zhiyucheng commited on
Commit
8201b33
·
0 Parent(s):

Initial commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +36 -0
  2. LICENSE +28 -0
  3. README.md +115 -0
  4. chat_template.jinja +96 -0
  5. config.json +219 -0
  6. configuration_deepseek.py +212 -0
  7. generation_config.json +5 -0
  8. hf_quant_config.json +135 -0
  9. model-00001-of-00119.safetensors +3 -0
  10. model-00002-of-00119.safetensors +3 -0
  11. model-00003-of-00119.safetensors +3 -0
  12. model-00004-of-00119.safetensors +3 -0
  13. model-00005-of-00119.safetensors +3 -0
  14. model-00006-of-00119.safetensors +3 -0
  15. model-00007-of-00119.safetensors +3 -0
  16. model-00008-of-00119.safetensors +3 -0
  17. model-00009-of-00119.safetensors +3 -0
  18. model-00010-of-00119.safetensors +3 -0
  19. model-00011-of-00119.safetensors +3 -0
  20. model-00012-of-00119.safetensors +3 -0
  21. model-00013-of-00119.safetensors +3 -0
  22. model-00014-of-00119.safetensors +3 -0
  23. model-00015-of-00119.safetensors +3 -0
  24. model-00016-of-00119.safetensors +3 -0
  25. model-00017-of-00119.safetensors +3 -0
  26. model-00018-of-00119.safetensors +3 -0
  27. model-00019-of-00119.safetensors +3 -0
  28. model-00020-of-00119.safetensors +3 -0
  29. model-00021-of-00119.safetensors +3 -0
  30. model-00022-of-00119.safetensors +3 -0
  31. model-00023-of-00119.safetensors +3 -0
  32. model-00024-of-00119.safetensors +3 -0
  33. model-00025-of-00119.safetensors +3 -0
  34. model-00026-of-00119.safetensors +3 -0
  35. model-00027-of-00119.safetensors +3 -0
  36. model-00028-of-00119.safetensors +3 -0
  37. model-00029-of-00119.safetensors +3 -0
  38. model-00030-of-00119.safetensors +3 -0
  39. model-00031-of-00119.safetensors +3 -0
  40. model-00032-of-00119.safetensors +3 -0
  41. model-00033-of-00119.safetensors +3 -0
  42. model-00034-of-00119.safetensors +3 -0
  43. model-00035-of-00119.safetensors +3 -0
  44. model-00036-of-00119.safetensors +3 -0
  45. model-00037-of-00119.safetensors +3 -0
  46. model-00038-of-00119.safetensors +3 -0
  47. model-00039-of-00119.safetensors +3 -0
  48. model-00040-of-00119.safetensors +3 -0
  49. model-00041-of-00119.safetensors +3 -0
  50. model-00042-of-00119.safetensors +3 -0
.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *model.safetensors.index.json* filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Modified MIT License
2
+
3
+ Copyright (c) 2025 Nvidia
4
+ Copyright (c) 2025 Moonshot AI
5
+
6
+ Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ of this software and associated documentation files (the “Software”), to deal
8
+ in the Software without restriction, including without limitation the rights
9
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ copies of the Software, and to permit persons to whom the Software is
11
+ furnished to do so, subject to the following conditions:
12
+
13
+ The above copyright notice and this permission notice shall be included in all
14
+ copies or substantial portions of the Software.
15
+
16
+ THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ SOFTWARE.
23
+
24
+ Our only modification part is that, if the Software (or any derivative works
25
+ thereof) is used for any of your commercial products or services that have
26
+ more than 100 million monthly active users, or more than 20 million US dollars
27
+ (or equivalent in other currencies) in monthly revenue, you shall prominently
28
+ display "Kimi K2" on the user interface of such product or service.
README.md ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ base_model:
4
+ - moonshotai/Kimi-K2-Thinking
5
+ license: other
6
+ license_name: modified-mit
7
+ library_name: Model Optimizer
8
+ tags:
9
+ - nvidia
10
+ - ModelOpt
11
+ - Kimi-K2
12
+ - quantized
13
+ - FP4
14
+ - fp4
15
+ ---
16
+ # Model Overview
17
+
18
+ ## Description:
19
+ The NVIDIA Kimi-K2-Thinking-NVFP4 model is the quantized version of the Moonshot AI's Kimi-K2-Thinking model, which is an auto-regressive language model that uses an optimized transformer architecture. For more information, please check [here](https://huggingface.co/moonshotai/Kimi-K2-Thinking). The NVIDIA Kimi-K2-Thinking NVFP4 model is quantized with [TensorRT Model Optimizer](https://github.com/NVIDIA/TensorRT-Model-Optimizer).
20
+
21
+ This model is ready for commercial/non-commercial use. <br>
22
+
23
+ ## Third-Party Community Consideration
24
+ This model is not owned or developed by NVIDIA. This model has been developed and built to a third-party’s requirements for this application and use case; see link to Non-NVIDIA [(Kimi-K2-Thinking) Model Card](https://huggingface.co/moonshotai/Kimi-K2-Thinking).
25
+
26
+ ### License/Terms of Use:
27
+ [Modified MIT](https://huggingface.co/nvidia/Kimi-K2-Thinking-NVFP4/blob/main/LICENSE)
28
+
29
+ ### Deployment Geography
30
+ Global
31
+
32
+ ### Use Case
33
+ This model is intended for developers and researchers building LLMs
34
+
35
+ ### Release Date
36
+ Huggingface 12/04/2025 via https://huggingface.co/nvidia/Kimi-K2-Thinking-NVFP4
37
+
38
+
39
+ ## Model Architecture:
40
+ **Architecture Type:** Transformers <br>
41
+ **Network Architecture:** DeepSeek V3 <br>
42
+ **Number of Model Parameters:** 1T
43
+
44
+ ## Input:
45
+ **Input Type(s):** Text <br>
46
+ **Input Format(s):** String <br>
47
+ **Input Parameters:** 1D (One Dimensional): Sequences <br>
48
+
49
+ ## Output:
50
+ **Output Type(s):** Text <br>
51
+ **Output Format:** String <br>
52
+ **Output Parameters:** 1D (One Dimensional): Sequences <br>
53
+
54
+ Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions.
55
+
56
+ ## Software Integration:
57
+ **Supported Runtime Engine(s):** <br>
58
+ * vLLM <br>
59
+
60
+ **Supported Hardware Microarchitecture Compatibility:** <br>
61
+ * NVIDIA Blackwell <br>
62
+
63
+ **Preferred Operating System(s):** <br>
64
+ * Linux <br>
65
+ The integration of foundation and fine-tuned models into AI systems requires additional testing using use-case-specific data to ensure safe and effective deployment. Following the V-model methodology, iterative testing and validation at both unit and system levels are essential to mitigate risks, meet technical and functional requirements, and ensure compliance with safety and ethical standards before deployment.
66
+
67
+ ## Model Version(s):
68
+ ** The model is quantized with nvidia-modelopt **v0.39.0** <br>
69
+
70
+ ## Calibration Datasets:
71
+ * Calibration Dataset: [cnn_dailymail](https://huggingface.co/datasets/abisee/cnn_dailymail) <br>
72
+ ** Data collection method: Automated. <br>
73
+ ** Labeling method: Automated. <br>
74
+
75
+ ## Training Dataset: <br>
76
+ ** Data Collection Method by dataset: Hybrid: Human, Automated <br>
77
+ ** Labeling Method by dataset: Hybrid: Human, Automated <br>
78
+ ** Data Modality: [Text] <br>
79
+ ** Text Training Data Size: undisclosed. <br>
80
+
81
+ ## Testing Dataset: <br>
82
+ ** Data Collection Method by dataset: Hybrid: Human, Automated <br>
83
+ ** Labeling Method by dataset: Hybrid: Human, Automated <br>
84
+
85
+ ## Evaluation Dataset: <br>
86
+ ** Data Collection Method by dataset: Hybrid: Human, Automated <br>
87
+ ** Labeling Method by dataset: Hybrid: Human, Automated <br>
88
+
89
+
90
+ ## Inference:
91
+ **Engine:** vLLM <br>
92
+ **Test Hardware:** B200 <br>
93
+
94
+ ## Post Training Quantization
95
+ This model was obtained by converting and quantizing the weights and activations of Kimi-K2-Thinking from INT4 to BF16 to NVFP4 data type, ready for inference with vLLM. Only the weights and activations of the linear operators within transformer blocks in MoE are quantized.
96
+
97
+ ## Usage
98
+
99
+
100
+ To serve this checkpoint with [vLLM](https://github.com/vllm-project/vllm), you can start the docker `vllm/vllm-openai:v0.11.2` and run the sample command below:
101
+
102
+ ```sh
103
+ python3 -m vllm.entrypoints.openai.api_server --model nvidia/Kimi-K2-Thinking-NVFP4 --trust-remote-code --tensor-parallel-size 4
104
+ ```
105
+
106
+
107
+ ## Model Limitations:
108
+ The base model was trained on data that contains toxic language and societal biases originally crawled from the internet. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. The model may generate answers that may be inaccurate, omit key information, or include irrelevant or redundant text producing socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.
109
+
110
+ ## Ethical Considerations
111
+
112
+ NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
113
+
114
+ Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
115
+
chat_template.jinja ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- macro render_content(msg) -%}
2
+ {%- set c = msg.get('content') -%}
3
+ {%- if c is string -%}
4
+ {{ c }}
5
+ {%- elif c is not none -%}
6
+ {% for content in c -%}
7
+ {% if content['type'] == 'image' or 'image' in content or 'image_url' in content -%}
8
+ <|media_start|>image<|media_content|><|media_pad|><|media_end|>
9
+ {% else -%}
10
+ {{ content['text'] }}
11
+ {%- endif -%}
12
+ {%- endfor -%}
13
+ {%- endif -%}
14
+ {%- endmacro -%}
15
+
16
+ {% macro set_roles(message) -%}
17
+ {%- set role_name = message.get('name') or message['role'] -%}
18
+ {%- if message['role'] == 'user' -%}
19
+ <|im_user|>{{role_name}}<|im_middle|>
20
+ {%- elif message['role'] == 'assistant' -%}
21
+ <|im_assistant|>{{role_name}}<|im_middle|>
22
+ {%- else -%}
23
+ <|im_system|>{{role_name}}<|im_middle|>
24
+ {%- endif -%}
25
+ {%- endmacro -%}
26
+
27
+
28
+ {%- macro render_toolcalls(message) -%}
29
+ <|tool_calls_section_begin|>
30
+ {%- for tool_call in message['tool_calls'] -%}
31
+ {%- set formatted_id = tool_call['id'] -%}
32
+ <|tool_call_begin|>{{ formatted_id }}<|tool_call_argument_begin|>{% if tool_call['function']['arguments'] is string %}{{ tool_call['function']['arguments'] }}{% else %}{{ tool_call['function']['arguments'] | tojson }}{% endif %}<|tool_call_end|>
33
+ {%- endfor -%}
34
+ <|tool_calls_section_end|>
35
+ {%- endmacro -%}
36
+
37
+
38
+ {# Find last non-tool-call assisitant message #}
39
+ {%- set ns = namespace(last_non_tool_call_assistant_msg=-1) -%}
40
+ {%- for idx in range(messages|length-1, -1, -1) -%}
41
+ {%- if messages[idx]['role'] == 'assistant' and not messages[idx].get('tool_calls') -%}
42
+ {%- set ns.last_non_tool_call_assistant_msg = idx -%}
43
+ {%- break -%}
44
+ {%- endif -%}
45
+ {%- endfor -%}
46
+
47
+ {# split all messages into history & suffix, reasoning_content in suffix should be reserved.#}
48
+ {%- set hist_msgs = messages[:ns.last_non_tool_call_assistant_msg+1] -%}
49
+ {%- set suffix_msgs = messages[ns.last_non_tool_call_assistant_msg+1:] -%}
50
+
51
+ {%- if tools -%}
52
+ <|im_system|>tool_declare<|im_middle|>{{ tools | tojson(separators=(',', ':')) }}<|im_end|>
53
+ {%- endif -%}
54
+
55
+ {%- for message in hist_msgs -%}
56
+ {%- if loop.first and messages[0]['role'] != 'system' -%}
57
+ <|im_system|>system<|im_middle|>You are Kimi, an AI assistant created by Moonshot AI.<|im_end|>
58
+ {%- endif -%}
59
+ {{set_roles(message)}}
60
+ {%- if message['role'] == 'assistant' -%}
61
+ <think></think>{{render_content(message)}}
62
+ {%- if message.get('tool_calls') -%}
63
+ {{render_toolcalls(message)}}
64
+ {%- endif -%}
65
+ {%- elif message['role'] == 'tool' -%}
66
+ {%- set tool_call_id = message.tool_call_id -%}
67
+ ## Return of {{ tool_call_id }}
68
+ {{render_content(message)}}
69
+ {%- elif message['content'] is not none -%}
70
+ {{render_content(message)}}
71
+ {%- endif -%}
72
+ <|im_end|>
73
+ {%- endfor -%}
74
+
75
+ {%- for message in suffix_msgs -%}
76
+ {{set_roles(message)}}
77
+ {%- if message['role'] == 'assistant' -%}
78
+ {%- set rc = message.get('reasoning_content', '') -%}
79
+ <think>{{rc}}</think>{{render_content(message)}}
80
+ {%- if message.get('tool_calls') -%}
81
+ {{render_toolcalls(message)}}
82
+ {%- endif -%}
83
+ {%- elif message['role'] == 'tool' -%}
84
+ {%- set tool_call_id = message.tool_call_id -%}
85
+ ## Return of {{ tool_call_id }}
86
+ {{render_content(message)}}
87
+ {%- elif message['content'] is not none -%}
88
+ {{render_content(message)}}
89
+ {%- endif -%}
90
+ <|im_end|>
91
+ {%- endfor -%}
92
+
93
+
94
+ {%- if add_generation_prompt -%}
95
+ <|im_assistant|>assistant<|im_middle|>
96
+ {%- endif -%}
config.json ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": false,
3
+ "architectures": [
4
+ "DeepseekV3ForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_deepseek.DeepseekV3Config",
10
+ "AutoModel": "modeling_deepseek.DeepseekV3Model",
11
+ "AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"
12
+ },
13
+ "aux_loss_alpha": 0.001,
14
+ "bos_token_id": 163584,
15
+ "dtype": "bfloat16",
16
+ "eos_token_id": 163586,
17
+ "ep_size": 1,
18
+ "first_k_dense_replace": 1,
19
+ "hidden_act": "silu",
20
+ "hidden_size": 7168,
21
+ "initializer_range": 0.02,
22
+ "intermediate_size": 18432,
23
+ "kv_lora_rank": 512,
24
+ "max_position_embeddings": 262144,
25
+ "model_type": "deepseek_v3",
26
+ "moe_intermediate_size": 2048,
27
+ "moe_layer_freq": 1,
28
+ "n_group": 1,
29
+ "n_routed_experts": 384,
30
+ "n_shared_experts": 1,
31
+ "norm_topk_prob": true,
32
+ "num_attention_heads": 64,
33
+ "num_experts_per_tok": 8,
34
+ "num_hidden_layers": 61,
35
+ "num_key_value_heads": 64,
36
+ "num_nextn_predict_layers": 0,
37
+ "pad_token_id": 163839,
38
+ "pretraining_tp": 1,
39
+ "q_lora_rank": 1536,
40
+ "qk_nope_head_dim": 128,
41
+ "qk_rope_head_dim": 64,
42
+ "rms_norm_eps": 1e-05,
43
+ "rope_scaling": {
44
+ "beta_fast": 1.0,
45
+ "beta_slow": 1.0,
46
+ "factor": 64.0,
47
+ "mscale": 1.0,
48
+ "mscale_all_dim": 1.0,
49
+ "original_max_position_embeddings": 4096,
50
+ "type": "yarn"
51
+ },
52
+ "rope_theta": 50000.0,
53
+ "routed_scaling_factor": 2.827,
54
+ "scoring_func": "sigmoid",
55
+ "seq_aux": true,
56
+ "tie_word_embeddings": false,
57
+ "topk_group": 1,
58
+ "topk_method": "noaux_tc",
59
+ "transformers_version": "4.57.1",
60
+ "use_cache": true,
61
+ "v_head_dim": 128,
62
+ "vocab_size": 163840,
63
+ "quantization_config": {
64
+ "config_groups": {
65
+ "group_0": {
66
+ "input_activations": {
67
+ "dynamic": false,
68
+ "num_bits": 4,
69
+ "type": "float",
70
+ "group_size": 16
71
+ },
72
+ "weights": {
73
+ "dynamic": false,
74
+ "num_bits": 4,
75
+ "type": "float",
76
+ "group_size": 16
77
+ },
78
+ "targets": [
79
+ "Linear"
80
+ ]
81
+ }
82
+ },
83
+ "ignore": [
84
+ "lm_head",
85
+ "model.layers.0*",
86
+ "model.layers.1.mlp.shared_experts*",
87
+ "model.layers.1.self_attn*",
88
+ "model.layers.10.mlp.shared_experts*",
89
+ "model.layers.10.self_attn*",
90
+ "model.layers.11.mlp.shared_experts*",
91
+ "model.layers.11.self_attn*",
92
+ "model.layers.12.mlp.shared_experts*",
93
+ "model.layers.12.self_attn*",
94
+ "model.layers.13.mlp.shared_experts*",
95
+ "model.layers.13.self_attn*",
96
+ "model.layers.14.mlp.shared_experts*",
97
+ "model.layers.14.self_attn*",
98
+ "model.layers.15.mlp.shared_experts*",
99
+ "model.layers.15.self_attn*",
100
+ "model.layers.16.mlp.shared_experts*",
101
+ "model.layers.16.self_attn*",
102
+ "model.layers.17.mlp.shared_experts*",
103
+ "model.layers.17.self_attn*",
104
+ "model.layers.18.mlp.shared_experts*",
105
+ "model.layers.18.self_attn*",
106
+ "model.layers.19.mlp.shared_experts*",
107
+ "model.layers.19.self_attn*",
108
+ "model.layers.2.mlp.shared_experts*",
109
+ "model.layers.2.self_attn*",
110
+ "model.layers.20.mlp.shared_experts*",
111
+ "model.layers.20.self_attn*",
112
+ "model.layers.21.mlp.shared_experts*",
113
+ "model.layers.21.self_attn*",
114
+ "model.layers.22.mlp.shared_experts*",
115
+ "model.layers.22.self_attn*",
116
+ "model.layers.23.mlp.shared_experts*",
117
+ "model.layers.23.self_attn*",
118
+ "model.layers.24.mlp.shared_experts*",
119
+ "model.layers.24.self_attn*",
120
+ "model.layers.25.mlp.shared_experts*",
121
+ "model.layers.25.self_attn*",
122
+ "model.layers.26.mlp.shared_experts*",
123
+ "model.layers.26.self_attn*",
124
+ "model.layers.27.mlp.shared_experts*",
125
+ "model.layers.27.self_attn*",
126
+ "model.layers.28.mlp.shared_experts*",
127
+ "model.layers.28.self_attn*",
128
+ "model.layers.29.mlp.shared_experts*",
129
+ "model.layers.29.self_attn*",
130
+ "model.layers.3.mlp.shared_experts*",
131
+ "model.layers.3.self_attn*",
132
+ "model.layers.30.mlp.shared_experts*",
133
+ "model.layers.30.self_attn*",
134
+ "model.layers.31.mlp.shared_experts*",
135
+ "model.layers.31.self_attn*",
136
+ "model.layers.32.mlp.shared_experts*",
137
+ "model.layers.32.self_attn*",
138
+ "model.layers.33.mlp.shared_experts*",
139
+ "model.layers.33.self_attn*",
140
+ "model.layers.34.mlp.shared_experts*",
141
+ "model.layers.34.self_attn*",
142
+ "model.layers.35.mlp.shared_experts*",
143
+ "model.layers.35.self_attn*",
144
+ "model.layers.36.mlp.shared_experts*",
145
+ "model.layers.36.self_attn*",
146
+ "model.layers.37.mlp.shared_experts*",
147
+ "model.layers.37.self_attn*",
148
+ "model.layers.38.mlp.shared_experts*",
149
+ "model.layers.38.self_attn*",
150
+ "model.layers.39.mlp.shared_experts*",
151
+ "model.layers.39.self_attn*",
152
+ "model.layers.4.mlp.shared_experts*",
153
+ "model.layers.4.self_attn*",
154
+ "model.layers.40.mlp.shared_experts*",
155
+ "model.layers.40.self_attn*",
156
+ "model.layers.41.mlp.shared_experts*",
157
+ "model.layers.41.self_attn*",
158
+ "model.layers.42.mlp.shared_experts*",
159
+ "model.layers.42.self_attn*",
160
+ "model.layers.43.mlp.shared_experts*",
161
+ "model.layers.43.self_attn*",
162
+ "model.layers.44.mlp.shared_experts*",
163
+ "model.layers.44.self_attn*",
164
+ "model.layers.45.mlp.shared_experts*",
165
+ "model.layers.45.self_attn*",
166
+ "model.layers.46.mlp.shared_experts*",
167
+ "model.layers.46.self_attn*",
168
+ "model.layers.47.mlp.shared_experts*",
169
+ "model.layers.47.self_attn*",
170
+ "model.layers.48.mlp.shared_experts*",
171
+ "model.layers.48.self_attn*",
172
+ "model.layers.49.mlp.shared_experts*",
173
+ "model.layers.49.self_attn*",
174
+ "model.layers.5.mlp.shared_experts*",
175
+ "model.layers.5.self_attn*",
