Latent Self-Consistency for Reliable Majority-Set Selection in Short- and Long-Answer Reasoning
Abstract
Latent Self-Consistency (LSC) improves LLM output consistency by selecting semantically coherent responses using learnable token embeddings with minimal computational overhead.
Probabilistic decoding in Large Language Models (LLMs) often yields inconsistent outputs, particularly on complex or long-form questions. Self-Consistency (SC) mitigates this for short-form QA by majority voting over exact strings, whereas Universal Self-Consistency (USC) and Weighted Unigram Consistency Score (WUCS) extend to long-form responses but lose accuracy on short-form benchmarks. We introduce Latent Self-Consistency (LSC), which selects the most semantically consistent response using learnable token embeddings. LSC's lightweight forward processing of summary tokens only introduces negligible runtime overhead (at most 0.9%) on top of standard decoding of the base LLM, and requires no changes to the model architecture. Across 6 short-form and 5 long-form reasoning benchmarks (e.g., MATH, MMLU, TruthfulQA), LSC surpasses SC, USC, and WUCS on both short-form and long-form on average performance, while adding negligible computational overhead on vanilla inference. These results position LSC as a reliable consistency-selection method that works effectively across various answer formats. Additionally, LSC provides well-calibrated confidence estimates, maintaining low expected calibration error across both answer formats.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper