Once Is Enough: Lightweight DiT-Based Video Virtual Try-On via One-Time Garment Appearance Injection
Abstract
A novel video virtual try-on method called OIE uses first-frame clothing replacement with content control and pose/mask guidance for efficient temporal video synthesis.
Video virtual try-on aims to replace the clothing of a person in a video with a target garment. Current dual-branch architectures have achieved significant success in diffusion models based on the U-Net; however, adapting them to diffusion models built upon the Diffusion Transformer remains challenging. Initially, introducing latent space features from the garment reference branch requires adding or modifying the backbone network, leading to a large number of trainable parameters. Subsequently, the latent space features of garments lack inherent temporal characteristics and thus require additional learning. To address these challenges, we propose a novel approach, OIE (Once is Enough), a virtual try-on strategy based on first-frame clothing replacement: specifically, we employ an image-based clothing transfer model to replace the clothing in the initial frame, and then, under the content control of the edited first frame, utilize pose and mask information to guide the temporal prior of the video generation model in synthesizing the remaining frames sequentially. Experiments show that our method achieves superior parameter efficiency and computational efficiency while still maintaining leading performance under these constraints.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper