performance without supervised fine-tuning (SFT). Overall, the prompting method improves the micro-F_1 score of the original vanilla models by a large margin, on some cases up to 36% and higher, and obtains comparable performance across 10 datasets when compared to existing methods with SFT. We further improve the knowledge grounding ability through instruction tuning (IT) with similar prompts and responses. The instruction-tuned model not only achieves higher micro-F1 score performance as compared to several baseline methods on supervised entity disambiguation tasks with an average micro-F_1 improvement of 2.1% over the existing baseline models, but also obtains higher accuracy on six Question Answering (QA) tasks in the zero-shot setting. Our methodologies apply to both open- and closed-source LLMs.
Hierarchical Indexing with Knowledge Enrichment for Multilingual Video Corpus Retrieval
Retrieving relevant instructional videos from multilingual medical archives is crucial for answering complex, multi-hop questions across language boundaries. However, existing systems either compress hour-long videos into coarse embeddings or incur prohibitive costs for fine-grained matching. We tackle the Multilingual Video Corpus Retrieval (mVCR) task in the NLPCC-2025 M4IVQA challenge with a multi-stage framework that integrates multilingual semantics, domain terminology, and efficient long-form processing. Video subtitles are divided into semantically coherent chunks, enriched with concise knowledge-graph (KG) facts, and organized into a hierarchical tree whose node embeddings are generated by a language-agnostic multilingual encoder. At query time, the same encoder embeds the input question; a coarse-to-fine tree search prunes irrelevant branches, and only the top-ranked chunks are re-scored by a lightweight large language model (LLM). This design avoids exhaustive cross-encoder scoring while preserving chunk-level precision. Experiments on the mVCR test set demonstrate state-of-the-art performance, and ablation studies confirm the complementary contributions of KG enrichment, hierarchical indexing, and targeted LLM re-ranking. The proposed method offers an accurate and scalable solution for multilingual retrieval in specialized medical video collections.
Biology Instructions: A Dataset and Benchmark for Multi-Omics Sequence Understanding Capability of Large Language Models
Large language models have already demonstrated their formidable capabilities in general domains, ushering in a revolutionary transformation. However, exploring and exploiting the extensive knowledge of these models to comprehend multi-omics biology remains underexplored. To fill this research gap, we first introduce Biology-Instructions, the first large-scale multi-omics biological sequences-related instruction-tuning dataset including DNA, RNA, proteins, and multi-molecules, designed to bridge the gap between large language models (LLMs) and complex biological sequences-related tasks. This dataset can enhance the versatility of LLMs by integrating diverse biological sequenced-based prediction tasks with advanced reasoning capabilities, while maintaining conversational fluency. Additionally, we reveal significant performance limitations in even state-of-the-art LLMs on biological sequence-related multi-omics tasks without specialized pre-training and instruction-tuning. We further develop a strong baseline called ChatMultiOmics with a novel three-stage training pipeline, demonstrating the powerful ability to understand biology by using Biology-Instructions. Biology-Instructions and ChatMultiOmics are publicly available and crucial resources for enabling more effective integration of LLMs with multi-omics sequence analysis.
AutoManual: Constructing Instruction Manuals by LLM Agents via Interactive Environmental Learning
Large Language Models (LLM) based agents have shown promise in autonomously completing tasks across various domains, e.g., robotics, games, and web navigation. However, these agents typically require elaborate design and expert prompts to solve tasks in specific domains, which limits their adaptability. We introduce AutoManual, a framework enabling LLM agents to autonomously build their understanding through interaction and adapt to new environments. AutoManual categorizes environmental knowledge into diverse rules and optimizes them in an online fashion by two agents: 1) The Planner codes actionable plans based on current rules for interacting with the environment. 2) The Builder updates the rules through a well-structured rule system that facilitates online rule management and essential detail retention. To mitigate hallucinations in managing rules, we introduce a *case-conditioned prompting* strategy for the Builder. Finally, the Formulator agent compiles these rules into a comprehensive manual. The self-generated manual can not only improve the adaptability but also guide the planning of smaller LLMs while being human-readable. Given only one simple demonstration, AutoManual significantly improves task success rates, achieving 97.4\% with GPT-4-turbo and 86.2\% with GPT-3.5-turbo on ALFWorld benchmark tasks. The code is available at https://github.com/minghchen/automanual.
Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning
The process of instruction tuning aligns pre-trained large language models (LLMs) with open-domain instructions and human-preferred responses. While several studies have explored autonomous approaches to distilling and annotating instructions from more powerful proprietary LLMs, such as ChatGPT, they often neglect the impact of task distributions and the varying difficulty of instructions of the training sets. This oversight can lead to imbalanced knowledge capabilities and poor generalization powers of small student LLMs. To address this challenge, we introduce Task-Aware Curriculum Planning for Instruction Refinement (TAPIR), a multi-round distillation framework with balanced task distributions and dynamic difficulty adjustment. This approach utilizes an oracle LLM to select instructions that are difficult for a student LLM to follow and distill instructions with balanced task distributions. By incorporating curriculum planning, our approach systematically escalates the difficulty levels, progressively enhancing the student LLM's capabilities. We rigorously evaluate TAPIR using two widely recognized benchmarks, including AlpacaEval 2.0 and MT-Bench. The empirical results demonstrate that the student LLMs, trained with our method and less training data, outperform larger instruction-tuned models and strong distillation baselines. The improvement is particularly notable in complex tasks, such as logical reasoning and code generation.
KAUCUS: Knowledge Augmented User Simulators for Training Language Model Assistants
An effective multi-turn instruction-following assistant can be developed by creating a simulator that can generate useful interaction data. Apart from relying on its intrinsic weights, an ideal user simulator should also be able to bootstrap external knowledge rapidly in its raw form to simulate the multifarious diversity of text available over the internet. Previous user simulators generally lacked diversity, were mostly closed domain, and necessitated rigid schema making them inefficient to rapidly scale to incorporate external knowledge. In this regard, we introduce, Kaucus, a Knowledge-Augmented User Simulator framework, to outline a process of creating diverse user simulators, that can seamlessly exploit external knowledge as well as benefit downstream assistant model training. Through two GPT-J based simulators viz., a Retrieval Augmented Simulator and a Summary Controlled Simulator we generate diverse simulator-assistant interactions. Through reward and preference model-based evaluations, we find that these interactions serve as useful training data and create more helpful downstream assistants. We also find that incorporating knowledge through retrieval augmentation or summary control helps create better assistants.
Knowledge Distillation Using Frontier Open-source LLMs: Generalizability and the Role of Synthetic Data
Leading open-source large language models (LLMs) such as Llama-3.1-Instruct-405B are extremely capable at generating text, answering questions, and solving a variety of natural language understanding tasks. However, they incur higher inference cost and latency compared to smaller LLMs. Knowledge distillation provides a way to use outputs from these large, capable teacher models to train smaller student models which can be used for inference at lower cost and latency, while retaining comparable accuracy. We investigate the efficacy of distillation using the Llama-3.1-405B-Instruct teacher and the smaller Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct student models. Contributions of this work include (a) We evaluate the generalizability of distillation with the above Llama-3.1 teacher-student pairs across different tasks and datasets (b) We show that using synthetic data during distillation significantly improves the accuracy of 8B and 70B models, and when used with reasoning chains, even matches or surpasses the zero-shot accuracy of 405B model on some datasets (c) We empirically show that distillation enables 8B and 70B models to internalize 405B's reasoning ability by using only standard fine-tuning (without customizing any loss function). This allows cost and latency-efficient student model inference. (d) We show pitfalls in evaluation of distillation, and present task-specific evaluation, including both human and LLM-grading, and ground-truth based traditional accuracy benchmarks. This methodical study brings out the fundamental importance of synthetic data quality in knowledge distillation, and of combining multiple, task-specific ways of accuracy and quality evaluation in assessing the effectiveness of distillation.
InstructDiffusion: A Generalist Modeling Interface for Vision Tasks
We present InstructDiffusion, a unifying and generic framework for aligning computer vision tasks with human instructions. Unlike existing approaches that integrate prior knowledge and pre-define the output space (e.g., categories and coordinates) for each vision task, we cast diverse vision tasks into a human-intuitive image-manipulating process whose output space is a flexible and interactive pixel space. Concretely, the model is built upon the diffusion process and is trained to predict pixels according to user instructions, such as encircling the man's left shoulder in red or applying a blue mask to the left car. InstructDiffusion could handle a variety of vision tasks, including understanding tasks (such as segmentation and keypoint detection) and generative tasks (such as editing and enhancement). It even exhibits the ability to handle unseen tasks and outperforms prior methods on novel datasets. This represents a significant step towards a generalist modeling interface for vision tasks, advancing artificial general intelligence in the field of computer vision.
Nevermind: Instruction Override and Moderation in Large Language Models
Given the impressive capabilities of recent Large Language Models (LLMs), we investigate and benchmark the most popular proprietary and different sized open source models on the task of explicit instruction following in conflicting situations, e.g. overrides. These include the ability of the model to override the knowledge within the weights of the model, the ability to override (or moderate) extracted knowledge in the prompt, and lastly the ability to perform a full jailbreak. Experimentation performed suggest several key findings to improve instruction following - larger models perform the best in following instructions that override internal and contextual instructions, and are obedient, even to a fault. When scaling to longer contexts via rope scaling, a significant buffer needs to be maintained from the edge of the perplexity cliff in order to maintain instruction following capabilities. Finally, we observe improving instruction following, and subsequently instruction overrides/jailbreaks, is fundamentally at odds with the ability of a language model to follow given safety filters or guidelines. Thus, we postulate the most effective approach for safe, trustworthy AI should be dealt external to the LLM itself.
Knowledge to Sight: Reasoning over Visual Attributes via Knowledge Decomposition for Abnormality Grounding
In this work, we address the problem of grounding abnormalities in medical images, where the goal is to localize clinical findings based on textual descriptions. While generalist Vision-Language Models (VLMs) excel in natural grounding tasks, they often struggle in the medical domain due to rare, compositional, and domain-specific terms that are poorly aligned with visual patterns. Specialized medical VLMs address this challenge via large-scale domain pretraining, but at the cost of substantial annotation and computational resources. To overcome these limitations, we propose Knowledge to Sight (K2Sight), a framework that introduces structured semantic supervision by decomposing clinical concepts into interpretable visual attributes, such as shape, density, and anatomical location. These attributes are distilled from domain ontologies and encoded into concise instruction-style prompts, which guide region-text alignment during training. Unlike conventional report-level supervision, our approach explicitly bridges domain knowledge and spatial structure, enabling data-efficient training of compact models. We train compact models with 0.23B and 2B parameters using only 1.5\% of the data required by state-of-the-art medical VLMs. Despite their small size and limited training data, these models achieve performance on par with or better than 7B+ medical VLMs, with up to 9.82\% improvement in mAP_{50}. Code and models: https://lijunrio.github.io/K2Sight/{SOTAPink{https://lijunrio.github.io/K2Sight/}}.
Self-QA: Unsupervised Knowledge Guided Language Model Alignment
Large-scale language models like ChatGPT and GPT-4 have gained attention for their impressive conversational and generative capabilities. However, the creation of supervised paired question-answering data for instruction tuning presents formidable challenges. This endeavor necessitates substantial human effort for data annotation and wrestles with issues concerning data quality, diversity, accuracy, and other related factors. To overcome these obstacles, we introduce an innovative framework named Self-QA, which replaces the traditional practice of human-written instruction seeds with a vast amount of unsupervised knowledge, enabling the model to generate a larger quantity of correct and domain-specific instruction data. The effectiveness of our proposed method is demonstrated through experiments conducted on unsupervised corpora from various domains.
LINGUIST: Language Model Instruction Tuning to Generate Annotated Utterances for Intent Classification and Slot Tagging
We present LINGUIST, a method for generating annotated data for Intent Classification and Slot Tagging (IC+ST), via fine-tuning AlexaTM 5B, a 5-billion-parameter multilingual sequence-to-sequence (seq2seq) model, on a flexible instruction prompt. In a 10-shot novel intent setting for the SNIPS dataset, LINGUIST surpasses state-of-the-art approaches (Back-Translation and Example Extrapolation) by a wide margin, showing absolute improvement for the target intents of +1.9 points on IC Recall and +2.5 points on ST F1 Score. In the zero-shot cross-lingual setting of the mATIS++ dataset, LINGUIST out-performs a strong baseline of Machine Translation with Slot Alignment by +4.14 points absolute on ST F1 Score across 6 languages, while matching performance on IC. Finally, we verify our results on an internal large-scale multilingual dataset for conversational agent IC+ST and show significant improvements over a baseline which uses Back-Translation, Paraphrasing and Slot Catalog Resampling. To our knowledge, we are the first to demonstrate instruction fine-tuning of a large-scale seq2seq model to control the outputs of multilingual intent- and slot-labeled data generation.
Filter-then-Generate: Large Language Models with Structure-Text Adapter for Knowledge Graph Completion
Large Language Models (LLMs) present massive inherent knowledge and superior semantic comprehension capability, which have revolutionized various tasks in natural language processing. Despite their success, a critical gap remains in enabling LLMs to perform knowledge graph completion (KGC). Empirical evidence suggests that LLMs consistently perform worse than conventional KGC approaches, even through sophisticated prompt design or tailored instruction-tuning. Fundamentally, applying LLMs on KGC introduces several critical challenges, including a vast set of entity candidates, hallucination issue of LLMs, and under-exploitation of the graph structure. To address these challenges, we propose a novel instruction-tuning-based method, namely FtG. Specifically, we present a filter-then-generate paradigm and formulate the KGC task into a multiple-choice question format. In this way, we can harness the capability of LLMs while mitigating the issue casused by hallucinations. Moreover, we devise a flexible ego-graph serialization prompt and employ a structure-text adapter to couple structure and text information in a contextualized manner. Experimental results demonstrate that FtG achieves substantial performance gain compared to existing state-of-the-art methods. The instruction dataset and code are available at https://github.com/LB0828/FtG.
MLLM Is a Strong Reranker: Advancing Multimodal Retrieval-augmented Generation via Knowledge-enhanced Reranking and Noise-injected Training
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in processing and generating content across multiple data modalities, including text, images, audio, and video. However, a significant drawback of MLLMs is their reliance on static training data, leading to outdated information and limited contextual awareness. This static nature hampers their ability to provide accurate, up-to-date responses, particularly in dynamic or rapidly evolving contexts. Integrating Multimodal Retrieval-augmented Generation (Multimodal RAG) offers a promising solution, but the system would inevitably encounter the multi-granularity noisy correspondence (MNC) problem, which involves two types of noise: coarse-grained (query-caption) and fine-grained (query-image). This noise hinders accurate retrieval and generation. In this work, we propose RagLLaVA, a novel framework with knowledge-enhanced reranking and noise-injected training, to address these limitations. We instruction-tune the MLLM with a simple yet effective instruction template to induce its ranking ability and serve it as a reranker to precisely filter the top-k retrieved images. For generation, we inject visual noise during training at the data and token levels to enhance the generator's robustness. Extensive experiments are conducted on the subsets of two datasets that require retrieving and reasoning over images to answer a given query. Our results demonstrate the superiority of RagLLaVA in retrieving accurately and generating robustly. Code and models are available at https://github.com/IDEA-FinAI/RagLLaVA.
PromptKD: Distilling Student-Friendly Knowledge for Generative Language Models via Prompt Tuning
Recent advancements in large language models (LLMs) have raised concerns about inference costs, increasing the need for research into model compression. While knowledge distillation (KD) is a prominent method for this, research on KD for generative language models like LLMs is relatively sparse, and the approach of distilling student-friendly knowledge, which has shown promising performance in KD for classification models, remains unexplored in generative language models. To explore this approach, we propose PromptKD, a simple yet effective method that utilizes prompt tuning - for the first time in KD - to enable generative language models to transfer student-friendly knowledge. Unlike previous works in classification that require fine-tuning the entire teacher model for extracting student-friendly knowledge, PromptKD achieves similar effects by adding a small number of prompt tokens and tuning only the prompt with student guidance. Extensive experiments on instruction-following datasets using the GPT-2 model family show that PromptKD achieves state-of-the-art performance while adding only 0.0007% of the teacher's parameters as prompts. Further analysis suggests that distilling student-friendly knowledge alleviates exposure bias effectively throughout the entire training process, leading to performance enhancements.
How Much Knowledge Can You Pack into a LoRA Adapter without Harming LLM?
The performance of Large Language Models (LLMs) on many tasks is greatly limited by the knowledge learned during pre-training and stored in the model's parameters. Low-rank adaptation (LoRA) is a popular and efficient training technique for updating or domain-specific adaptation of LLMs. In this study, we investigate how new facts can be incorporated into the LLM using LoRA without compromising the previously learned knowledge. We fine-tuned Llama-3.1-8B-instruct using LoRA with varying amounts of new knowledge. Our experiments have shown that the best results are obtained when the training data contains a mixture of known and new facts. However, this approach is still potentially harmful because the model's performance on external question-answering benchmarks declines after such fine-tuning. When the training data is biased towards certain entities, the model tends to regress to few overrepresented answers. In addition, we found that the model becomes more confident and refuses to provide an answer in only few cases. These findings highlight the potential pitfalls of LoRA-based LLM updates and underscore the importance of training data composition and tuning parameters to balance new knowledge integration and general model capabilities.
Instruct, Not Assist: LLM-based Multi-Turn Planning and Hierarchical Questioning for Socratic Code Debugging
Socratic questioning is an effective teaching strategy, encouraging critical thinking and problem-solving. The conversational capabilities of large language models (LLMs) show great potential for providing scalable, real-time student guidance. However, current LLMs often give away solutions directly, making them ineffective instructors. We tackle this issue in the code debugging domain with TreeInstruct, an Instructor agent guided by a novel state space-based planning algorithm. TreeInstruct asks probing questions to help students independently identify and resolve errors. It estimates a student's conceptual and syntactical knowledge to dynamically construct a question tree based on their responses and current knowledge state, effectively addressing both independent and dependent mistakes concurrently in a multi-turn interaction setting. In addition to using an existing single-bug debugging benchmark, we construct a more challenging multi-bug dataset of 150 coding problems, incorrect solutions, and bug fixes -- all carefully constructed and annotated by experts. Extensive evaluation shows TreeInstruct's state-of-the-art performance on both datasets, proving it to be a more effective instructor than baselines. Furthermore, a real-world case study with five students of varying skill levels further demonstrates TreeInstruct's ability to guide students to debug their code efficiently with minimal turns and highly Socratic questioning.
Self-supervised Quantized Representation for Seamlessly Integrating Knowledge Graphs with Large Language Models
Due to the presence of the natural gap between Knowledge Graph (KG) structures and the natural language, the effective integration of holistic structural information of KGs with Large Language Models (LLMs) has emerged as a significant question. To this end, we propose a two-stage framework to learn and apply quantized codes for each entity, aiming for the seamless integration of KGs with LLMs. Firstly, a self-supervised quantized representation (SSQR) method is proposed to compress both KG structural and semantic knowledge into discrete codes (\ie, tokens) that align the format of language sentences. We further design KG instruction-following data by viewing these learned codes as features to directly input to LLMs, thereby achieving seamless integration. The experiment results demonstrate that SSQR outperforms existing unsupervised quantized methods, producing more distinguishable codes. Further, the fine-tuned LLaMA2 and LLaMA3.1 also have superior performance on KG link prediction and triple classification tasks, utilizing only 16 tokens per entity instead of thousands in conventional prompting methods.
Instruction-tuning Aligns LLMs to the Human Brain
Instruction-tuning is a widely adopted method of finetuning that enables large language models (LLMs) to generate output that more closely resembles human responses to natural language queries, in many cases leading to human-level performance on diverse testbeds. However, it remains unclear whether instruction-tuning truly makes LLMs more similar to how humans process language. We investigate the effect of instruction-tuning on LLM-human similarity in two ways: (1) brain alignment, the similarity of LLM internal representations to neural activity in the human language system, and (2) behavioral alignment, the similarity of LLM and human behavior on a reading task. We assess 25 vanilla and instruction-tuned LLMs across three datasets involving humans reading naturalistic stories and sentences. We discover that instruction-tuning generally enhances brain alignment by an average of 6%, but does not have a similar effect on behavioral alignment. To identify the factors underlying LLM-brain alignment, we compute correlations between the brain alignment of LLMs and various model properties, such as model size, various problem-solving abilities, and performance on tasks requiring world knowledge spanning various domains. Notably, we find a strong positive correlation between brain alignment and model size (r = 0.95), as well as performance on tasks requiring world knowledge (r = 0.81). Our results demonstrate that instruction-tuning LLMs improves both world knowledge representations and brain alignment, suggesting that mechanisms that encode world knowledge in LLMs also improve representational alignment to the human brain.
A Closer Look at the Limitations of Instruction Tuning
Instruction Tuning (IT), the process of training large language models (LLMs) using instruction-response pairs, has emerged as the predominant method for transforming base pre-trained LLMs into open-domain conversational agents. While IT has achieved notable success and widespread adoption, its limitations and shortcomings remain underexplored. In this paper, through rigorous experiments and an in-depth analysis of the changes LLMs undergo through IT, we reveal various limitations of IT. In particular, we show that (1) IT fails to enhance knowledge or skills in LLMs. LoRA fine-tuning is limited to learning response initiation and style tokens, and full-parameter fine-tuning leads to knowledge degradation. (2) Copying response patterns from IT datasets derived from knowledgeable sources leads to a decline in response quality. (3) Full-parameter fine-tuning increases hallucination by inaccurately borrowing tokens from conceptually similar instances in the IT dataset for generating responses. (4) Popular methods to improve IT do not lead to performance improvements over a simple LoRA fine-tuned model. Our findings reveal that responses generated solely from pre-trained knowledge consistently outperform responses by models that learn any form of new knowledge from IT on open-source datasets. We hope the insights and challenges revealed inspire future work.
Large Language Models Encode Clinical Knowledge
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised Fine-tuning Dataset
Open-source large language models (LLMs) have gained significant strength across diverse fields. Nevertheless, the majority of studies primarily concentrate on English, with only limited exploration into the realm of multilingual supervised fine-tuning. In this work, we therefore construct an open-source multilingual supervised fine-tuning dataset. Different from previous works that simply translate English instructions, we consider both the language-specific and language-agnostic abilities of LLMs. For language-specific abilities, we introduce a knowledge-grounded data augmentation approach to elicit more culture-specific knowledge of LLMs, improving their ability to serve users from different countries. For language-agnostic abilities, we find through experiments that modern LLMs exhibit strong cross-lingual transfer capabilities, thus repeatedly learning identical content in various languages is not necessary. Consequently, we can substantially prune the language-agnostic SFT data without any performance degradation, making the SFT process more efficient. The resulting UltraLink dataset comprises approximately 1 million samples across five languages, and the proposed data construction method can also be easily extended to other languages. UltraLink-LM, which is trained on UltraLink, outperforms several representative baselines across many tasks.
From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning
Large Language Models (LLMs) have achieved remarkable success, demonstrating powerful instruction-following capabilities across diverse tasks. Instruction fine-tuning is critical in enabling LLMs to align with user intentions and effectively follow instructions. In this work, we investigate how instruction fine-tuning modifies pre-trained models, focusing on two perspectives: instruction recognition and knowledge evolution. To study the behavior shift of LLMs, we employ a suite of local and global explanation methods, including a gradient-based approach for input-output attribution and techniques for interpreting patterns and concepts in self-attention and feed-forward layers. Our findings reveal three significant impacts of instruction fine-tuning: 1) It empowers LLMs to better recognize the instruction parts from user prompts, thereby facilitating high-quality response generation and addressing the ``lost-in-the-middle'' issue observed in pre-trained models; 2) It aligns the knowledge stored in feed-forward layers with user-oriented tasks, exhibiting minimal shifts across linguistic levels. 3) It facilitates the learning of word-word relations with instruction verbs through the self-attention mechanism, particularly in the lower and middle layers, indicating enhanced recognition of instruction words. These insights contribute to a deeper understanding of the behavior shifts in LLMs after instruction fine-tuning and lay the groundwork for future research aimed at interpreting and optimizing LLMs for various applications. We will release our code and data soon.
Prompting with Pseudo-Code Instructions
Prompting with natural language instructions has recently emerged as a popular method of harnessing the capabilities of large language models. Given the inherent ambiguity present in natural language, it is intuitive to consider the possible advantages of prompting with less ambiguous prompt styles, such as the use of pseudo-code. In this paper we explore if prompting via pseudo-code instructions helps improve the performance of pre-trained language models. We manually create a dataset of pseudo-code prompts for 132 different tasks spanning classification, QA and generative language tasks, sourced from the Super-NaturalInstructions dataset. Using these prompts along with their counterparts in natural language, we study their performance on two LLM families - BLOOM and CodeGen. Our experiments show that using pseudo-code instructions leads to better results, with an average increase (absolute) of 7-16 points in F1 scores for classification tasks and an improvement (relative) of 12-38% in aggregate ROUGE-L scores across all tasks. We include detailed ablation studies which indicate that code comments, docstrings, and the structural clues encoded in pseudo-code all contribute towards the improvement in performance. To the best of our knowledge our work is the first to demonstrate how pseudo-code prompts can be helpful in improving the performance of pre-trained LMs.
DrivingDojo Dataset: Advancing Interactive and Knowledge-Enriched Driving World Model
Driving world models have gained increasing attention due to their ability to model complex physical dynamics. However, their superb modeling capability is yet to be fully unleashed due to the limited video diversity in current driving datasets. We introduce DrivingDojo, the first dataset tailor-made for training interactive world models with complex driving dynamics. Our dataset features video clips with a complete set of driving maneuvers, diverse multi-agent interplay, and rich open-world driving knowledge, laying a stepping stone for future world model development. We further define an action instruction following (AIF) benchmark for world models and demonstrate the superiority of the proposed dataset for generating action-controlled future predictions.
Revealing the Power of Post-Training for Small Language Models via Knowledge Distillation
The rapid advancement of large language models (LLMs) has significantly advanced the capabilities of artificial intelligence across various domains. However, their massive scale and high computational costs render them unsuitable for direct deployment in resource-constrained edge environments. This creates a critical need for high-performance small models that can operate efficiently at the edge. Yet, after pre-training alone, these smaller models often fail to meet the performance requirements of complex tasks. To bridge this gap, we introduce a systematic post-training pipeline that efficiently enhances small model accuracy. Our post training pipeline consists of curriculum-based supervised fine-tuning (SFT) and offline on-policy knowledge distillation. The resulting instruction-tuned model achieves state-of-the-art performance among billion-parameter models, demonstrating strong generalization under strict hardware constraints while maintaining competitive accuracy across a variety of tasks. This work provides a practical and efficient solution for developing high-performance language models on Ascend edge devices.
When Thinking Fails: The Pitfalls of Reasoning for Instruction-Following in LLMs
Reasoning-enhanced large language models (RLLMs), whether explicitly trained for reasoning or prompted via chain-of-thought (CoT), have achieved state-of-the-art performance on many complex reasoning tasks. However, we uncover a surprising and previously overlooked phenomenon: explicit CoT reasoning can significantly degrade instruction-following accuracy. Evaluating 15 models on two benchmarks: IFEval (with simple, rule-verifiable constraints) and ComplexBench (with complex, compositional constraints), we consistently observe performance drops when CoT prompting is applied. Through large-scale case studies and an attention-based analysis, we identify common patterns where reasoning either helps (e.g., with formatting or lexical precision) or hurts (e.g., by neglecting simple constraints or introducing unnecessary content). We propose a metric, constraint attention, to quantify model focus during generation and show that CoT reasoning often diverts attention away from instruction-relevant tokens. To mitigate these effects, we introduce and evaluate four strategies: in-context learning, self-reflection, self-selective reasoning, and classifier-selective reasoning. Our results demonstrate that selective reasoning strategies, particularly classifier-selective reasoning, can substantially recover lost performance. To our knowledge, this is the first work to systematically expose reasoning-induced failures in instruction-following and offer practical mitigation strategies.
InstructionBench: An Instructional Video Understanding Benchmark
Despite progress in video large language models (Video-LLMs), research on instructional video understanding, crucial for enhancing access to instructional content, remains insufficient. To address this, we introduce InstructionBench, an Instructional video understanding Benchmark, which challenges models' advanced temporal reasoning within instructional videos characterized by their strict step-by-step flow. Employing GPT-4, we formulate Q\&A pairs in open-ended and multiple-choice formats to assess both Coarse-Grained event-level and Fine-Grained object-level reasoning. Our filtering strategies exclude questions answerable purely by common-sense knowledge, focusing on visual perception and analysis when evaluating Video-LLM models. The benchmark finally contains 5k questions across over 700 videos. We evaluate the latest Video-LLMs on our InstructionBench, finding that closed-source models outperform open-source ones. However, even the best model, GPT-4o, achieves only 53.42\% accuracy, indicating significant gaps in temporal reasoning. To advance the field, we also develop a comprehensive instructional video dataset with over 19k Q\&A pairs from nearly 2.5k videos, using an automated data generation framework, thereby enriching the community's research resources.
CyberPal.AI: Empowering LLMs with Expert-Driven Cybersecurity Instructions
Large Language Models (LLMs) have significantly advanced natural language processing (NLP), providing versatile capabilities across various applications. However, their application to complex, domain-specific tasks, such as cyber-security, often faces substantial challenges. In this study, we introduce SecKnowledge and CyberPal.AI to address these challenges and train security-expert LLMs. SecKnowledge is a domain-knowledge-driven cyber-security instruction dataset, meticulously designed using years of accumulated expert knowledge in the domain through a multi-phase generation process. CyberPal.AI refers to a family of LLMs fine-tuned using SecKnowledge, aimed at building security-specialized LLMs capable of answering and following complex security-related instructions. Additionally, we introduce SecKnowledge-Eval, a comprehensive and diverse cyber-security evaluation benchmark, composed of an extensive set of cyber-security tasks we specifically developed to assess LLMs in the field of cyber-security, along with other publicly available security benchmarks. Our results show a significant average improvement of up to 24% over the baseline models, underscoring the benefits of our expert-driven instruction dataset generation process. These findings contribute to the advancement of AI-based cyber-security applications, paving the way for security-expert LLMs that can enhance threat-hunting and investigation processes.
Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model
While various models and computational tools have been proposed for structure and property analysis of molecules, generating molecules that conform to all desired structures and properties remains a challenge. Here, we introduce a multi-constraint molecular generation large language model, TSMMG, which, akin to a student, incorporates knowledge from various small models and tools, namely, the 'teachers'. To train TSMMG, we construct a large set of text-molecule pairs by extracting molecular knowledge from these 'teachers', enabling it to generate novel molecules that conform to the descriptions through various text prompts. We experimentally show that TSMMG remarkably performs in generating molecules meeting complex, natural language-described property requirements across two-, three-, and four-constraint tasks, with an average molecular validity of over 99% and success ratio of 82.58%, 68.03%, and 67.48%, respectively. The model also exhibits adaptability through zero-shot testing, creating molecules that satisfy combinations of properties that have not been encountered. It can comprehend text inputs with various language styles, extending beyond the confines of outlined prompts, as confirmed through empirical validation. Additionally, the knowledge distillation feature of TSMMG contributes to the continuous enhancement of small models, while the innovative approach to dataset construction effectively addresses the issues of data scarcity and quality, which positions TSMMG as a promising tool in the domains of drug discovery and materials science.
Contextualization Distillation from Large Language Model for Knowledge Graph Completion
While textual information significantly enhances the performance of pre-trained language models (PLMs) in knowledge graph completion (KGC), the static and noisy nature of existing corpora collected from Wikipedia articles or synsets definitions often limits the potential of PLM-based KGC models. To surmount these challenges, we introduce the Contextualization Distillation strategy, a versatile plug-in-and-play approach compatible with both discriminative and generative KGC frameworks. Our method begins by instructing large language models (LLMs) to transform compact, structural triplets into context-rich segments. Subsequently, we introduce two tailored auxiliary tasks, reconstruction and contextualization, allowing smaller KGC models to assimilate insights from these enriched triplets. Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach, revealing consistent performance enhancements irrespective of underlying pipelines or architectures. Moreover, our analysis makes our method more explainable and provides insight into generating path selection, as well as the choosing of suitable distillation tasks. All the code and data in this work will be released at https://github.com/David-Li0406/Contextulization-Distillation
Reinforced UI Instruction Grounding: Towards a Generic UI Task Automation API
Recent popularity of Large Language Models (LLMs) has opened countless possibilities in automating numerous AI tasks by connecting LLMs to various domain-specific models or APIs, where LLMs serve as dispatchers while domain-specific models or APIs are action executors. Despite the vast numbers of domain-specific models/APIs, they still struggle to comprehensively cover super diverse automation demands in the interaction between human and User Interfaces (UIs). In this work, we build a multimodal model to ground natural language instructions in given UI screenshots as a generic UI task automation executor. This metadata-free grounding model, consisting of a visual encoder and a language decoder, is first pretrained on well studied document understanding tasks and then learns to decode spatial information from UI screenshots in a promptable way. To facilitate the exploitation of image-to-text pretrained knowledge, we follow the pixel-to-sequence paradigm to predict geometric coordinates in a sequence of tokens using a language decoder. We further propose an innovative Reinforcement Learning (RL) based algorithm to supervise the tokens in such sequence jointly with visually semantic metrics, which effectively strengthens the spatial decoding capability of the pixel-to-sequence paradigm. Extensive experiments demonstrate our proposed reinforced UI instruction grounding model outperforms the state-of-the-art methods by a clear margin and shows the potential as a generic UI task automation API.
INSTRUCTSCORE: Explainable Text Generation Evaluation with Finegrained Feedback
Automatically evaluating the quality of language generation is critical. Although recent learned metrics show high correlation with human judgement, these metrics can not explain their verdict or associate the scores with defects in generated text. To address this limitation, we present InstructScore, an explainable evaluation metric for text generation. By harnessing both explicit human instruction and the implicit knowledge of GPT-4, we fine-tune a text evaluation metric based on LLaMA, producing both a score for generated text and a human readable diagnostic report. We evaluate InstructScore on a variety of generation tasks, including translation, captioning, data-to-text and commonsense generation. Experiments show that our 7B model surpasses all other unsupervised metrics, including those based on 175B GPT-3 and GPT-4. Surprisingly, our InstructScore, even without direct supervision from human-rated data, achieves performance levels on par with state-of-the-art metrics like COMET22, which were fine-tuned on human ratings.
Seer: Language Instructed Video Prediction with Latent Diffusion Models
Imagining the future trajectory is the key for robots to make sound planning and successfully reach their goals. Therefore, text-conditioned video prediction (TVP) is an essential task to facilitate general robot policy learning. To tackle this task and empower robots with the ability to foresee the future, we propose a sample and computation-efficient model, named Seer, by inflating the pretrained text-to-image (T2I) stable diffusion models along the temporal axis. We enhance the U-Net and language conditioning model by incorporating computation-efficient spatial-temporal attention. Furthermore, we introduce a novel Frame Sequential Text Decomposer module that dissects a sentence's global instruction into temporally aligned sub-instructions, ensuring precise integration into each frame of generation. Our framework allows us to effectively leverage the extensive prior knowledge embedded in pretrained T2I models across the frames. With the adaptable-designed architecture, Seer makes it possible to generate high-fidelity, coherent, and instruction-aligned video frames by fine-tuning a few layers on a small amount of data. The experimental results on Something Something V2 (SSv2), Bridgedata and EpicKitchens-100 datasets demonstrate our superior video prediction performance with around 480-GPU hours versus CogVideo with over 12,480-GPU hours: achieving the 31% FVD improvement compared to the current SOTA model on SSv2 and 83.7% average preference in the human evaluation.
In-BoXBART: Get Instructions into Biomedical Multi-Task Learning
Single-task models have proven pivotal in solving specific tasks; however, they have limitations in real-world applications where multi-tasking is necessary and domain shifts are exhibited. Recently, instructional prompts have shown significant improvement towards multi-task generalization; however, the effect of instructional prompts and Multi-Task Learning (MTL) has not been systematically studied in the biomedical domain. Motivated by this, this paper explores the impact of instructional prompts for biomedical MTL. We introduce the BoX, a collection of 32 instruction tasks for Biomedical NLP across (X) various categories. Using this meta-dataset, we propose a unified model termed In-BoXBART, that can jointly learn all tasks of the BoX without any task-specific modules. To the best of our knowledge, this is the first attempt to propose a unified model in the biomedical domain and use instructions to achieve generalization across several biomedical tasks. Experimental results indicate that the proposed model: 1) outperforms the single-task baseline by ~3% and multi-task (without instruction) baseline by ~18% on an average, and 2) shows ~23% improvement compared to the single-task baseline in few-shot learning (i.e., 32 instances per task) on an average. Our analysis indicates that there is significant room for improvement across tasks in the BoX, implying the scope for future research direction.
Uni-Instruct: One-step Diffusion Model through Unified Diffusion Divergence Instruction
In this paper, we unify more than 10 existing one-step diffusion distillation approaches, such as Diff-Instruct, DMD, SIM, SiD, f-distill, etc, inside a theory-driven framework which we name the \emph{Uni-Instruct}. Uni-Instruct is motivated by our proposed diffusion expansion theory of the f-divergence family. Then we introduce key theories that overcome the intractability issue of the original expanded f-divergence, resulting in an equivalent yet tractable loss that effectively trains one-step diffusion models by minimizing the expanded f-divergence family. The novel unification introduced by Uni-Instruct not only offers new theoretical contributions that help understand existing approaches from a high-level perspective but also leads to state-of-the-art one-step diffusion generation performances. On the CIFAR10 generation benchmark, Uni-Instruct achieves record-breaking Frechet Inception Distance (FID) values of \emph{1.46} for unconditional generation and \emph{1.38} for conditional generation. On the ImageNet-64times 64 generation benchmark, Uni-Instruct achieves a new SoTA one-step generation FID of \emph{1.02}, which outperforms its 79-step teacher diffusion with a significant improvement margin of 1.33 (1.02 vs 2.35). We also apply Uni-Instruct on broader tasks like text-to-3D generation. For text-to-3D generation, Uni-Instruct gives decent results, which slightly outperforms previous methods, such as SDS and VSD, in terms of both generation quality and diversity. Both the solid theoretical and empirical contributions of Uni-Instruct will potentially help future studies on one-step diffusion distillation and knowledge transferring of diffusion models.
It's All in The [MASK]: Simple Instruction-Tuning Enables BERT-like Masked Language Models As Generative Classifiers
While encoder-only models such as BERT and ModernBERT are ubiquitous in real-world NLP applications, their conventional reliance on task-specific classification heads can limit their applicability compared to decoder-based large language models (LLMs). In this work, we introduce ModernBERT-Large-Instruct, a 0.4B-parameter encoder model that leverages its masked language modelling (MLM) head for generative classification. Our approach employs an intentionally simple training loop and inference mechanism that requires no heavy pre-processing, heavily engineered prompting, or architectural modifications. ModernBERT-Large-Instruct exhibits strong zero-shot performance on both classification and knowledge-based tasks, outperforming similarly sized LLMs on MMLU and achieving 93% of Llama3-1B's MMLU performance with 60% less parameters. We also demonstrate that, when fine-tuned, the generative approach using the MLM head matches or even surpasses traditional classification-head methods across diverse NLU tasks.This capability emerges specifically in models trained on contemporary, diverse data mixes, with models trained on lower volume, less-diverse data yielding considerably weaker performance. Although preliminary, these results demonstrate the potential of using the original generative masked language modelling head over traditional task-specific heads for downstream tasks. Our work suggests that further exploration into this area is warranted, highlighting many avenues for future improvements.
Intellecta Cognitiva: A Comprehensive Dataset for Advancing Academic Knowledge and Machine Reasoning
Intellecta dataset emerges as an innovative synthetic dataset, engineered to enhance the cognitive processing capabilities of contemporary language models. With a composition of 11.53 billion tokens, integrating 8.01 billion tokens of synthetic data with 3.52 billion tokens of rich textbook data, Intellecta is crafted to foster advanced reasoning and comprehensive educational narrative generation. Leveraging the Mixtral-8x7B-Instruct-v0.1 model, the dataset facilitates the generation of complex thought processes and detailed, textbook-style explanations, thus enabling language models to engage in both critical thinking and profound educational discourse. This hybrid dataset stands as a testament to the potential of synthetic data in pushing the boundaries of AI, offering a repository that is not only vast and varied but also refined to align with ethical standards and intellectual rigor.
Balancing Truthfulness and Informativeness with Uncertainty-Aware Instruction Fine-Tuning
Instruction fine-tuning (IFT) can increase the informativeness of large language models (LLMs), but may reduce their truthfulness. This trade-off arises because IFT steers LLMs to generate responses containing long-tail knowledge that was not well covered during pre-training. As a result, models become more informative but less accurate when generalizing to unseen tasks. In this paper, we empirically demonstrate how unfamiliar knowledge in IFT datasets can negatively affect the truthfulness of LLMs, and we introduce two new IFT paradigms, UNIT_{cut} and UNIT_{ref}, to address this issue. UNIT_{cut} identifies and removes unfamiliar knowledge from IFT datasets to mitigate its impact on model truthfulness, whereas UNIT_{ref} trains LLMs to recognize their uncertainty and explicitly indicate it at the end of their responses. Our experiments show that UNIT_{cut} substantially improves LLM truthfulness, while UNIT_{ref} maintains high informativeness and reduces hallucinations by distinguishing between confident and uncertain statements.
One Token to Seg Them All: Language Instructed Reasoning Segmentation in Videos
We introduce VideoLISA, a video-based multimodal large language model designed to tackle the problem of language-instructed reasoning segmentation in videos. Leveraging the reasoning capabilities and world knowledge of large language models, and augmented by the Segment Anything Model, VideoLISA generates temporally consistent segmentation masks in videos based on language instructions. Existing image-based methods, such as LISA, struggle with video tasks due to the additional temporal dimension, which requires temporal dynamic understanding and consistent segmentation across frames. VideoLISA addresses these challenges by integrating a Sparse Dense Sampling strategy into the video-LLM, which balances temporal context and spatial detail within computational constraints. Additionally, we propose a One-Token-Seg-All approach using a specially designed <TRK> token, enabling the model to segment and track objects across multiple frames. Extensive evaluations on diverse benchmarks, including our newly introduced ReasonVOS benchmark, demonstrate VideoLISA's superior performance in video object segmentation tasks involving complex reasoning, temporal understanding, and object tracking. While optimized for videos, VideoLISA also shows promising generalization to image segmentation, revealing its potential as a unified foundation model for language-instructed object segmentation. Code and model will be available at: https://github.com/showlab/VideoLISA.
Leveraging Open Knowledge for Advancing Task Expertise in Large Language Models
The cultivation of expertise for large language models (LLMs) to solve tasks of specific areas often requires special-purpose tuning with calibrated behaviors on the expected stable outputs. To avoid huge cost brought by manual preparation of instruction datasets and training resources up to hundreds of hours, the exploitation of open knowledge including a wealth of low rank adaptation (LoRA) models and instruction datasets serves as a good starting point. However, existing methods on model and data selection focus on the performance of general-purpose capabilities while neglecting the knowledge gap exposed in domain-specific deployment. In the present study, we propose to bridge such gap by introducing few human-annotated samples (i.e., K-shot) for advancing task expertise of LLMs with open knowledge. Specifically, we develop an efficient and scalable pipeline to cost-efficiently produce task experts where K-shot data intervene in selecting the most promising expert candidates and the task-relevant instructions. A mixture-of-expert (MoE) system is built to make the best use of individual-yet-complementary knowledge between multiple experts. We unveil the two keys to the success of a MoE system, 1) the abidance by K-shot, and 2) the insistence on diversity. For the former, we ensure that models that truly possess problem-solving abilities on K-shot are selected rather than those blind guessers. Besides, during data selection, instructions that share task-relevant contexts with K-shot are prioritized. For the latter, we highlight the diversity of constituting experts and that of the fine-tuning instructions throughout the model and data selection process. Extensive experimental results confirm the superiority of our approach over existing methods on utilization of open knowledge across various tasks. Codes and models will be released later.
MathScale: Scaling Instruction Tuning for Mathematical Reasoning
Large language models (LLMs) have demonstrated remarkable capabilities in problem-solving. However, their proficiency in solving mathematical problems remains inadequate. We propose MathScale, a simple and scalable method to create high-quality mathematical reasoning data using frontier LLMs (e.g., {\tt GPT-3.5}). Inspired by the cognitive mechanism in human mathematical learning, it first extracts topics and knowledge points from seed math questions and then build a concept graph, which is subsequently used to generate new math questions. MathScale exhibits effective scalability along the size axis of the math dataset that we generate. As a result, we create a mathematical reasoning dataset (MathScaleQA) containing two million math question-answer pairs. To evaluate mathematical reasoning abilities of LLMs comprehensively, we construct {\sc MwpBench}, a benchmark of Math Word Problems, which is a collection of ten datasets (including GSM8K and MATH) covering K-12, college, and competition level math problems. We apply MathScaleQA to fine-tune open-source LLMs (e.g., LLaMA-2 and Mistral), resulting in significantly improved capabilities in mathematical reasoning. Evaluated on {\sc MwpBench}, MathScale-7B achieves state-of-the-art performance across all datasets, surpassing its best peers of equivalent size by 42.9\% in micro average accuracy and 43.7\% in macro average accuracy, respectively.
TIIF-Bench: How Does Your T2I Model Follow Your Instructions?
The rapid advancements of Text-to-Image (T2I) models have ushered in a new phase of AI-generated content, marked by their growing ability to interpret and follow user instructions. However, existing T2I model evaluation benchmarks fall short in limited prompt diversity and complexity, as well as coarse evaluation metrics, making it difficult to evaluate the fine-grained alignment performance between textual instructions and generated images. In this paper, we present TIIF-Bench (Text-to-Image Instruction Following Benchmark), aiming to systematically assess T2I models' ability in interpreting and following intricate textual instructions. TIIF-Bench comprises a set of 5000 prompts organized along multiple dimensions, which are categorized into three levels of difficulties and complexities. To rigorously evaluate model robustness to varying prompt lengths, we provide a short and a long version for each prompt with identical core semantics. Two critical attributes, i.e., text rendering and style control, are introduced to evaluate the precision of text synthesis and the aesthetic coherence of T2I models. In addition, we collect 100 high-quality designer level prompts that encompass various scenarios to comprehensively assess model performance. Leveraging the world knowledge encoded in large vision language models, we propose a novel computable framework to discern subtle variations in T2I model outputs. Through meticulous benchmarking of mainstream T2I models on TIIF-Bench, we analyze the pros and cons of current T2I models and reveal the limitations of current T2I benchmarks. Project Page: https://a113n-w3i.github.io/TIIF_Bench/.
SliderEdit: Continuous Image Editing with Fine-Grained Instruction Control
Instruction-based image editing models have recently achieved impressive performance, enabling complex edits to an input image from a multi-instruction prompt. However, these models apply each instruction in the prompt with a fixed strength, limiting the user's ability to precisely and continuously control the intensity of individual edits. We introduce SliderEdit, a framework for continuous image editing with fine-grained, interpretable instruction control. Given a multi-part edit instruction, SliderEdit disentangles the individual instructions and exposes each as a globally trained slider, allowing smooth adjustment of its strength. Unlike prior works that introduced slider-based attribute controls in text-to-image generation, typically requiring separate training or fine-tuning for each attribute or concept, our method learns a single set of low-rank adaptation matrices that generalize across diverse edits, attributes, and compositional instructions. This enables continuous interpolation along individual edit dimensions while preserving both spatial locality and global semantic consistency. We apply SliderEdit to state-of-the-art image editing models, including FLUX-Kontext and Qwen-Image-Edit, and observe substantial improvements in edit controllability, visual consistency, and user steerability. To the best of our knowledge, we are the first to explore and propose a framework for continuous, fine-grained instruction control in instruction-based image editing models. Our results pave the way for interactive, instruction-driven image manipulation with continuous and compositional control.
RA-DIT: Retrieval-Augmented Dual Instruction Tuning
Retrieval-augmented language models (RALMs) improve performance by accessing long-tail and up-to-date knowledge from external data stores, but are challenging to build. Existing approaches require either expensive retrieval-specific modifications to LM pre-training or use post-hoc integration of the data store that leads to suboptimal performance. We introduce Retrieval-Augmented Dual Instruction Tuning (RA-DIT), a lightweight fine-tuning methodology that provides a third option by retrofitting any LLM with retrieval capabilities. Our approach operates in two distinct fine-tuning steps: (1) one updates a pre-trained LM to better use retrieved information, while (2) the other updates the retriever to return more relevant results, as preferred by the LM. By fine-tuning over tasks that require both knowledge utilization and contextual awareness, we demonstrate that each stage yields significant performance improvements, and using both leads to additional gains. Our best model, RA-DIT 65B, achieves state-of-the-art performance across a range of knowledge-intensive zero- and few-shot learning benchmarks, significantly outperforming existing in-context RALM approaches by up to +8.9% in 0-shot setting and +1.4% in 5-shot setting on average.
BayLing: Bridging Cross-lingual Alignment and Instruction Following through Interactive Translation for Large Language Models
Large language models (LLMs) have demonstrated remarkable prowess in language understanding and generation. Advancing from foundation LLMs to instructionfollowing LLMs, instruction tuning plays a vital role in aligning LLMs to human preferences. However, the existing LLMs are usually focused on English, leading to inferior performance in non-English languages. In order to improve the performance for non-English languages, it is necessary to collect language-specific training data for foundation LLMs and construct language-specific instructions for instruction tuning, both of which are heavy loads. To minimize human workload, we propose to transfer the capabilities of language generation and instruction following from English to other languages through an interactive translation task. We have developed BayLing, an instruction-following LLM by utilizing LLaMA as the foundation LLM and automatically constructing interactive translation instructions for instructing tuning. Extensive assessments demonstrate that BayLing achieves comparable performance to GPT-3.5-turbo, despite utilizing a considerably smaller parameter size of only 13 billion. Experimental results on translation tasks show that BayLing achieves 95% of single-turn translation capability compared to GPT-4 with automatic evaluation and 96% of interactive translation capability compared to GPT-3.5-turbo with human evaluation. To estimate the performance on general tasks, we created a multi-turn instruction test set called BayLing-80. The experimental results on BayLing-80 indicate that BayLing achieves 89% of performance compared to GPT-3.5-turbo. BayLing also demonstrates outstanding performance on knowledge assessment of Chinese GaoKao and English SAT, second only to GPT-3.5-turbo among a multitude of instruction-following LLMs. Demo, homepage, code and models of BayLing are available.
HarmAug: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models
Safety guard models that detect malicious queries aimed at large language models (LLMs) are essential for ensuring the secure and responsible deployment of LLMs in real-world applications. However, deploying existing safety guard models with billions of parameters alongside LLMs on mobile devices is impractical due to substantial memory requirements and latency. To reduce this cost, we distill a large teacher safety guard model into a smaller one using a labeled dataset of instruction-response pairs with binary harmfulness labels. Due to the limited diversity of harmful instructions in the existing labeled dataset, naively distilled models tend to underperform compared to larger models. To bridge the gap between small and large models, we propose HarmAug, a simple yet effective data augmentation method that involves jailbreaking an LLM and prompting it to generate harmful instructions. Given a prompt such as, "Make a single harmful instruction prompt that would elicit offensive content", we add an affirmative prefix (e.g., "I have an idea for a prompt:") to the LLM's response. This encourages the LLM to continue generating the rest of the response, leading to sampling harmful instructions. Another LLM generates a response to the harmful instruction, and the teacher model labels the instruction-response pair. We empirically show that our HarmAug outperforms other relevant baselines. Moreover, a 435-million-parameter safety guard model trained with HarmAug achieves an F1 score comparable to larger models with over 7 billion parameters, and even outperforms them in AUPRC, while operating at less than 25% of their computational cost.
Multi-Step Knowledge Interaction Analysis via Rank-2 Subspace Disentanglement
Natural Language Explanations (NLEs) describe how Large Language Models (LLMs) make decisions, drawing on both external Context Knowledge (CK) and Parametric Knowledge (PK) stored in model weights. Understanding their interaction is key to assessing the grounding of NLEs, yet it remains underexplored. Prior work has largely examined only single-step generation, typically the final answer, and has modelled PK and CK interaction only as a binary choice in a rank-1 subspace. This overlooks richer forms of interaction, such as complementary or supportive knowledge. We propose a novel rank-2 projection subspace that disentangles PK and CK contributions more accurately and use it for the first multi-step analysis of knowledge interactions across longer NLE sequences. Experiments on four QA datasets and three open-weight instruction-tuned LLMs show that diverse knowledge interactions are poorly represented in a rank-1 subspace but are effectively captured in our rank-2 formulation. Our multi-step analysis reveals that hallucinated NLEs align strongly with the PK direction, context-faithful ones balance PK and CK, and Chain-of-Thought prompting for NLEs shifts generated NLEs toward CK by reducing PK reliance. This work provides the first framework for systematic studies of multi-step knowledge interactions in LLMs through a richer rank-2 subspace disentanglement. Code and data: https://github.com/copenlu/pk-ck-knowledge-disentanglement.
DivControl: Knowledge Diversion for Controllable Image Generation
Diffusion models have advanced from text-to-image (T2I) to image-to-image (I2I) generation by incorporating structured inputs such as depth maps, enabling fine-grained spatial control. However, existing methods either train separate models for each condition or rely on unified architectures with entangled representations, resulting in poor generalization and high adaptation costs for novel conditions. To this end, we propose DivControl, a decomposable pretraining framework for unified controllable generation and efficient adaptation. DivControl factorizes ControlNet via SVD into basic components-pairs of singular vectors-which are disentangled into condition-agnostic learngenes and condition-specific tailors through knowledge diversion during multi-condition training. Knowledge diversion is implemented via a dynamic gate that performs soft routing over tailors based on the semantics of condition instructions, enabling zero-shot generalization and parameter-efficient adaptation to novel conditions. To further improve condition fidelity and training efficiency, we introduce a representation alignment loss that aligns condition embeddings with early diffusion features. Extensive experiments demonstrate that DivControl achieves state-of-the-art controllability with 36.4times less training cost, while simultaneously improving average performance on basic conditions. It also delivers strong zero-shot and few-shot performance on unseen conditions, demonstrating superior scalability, modularity, and transferability.
A Graph-Based Synthetic Data Pipeline for Scaling High-Quality Reasoning Instructions
Synthesizing high-quality reasoning data for continual training has been proven to be effective in enhancing the performance of Large Language Models (LLMs). However, previous synthetic approaches struggle to easily scale up data and incur high costs in the pursuit of high quality. In this paper, we propose the Graph-based Synthetic Data Pipeline (GSDP), an economical and scalable framework for high-quality reasoning data synthesis. Inspired by knowledge graphs, we extracted knowledge points from seed data and constructed a knowledge point relationships graph to explore their interconnections. By exploring the implicit relationships among knowledge, our method achieves times255 data expansion. Furthermore, GSDP led by open-source models, achieves synthesis quality comparable to GPT-4-0613 while maintaining times100 lower costs. To tackle the most challenging mathematical reasoning task, we present the GSDP-MATH dataset comprising over 1.91 million pairs of math problems and answers. After fine-tuning on GSDP-MATH, GSDP-7B based on Mistral-7B achieves 37.7% accuracy on MATH and 78.4% on GSM8K, demonstrating the effectiveness of our method. The dataset and models trained in this paper will be available.
Teaching Llama a New Language Through Cross-Lingual Knowledge Transfer
This paper explores cost-efficient methods to adapt pretrained Large Language Models (LLMs) to new lower-resource languages, with a specific focus on Estonian. Leveraging the Llama 2 model, we investigate the impact of combining cross-lingual instruction-tuning with additional monolingual pretraining. Our results demonstrate that even a relatively small amount of additional monolingual pretraining followed by cross-lingual instruction-tuning significantly enhances results on Estonian. Furthermore, we showcase cross-lingual knowledge transfer from high-quality English instructions to Estonian, resulting in improvements in commonsense reasoning and multi-turn conversation capabilities. Our best model, named Llammas, represents the first open-source instruction-following LLM for Estonian. Additionally, we publish Alpaca-est, the first general task instruction dataset for Estonia. These contributions mark the initial progress in the direction of developing open-source LLMs for Estonian.
xCoT: Cross-lingual Instruction Tuning for Cross-lingual Chain-of-Thought Reasoning
Chain-of-thought (CoT) has emerged as a powerful technique to elicit reasoning in large language models and improve a variety of downstream tasks. CoT mainly demonstrates excellent performance in English, but its usage in low-resource languages is constrained due to poor language generalization. To bridge the gap among different languages, we propose a cross-lingual instruction fine-tuning framework (xCOT) to transfer knowledge from high-resource languages to low-resource languages. Specifically, the multilingual instruction training data (xCOT-INSTRUCT) is created to encourage the semantic alignment of multiple languages. We introduce cross-lingual in-context few-shot learning (xICL)) to accelerate multilingual agreement in instruction tuning, where some fragments of source languages in examples are randomly substituted by their counterpart translations of target languages. During multilingual instruction tuning, we adopt the randomly online CoT strategy to enhance the multilingual reasoning ability of the large language model by first translating the query to another language and then answering in English. To further facilitate the language transfer, we leverage the high-resource CoT to supervise the training of low-resource languages with cross-lingual distillation. Experimental results on previous benchmarks demonstrate the superior performance of xCoT in reducing the gap among different languages, highlighting its potential to reduce the cross-lingual gap.
Instruction-aware User Embedding via Synergistic Language and Representation Modeling
User representation modeling has become increasingly crucial for personalized applications, yet existing approaches struggle with generalizability across domains and sensitivity to noisy behavioral signals. We present InstructUE, an instruction-aware user embedding foundation model that leverages large language models (LLMs) to generate general and instruction-aware user representations. InstructUE introduces a multi-encoder architecture with a lightweight adapter that efficiently processes heterogeneous data from six different sources while preserving their structural characteristics. Additionally, it proposes a novel contrastive-autoregressive training framework that bridges language and representation spaces through a curated UserQA dataset. The contrastive-autoregressive training framework simultaneously leverages autoregressive learning to capture domain knowledge in language space and contrastive learning to align user-text embeddings in representation space, thereby enhancing the instruction-awareness and noise-robustness of user embeddings. Through extensive experiments on real-world applications, we demonstrate that InstructUE significantly outperforms existing methods across multiple domains including user prediction, marketing, and recommendation scenarios. Our results show that instruction-aware user modeling can effectively achieve instruction-guided denoising of user information in specific scenarios, paving the way for more generalizable and robust user representation learning.
Ask-to-Clarify: Resolving Instruction Ambiguity through Multi-turn Dialogue
The ultimate goal of embodied agents is to create collaborators that can interact with humans, not mere executors that passively follow instructions. This requires agents to communicate, coordinate, and adapt their actions based on human feedback. Recently, advances in VLAs have offered a path toward this goal. However, most current VLA-based embodied agents operate in a one-way mode: they receive an instruction and execute it without feedback. This approach fails in real-world scenarios where instructions are often ambiguous. In this paper, we address this problem with the Ask-to-Clarify framework. Our framework first resolves ambiguous instructions by asking questions in a multi-turn dialogue. Then it generates low-level actions end-to-end. Specifically, the Ask-to-Clarify framework consists of two components, one VLM for collaboration and one diffusion for action. We also introduce a connection module that generates conditions for the diffusion based on the output of the VLM. This module adjusts the observation by instructions to create reliable conditions. We train our framework with a two-stage knowledge-insulation strategy. First, we fine-tune the collaboration component using ambiguity-solving dialogue data to handle ambiguity. Then, we integrate the action component while freezing the collaboration one. This preserves the interaction abilities while fine-tuning the diffusion to generate actions. The training strategy guarantees our framework can first ask questions, then generate actions. During inference, a signal detector functions as a router that helps our framework switch between asking questions and taking actions. We evaluate the Ask-to-Clarify framework in 8 real-world tasks, where it outperforms existing state-of-the-art VLAs. The results suggest that our proposed framework, along with the training strategy, provides a path toward collaborative embodied agents.
Can LLMs Generate Human-Like Wayfinding Instructions? Towards Platform-Agnostic Embodied Instruction Synthesis
We present a novel approach to automatically synthesize "wayfinding instructions" for an embodied robot agent. In contrast to prior approaches that are heavily reliant on human-annotated datasets designed exclusively for specific simulation platforms, our algorithm uses in-context learning to condition an LLM to generate instructions using just a few references. Using an LLM-based Visual Question Answering strategy, we gather detailed information about the environment which is used by the LLM for instruction synthesis. We implement our approach on multiple simulation platforms including Matterport3D, AI Habitat and ThreeDWorld, thereby demonstrating its platform-agnostic nature. We subjectively evaluate our approach via a user study and observe that 83.3% of users find the synthesized instructions accurately capture the details of the environment and show characteristics similar to those of human-generated instructions. Further, we conduct zero-shot navigation with multiple approaches on the REVERIE dataset using the generated instructions, and observe very close correlation with the baseline on standard success metrics (< 1% change in SR), quantifying the viability of generated instructions in replacing human-annotated data. We finally discuss the applicability of our approach in enabling a generalizable evaluation of embodied navigation policies. To the best of our knowledge, ours is the first LLM-driven approach capable of generating "human-like" instructions in a platform-agnostic manner, without training.
CodeBoost: Boosting Code LLMs by Squeezing Knowledge from Code Snippets with RL
Code large language models (LLMs) have become indispensable tools for building efficient and automated coding pipelines. Existing models are typically post-trained using reinforcement learning (RL) from general-purpose LLMs using "human instruction-final answer" pairs, where the instructions are usually from manual annotations. However, collecting high-quality coding instructions is both labor-intensive and difficult to scale. On the other hand, code snippets are abundantly available from various sources. This imbalance presents a major bottleneck in instruction-based post-training. We propose CodeBoost, a post-training framework that enhances code LLMs purely from code snippets, without relying on human-annotated instructions. CodeBoost introduces the following key components: (1) maximum-clique curation, which selects a representative and diverse training corpus from code; (2) bi-directional prediction, which enables the model to learn from both forward and backward prediction objectives; (3) error-aware prediction, which incorporates learning signals from both correct and incorrect outputs; (4) heterogeneous augmentation, which diversifies the training distribution to enrich code semantics; and (5) heterogeneous rewarding, which guides model learning through multiple reward types including format correctness and execution feedback from both successes and failures. Extensive experiments across several code LLMs and benchmarks verify that CodeBoost consistently improves performance, demonstrating its effectiveness as a scalable and effective training pipeline.
ClimateChat: Designing Data and Methods for Instruction Tuning LLMs to Answer Climate Change Queries
As the issue of global climate change becomes increasingly severe, the demand for research in climate science continues to grow. Natural language processing technologies, represented by Large Language Models (LLMs), have been widely applied to climate change-specific research, providing essential information support for decision-makers and the public. Some studies have improved model performance on relevant tasks by constructing climate change-related instruction data and instruction-tuning LLMs. However, current research remains inadequate in efficiently producing large volumes of high-precision instruction data for climate change, which limits further development of climate change LLMs. This study introduces an automated method for constructing instruction data. The method generates instructions using facts and background knowledge from documents and enhances the diversity of the instruction data through web scraping and the collection of seed instructions. Using this method, we constructed a climate change instruction dataset, named ClimateChat-Corpus, which was used to fine-tune open-source LLMs, resulting in an LLM named ClimateChat. Evaluation results show that ClimateChat significantly improves performance on climate change question-and-answer tasks. Additionally, we evaluated the impact of different base models and instruction data on LLM performance and demonstrated its capability to adapt to a wide range of climate change scientific discovery tasks, emphasizing the importance of selecting an appropriate base model for instruction tuning. This research provides valuable references and empirical support for constructing climate change instruction data and training climate change-specific LLMs.
SOSBENCH: Benchmarking Safety Alignment on Scientific Knowledge
Large language models (LLMs) exhibit advancing capabilities in complex tasks, such as reasoning and graduate-level question answering, yet their resilience against misuse, particularly involving scientifically sophisticated risks, remains underexplored. Existing safety benchmarks typically focus either on instructions requiring minimal knowledge comprehension (e.g., ``tell me how to build a bomb") or utilize prompts that are relatively low-risk (e.g., multiple-choice or classification tasks about hazardous content). Consequently, they fail to adequately assess model safety when handling knowledge-intensive, hazardous scenarios. To address this critical gap, we introduce SOSBench, a regulation-grounded, hazard-focused benchmark encompassing six high-risk scientific domains: chemistry, biology, medicine, pharmacology, physics, and psychology. The benchmark comprises 3,000 prompts derived from real-world regulations and laws, systematically expanded via an LLM-assisted evolutionary pipeline that introduces diverse, realistic misuse scenarios (e.g., detailed explosive synthesis instructions involving advanced chemical formulas). We evaluate frontier models within a unified evaluation framework using our SOSBench. Despite their alignment claims, advanced models consistently disclose policy-violating content across all domains, demonstrating alarmingly high rates of harmful responses (e.g., 79.1% for Deepseek-R1 and 47.3% for GPT-4.1). These results highlight significant safety alignment deficiencies and underscore urgent concerns regarding the responsible deployment of powerful LLMs.
Safety Control of Service Robots with LLMs and Embodied Knowledge Graphs
Safety limitations in service robotics across various industries have raised significant concerns about the need for robust mechanisms ensuring that robots adhere to safe practices, thereby preventing actions that might harm humans or cause property damage. Despite advances, including the integration of Knowledge Graphs (KGs) with Large Language Models (LLMs), challenges in ensuring consistent safety in autonomous robot actions persist. In this paper, we propose a novel integration of Large Language Models with Embodied Robotic Control Prompts (ERCPs) and Embodied Knowledge Graphs (EKGs) to enhance the safety framework for service robots. ERCPs are designed as predefined instructions that ensure LLMs generate safe and precise responses. These responses are subsequently validated by EKGs, which provide a comprehensive knowledge base ensuring that the actions of the robot are continuously aligned with safety protocols, thereby promoting safer operational practices in varied contexts. Our experimental setup involved diverse real-world tasks, where robots equipped with our framework demonstrated significantly higher compliance with safety standards compared to traditional methods. This integration fosters secure human-robot interactions and positions our methodology at the forefront of AI-driven safety innovations in service robotics.
Large Language Model Meets Graph Neural Network in Knowledge Distillation
Despite recent community revelations about the advancements and potential applications of Large Language Models (LLMs) in understanding Text-Attributed Graph (TAG), the deployment of LLMs for production is hindered by its high computational and storage requirements, as well as long latencies during model inference. Simultaneously, although traditional Graph Neural Networks (GNNs) are light weight and adept at learning structural features of graphs, their ability to grasp the complex semantics in TAG is somewhat constrained for real applications. To address these limitations, we concentrate on the downstream task of node classification in TAG and propose a novel graph knowledge distillation framework, termed Linguistic Graph Knowledge Distillation (LinguGKD), using LLMs as teacher models and GNNs as student models for knowledge distillation. It involves TAG-oriented instruction tuning of LLM on designed tailored prompts, followed by propagating knowledge and aligning the hierarchically learned node features from the teacher LLM to the student GNN in latent space, employing a layer-adaptive contrastive learning strategy. Through extensive experiments on a variety of LLM and GNN models and multiple benchmark datasets, the proposed LinguGKD significantly boosts the student GNN's predictive accuracy and convergence rate, without the need of extra data or model parameters. Compared to teacher LLM, distilled GNN achieves superior inference speed equipped with much fewer computing and storage demands, when surpassing the teacher LLM's classification accuracy on some of benchmark datasets.
Beyond Anti-Forgetting: Multimodal Continual Instruction Tuning with Positive Forward Transfer
Multimodal Continual Instruction Tuning (MCIT) enables Multimodal Large Language Models (MLLMs) to meet continuously emerging requirements without expensive retraining. MCIT faces two major obstacles: catastrophic forgetting (where old knowledge is forgotten) and negative forward transfer (where the performance of future tasks is degraded). Although existing methods have greatly alleviated catastrophic forgetting, they still suffer from negative forward transfer. We discover a large discrepancy in different input embeddings by performing singular value decomposition (SVD) on input embeddings. This discrepancy results in the model learning irrelevant information for old and pre-trained tasks, leading to catastrophic forgetting and negative forward transfer. To address these issues, we propose Prompt Tuning with Positive Forward Transfer (Fwd-Prompt), a prompt-based method that projects the prompt gradient to the residual space to minimize interference between tasks and to the pre-trained subspace for reusing pre-trained knowledge. Our experiments demonstrate that Fwd-Prompt achieves state-of-the-art performance while updating fewer parameters and requiring no old samples. Our research illuminates the potential of continuously adapting MLLMs to new tasks under the instruction tuning paradigm and encourages future studies to explore MCIT.
Knowledge-Augmented Language Model Verification
Recent Language Models (LMs) have shown impressive capabilities in generating texts with the knowledge internalized in parameters. Yet, LMs often generate the factually incorrect responses to the given queries, since their knowledge may be inaccurate, incomplete, and outdated. To address this problem, previous works propose to augment LMs with the knowledge retrieved from an external knowledge source. However, such approaches often show suboptimal text generation performance due to two reasons: 1) the model may fail to retrieve the knowledge relevant to the given query, or 2) the model may not faithfully reflect the retrieved knowledge in the generated text. To overcome these, we propose to verify the output and the knowledge of the knowledge-augmented LMs with a separate verifier, which is a small LM that is trained to detect those two types of errors through instruction-finetuning. Then, when the verifier recognizes an error, we can rectify it by either retrieving new knowledge or generating new text. Further, we use an ensemble of the outputs from different instructions with a single verifier to enhance the reliability of the verification processes. We validate the effectiveness of the proposed verification steps on multiple question answering benchmarks, whose results show that the proposed verifier effectively identifies retrieval and generation errors, allowing LMs to provide more factually correct outputs. Our code is available at https://github.com/JinheonBaek/KALMV.
Improving Multilingual Capabilities with Cultural and Local Knowledge in Large Language Models While Enhancing Native Performance
Large Language Models (LLMs) have shown remarkable capabilities, but their development has primarily focused on English and other high-resource languages, leaving many languages underserved. We present our latest Hindi-English bi-lingual LLM Mantra-14B with ~3\% average improvement in benchmark scores over both languages, outperforming models twice its size. Using a curated dataset composed of English and Hindi instruction data of 485K samples, we instruction tuned models such as Qwen-2.5-14B-Instruct and Phi-4 to improve performance over both English and Hindi. Our experiments encompassing seven different LLMs of varying parameter sizes and over 140 training attempts with varying English-Hindi training data ratios demonstrated that it is possible to significantly improve multilingual performance without compromising native performance. Further, our approach avoids resource-intensive techniques like vocabulary expansion or architectural modifications, thus keeping the model size small. Our results indicate that modest fine-tuning with culturally and locally informed data can bridge performance gaps without incurring significant computational overhead. We release our training code, datasets, and models under mit and apache licenses to aid further research towards under-represented and low-resource languages.
Supervised Knowledge Makes Large Language Models Better In-context Learners
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering. The recent progress in large-scale generative models has further expanded their use in real-world language applications. However, the critical challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored. While previous in-context learning research has focused on enhancing models to adhere to users' specific instructions and quality expectations, and to avoid undesired outputs, little to no work has explored the use of task-Specific fine-tuned Language Models (SLMs) to improve LLMs' in-context learning during the inference stage. Our primary contribution is the establishment of a simple yet effective framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks. Using our proposed plug-in method, enhanced versions of Llama 2 and ChatGPT surpass their original versions regarding generalizability and factuality. We offer a comprehensive suite of resources, including 16 curated datasets, prompts, model checkpoints, and LLM outputs across 9 distinct tasks. Our empirical analysis sheds light on the advantages of incorporating discriminative models into LLMs and highlights the potential of our methodology in fostering more reliable LLMs.
Tuna: Instruction Tuning using Feedback from Large Language Models
Instruction tuning of open-source large language models (LLMs) like LLaMA, using direct outputs from more powerful LLMs such as Instruct-GPT and GPT-4, has proven to be a cost-effective way to align model behaviors with human preferences. However, the instruction-tuned model has only seen one response per instruction, lacking the knowledge of potentially better responses. In this paper, we propose finetuning an instruction-tuned LLM using our novel probabilistic ranking and contextual ranking approaches to increase the likelihood of generating better responses. Probabilistic ranking enables the instruction-tuned model to inherit the relative rankings of high-quality and low-quality responses from the teacher LLM. On the other hand, learning with contextual ranking allows the model to refine its own response distribution using the contextual understanding ability of stronger LLMs. Furthermore, we apply probabilistic ranking and contextual ranking sequentially to the instruction-tuned LLM. The resulting model, which we call Tuna, consistently improves the performance on Super Natural Instructions (119 test tasks), LMentry (25 test tasks), Vicuna QA, and can even obtain better results than several strong reinforcement learning baselines. Our code and data are available at https://github.com/microsoft/LMOps.
SHAP-EDITOR: Instruction-guided Latent 3D Editing in Seconds
We propose a novel feed-forward 3D editing framework called Shap-Editor. Prior research on editing 3D objects primarily concentrated on editing individual objects by leveraging off-the-shelf 2D image editing networks. This is achieved via a process called distillation, which transfers knowledge from the 2D network to 3D assets. Distillation necessitates at least tens of minutes per asset to attain satisfactory editing results, and is thus not very practical. In contrast, we ask whether 3D editing can be carried out directly by a feed-forward network, eschewing test-time optimisation. In particular, we hypothesise that editing can be greatly simplified by first encoding 3D objects in a suitable latent space. We validate this hypothesis by building upon the latent space of Shap-E. We demonstrate that direct 3D editing in this space is possible and efficient by building a feed-forward editor network that only requires approximately one second per edit. Our experiments show that Shap-Editor generalises well to both in-distribution and out-of-distribution 3D assets with different prompts, exhibiting comparable performance with methods that carry out test-time optimisation for each edited instance.
InstructPix2Pix: Learning to Follow Image Editing Instructions
We propose a method for editing images from human instructions: given an input image and a written instruction that tells the model what to do, our model follows these instructions to edit the image. To obtain training data for this problem, we combine the knowledge of two large pretrained models -- a language model (GPT-3) and a text-to-image model (Stable Diffusion) -- to generate a large dataset of image editing examples. Our conditional diffusion model, InstructPix2Pix, is trained on our generated data, and generalizes to real images and user-written instructions at inference time. Since it performs edits in the forward pass and does not require per example fine-tuning or inversion, our model edits images quickly, in a matter of seconds. We show compelling editing results for a diverse collection of input images and written instructions.
Cendol: Open Instruction-tuned Generative Large Language Models for Indonesian Languages
Large language models (LLMs) show remarkable human-like capability in various domains and languages. However, a notable quality gap arises in low-resource languages, e.g., Indonesian indigenous languages, rendering them ineffective and inefficient in such linguistic contexts. To bridge this quality gap, we introduce Cendol, a collection of Indonesian LLMs encompassing both decoder-only and encoder-decoder architectures across a range of model sizes. We highlight Cendol's effectiveness across a diverse array of tasks, attaining 20% improvement, and demonstrate its capability to generalize to unseen tasks and indigenous languages of Indonesia. Furthermore, Cendol models showcase improved human favorability despite their limitations in capturing indigenous knowledge and cultural values in Indonesia. In addition, we discuss the shortcomings of parameter-efficient tunings, such as LoRA, for language adaptation. Alternatively, we propose the usage of vocabulary adaptation to enhance efficiency. Lastly, we evaluate the safety of Cendol and showcase that safety in pre-training in one language such as English is transferable to low-resource languages, such as Indonesian, even without RLHF and safety fine-tuning.
GraphGPT: Graph Instruction Tuning for Large Language Models
Graph Neural Networks (GNNs) have advanced graph structure understanding via recursive information exchange and aggregation among graph nodes. To improve model robustness, self-supervised learning (SSL) has emerged as a promising approach for data augmentation. However, existing methods for generating pre-trained graph embeddings often rely on fine-tuning with specific downstream task labels, which limits their usability in scenarios where labeled data is scarce or unavailable. To address this, our research focuses on advancing the generalization capabilities of graph models in challenging zero-shot learning scenarios. Inspired by the success of large language models (LLMs), we aim to develop a graph-oriented LLM that can achieve high generalization across diverse downstream datasets and tasks, even without any information available from the downstream graph data. In this work, we present the GraphGPT framework that aligns LLMs with graph structural knowledge with a graph instruction tuning paradigm. Our framework incorporates a text-graph grounding component to establish a connection between textual information and graph structures. Additionally, we propose a dual-stage instruction tuning paradigm, accompanied by a lightweight graph-text alignment projector. This paradigm explores self-supervised graph structural signals and task-specific graph instructions, to guide LLMs in understanding complex graph structures and improving their adaptability across different downstream tasks. Our framework is evaluated on supervised and zero-shot graph learning tasks, demonstrating superior generalization and outperforming state-of-the-art baselines.
Decomposed Prompting: Unveiling Multilingual Linguistic Structure Knowledge in English-Centric Large Language Models
Despite the predominance of English in their training data, English-centric Large Language Models (LLMs) like GPT-3 and LLaMA display a remarkable ability to perform multilingual tasks, raising questions about the depth and nature of their cross-lingual capabilities. This paper introduces the decomposed prompting approach to probe the linguistic structure understanding of these LLMs in sequence labeling tasks. Diverging from the single text-to-text prompt, our method generates for each token of the input sentence an individual prompt which asks for its linguistic label. We assess our method on the Universal Dependencies part-of-speech tagging dataset for 38 languages, utilizing both English-centric and multilingual LLMs. Our findings show that decomposed prompting surpasses the iterative prompting baseline in efficacy and efficiency under zero- and few-shot settings. Further analysis reveals the influence of evaluation methods and the use of instructions in prompts. Our multilingual investigation shows that English-centric language models perform better on average than multilingual models. Our study offers insights into the multilingual transferability of English-centric LLMs, contributing to the understanding of their multilingual linguistic knowledge.
Revision Transformers: Instructing Language Models to Change their Values
Current transformer language models (LM) are large-scale models with billions of parameters. They have been shown to provide high performances on a variety of tasks but are also prone to shortcut learning and bias. Addressing such incorrect model behavior via parameter adjustments is very costly. This is particularly problematic for updating dynamic concepts, such as moral values, which vary culturally or interpersonally. In this work, we question the current common practice of storing all information in the model parameters and propose the Revision Transformer (RiT) to facilitate easy model updating. The specific combination of a large-scale pre-trained LM that inherently but also diffusely encodes world knowledge with a clear-structured revision engine makes it possible to update the model's knowledge with little effort and the help of user interaction. We exemplify RiT on a moral dataset and simulate user feedback demonstrating strong performance in model revision even with small data. This way, users can easily design a model regarding their preferences, paving the way for more transparent AI models.
LLM-Detector: Improving AI-Generated Chinese Text Detection with Open-Source LLM Instruction Tuning
ChatGPT and other general large language models (LLMs) have achieved remarkable success, but they have also raised concerns about the misuse of AI-generated texts. Existing AI-generated text detection models, such as based on BERT and RoBERTa, are prone to in-domain over-fitting, leading to poor out-of-domain (OOD) detection performance. In this paper, we first collected Chinese text responses generated by human experts and 9 types of LLMs, for which to multiple domains questions, and further created a dataset that mixed human-written sentences and sentences polished by LLMs. We then proposed LLM-Detector, a novel method for both document-level and sentence-level text detection through Instruction Tuning of LLMs. Our method leverages the wealth of knowledge LLMs acquire during pre-training, enabling them to detect the text they generate. Instruction tuning aligns the model's responses with the user's expected text detection tasks. Experimental results show that previous methods struggle with sentence-level AI-generated text detection and OOD detection. In contrast, our proposed method not only significantly outperforms baseline methods in both sentence-level and document-level text detection but also demonstrates strong generalization capabilities. Furthermore, since LLM-Detector is trained based on open-source LLMs, it is easy to customize for deployment.
Self-Knowledge Guided Retrieval Augmentation for Large Language Models
Large language models (LLMs) have shown superior performance without task-specific fine-tuning. Despite the success, the knowledge stored in the parameters of LLMs could still be incomplete and difficult to update due to the computational costs. As complementary, retrieval-based methods can offer non-parametric world knowledge and improve the performance on tasks such as question answering. However, we find that the retrieved knowledge does not always help and even has a negative impact on original responses occasionally. To better make use of both internal knowledge and external world knowledge, we investigate eliciting the model's ability to recognize what they know and do not know (which is also called self-knowledge) and propose Self-Knowledge guided Retrieval augmentation (SKR), a simple yet effective method which can let LLMs refer to the questions they have previously encountered and adaptively call for external resources when dealing with new questions. We evaluate SKR on multiple datasets and demonstrate that it outperforms chain-of-thought based and fully retrieval-based methods by using either InstructGPT or ChatGPT.
Knowledge-enhanced Agents for Interactive Text Games
Communication via natural language is a crucial aspect of intelligence, and it requires computational models to learn and reason about world concepts, with varying levels of supervision. While there has been significant progress made on fully-supervised non-interactive tasks, such as question-answering and procedural text understanding, much of the community has turned to various sequential interactive tasks, as in semi-Markov text-based games, which have revealed limitations of existing approaches in terms of coherence, contextual awareness, and their ability to learn effectively from the environment. In this paper, we propose a framework for enabling improved functional grounding of agents in text-based games. Specifically, we consider two forms of domain knowledge that we inject into learning-based agents: memory of previous correct actions and affordances of relevant objects in the environment. Our framework supports three representative model classes: `pure' reinforcement learning (RL) agents, RL agents enhanced with knowledge graphs, and agents equipped with language models. Furthermore, we devise multiple injection strategies for the above domain knowledge types and agent architectures, including injection via knowledge graphs and augmentation of the existing input encoding strategies. We perform all experiments on the ScienceWorld text-based game environment, to illustrate the performance of various model configurations in challenging science-related instruction-following tasks. Our findings provide crucial insights on the development of effective natural language processing systems for interactive contexts.