176
+ "model.layers.50.mlp.shared_experts*",
177
+ "model.layers.50.self_attn*",
178
+ "model.layers.51.mlp.shared_experts*",
179
+ "model.layers.51.self_attn*",
180
+ "model.layers.52.mlp.shared_experts*",
181
+ "model.layers.52.self_attn*",
182
+ "model.layers.53.mlp.shared_experts*",
183
+ "model.layers.53.self_attn*",
184
+ "model.layers.54.mlp.shared_experts*",
185
+ "model.layers.54.self_attn*",
186
+ "model.layers.55.mlp.shared_experts*",
187
+ "model.layers.55.self_attn*",
188
+ "model.layers.56.mlp.shared_experts*",
189
+ "model.layers.56.self_attn*",
190
+ "model.layers.57.mlp.shared_experts*",
191
+ "model.layers.57.self_attn*",
192
+ "model.layers.58.mlp.shared_experts*",
193
+ "model.layers.58.self_attn*",
194
+ "model.layers.59.mlp.shared_experts*",
195
+ "model.layers.59.self_attn*",
196
+ "model.layers.6.mlp.shared_experts*",
197
+ "model.layers.6.self_attn*",
198
+ "model.layers.60.mlp.shared_experts*",
199
+ "model.layers.60.self_attn*",
200
+ "model.layers.7.mlp.shared_experts*",
201
+ "model.layers.7.self_attn*",
202
+ "model.layers.8.mlp.shared_experts*",
203
+ "model.layers.8.self_attn*",
204
+ "model.layers.9.mlp.shared_experts*",
205
+ "model.layers.9.self_attn*"
206
+ ],
207
+ "quant_algo": "NVFP4",
208
+ "kv_cache_scheme": {
209
+ "dynamic": false,
210
+ "num_bits": 8,
211
+ "type": "float"
212
+ },
213
+ "producer": {
214
+ "name": "modelopt",
215
+ "version": "0.40.0.dev66+gbe64f6b1d.d20251119"
216
+ },
217
+ "quant_method": "modelopt"
218
+ }
219
+ }
configuration_deepseek.py ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copy from https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/configuration_deepseek.py
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.utils import logging
5
+
6
+ logger = logging.get_logger(__name__)
7
+
8
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
9
+ class DeepseekV3Config(PretrainedConfig):
10
+ r"""
11
+ This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
12
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
13
+ defaults will yield a similar configuration to that of the DeepSeek-V3.
14
+
15
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
16
+ documentation from [`PretrainedConfig`] for more information.
17
+
18
+
19
+ Args:
20
+ vocab_size (`int`, *optional*, defaults to 129280):
21
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
22
+ `inputs_ids` passed when calling [`DeepseekV3Model`]
23
+ hidden_size (`int`, *optional*, defaults to 4096):
24
+ Dimension of the hidden representations.
25
+ intermediate_size (`int`, *optional*, defaults to 11008):
26
+ Dimension of the MLP representations.
27
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
28
+ Dimension of the MoE representations.
29
+ num_hidden_layers (`int`, *optional*, defaults to 32):
30
+ Number of hidden layers in the Transformer decoder.
31
+ num_nextn_predict_layers (`int`, *optional*, defaults to 1):
32
+ Number of nextn predict layers in the DeepSeekV3 Model.
33
+ num_attention_heads (`int`, *optional*, defaults to 32):
34
+ Number of attention heads for each attention layer in the Transformer decoder.
35
+ n_shared_experts (`int`, *optional*, defaults to None):
36
+ Number of shared experts, None means dense model.
37
+ n_routed_experts (`int`, *optional*, defaults to None):
38
+ Number of routed experts, None means dense model.
39
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
40
+ Scaling factor or routed experts.
41
+ topk_method (`str`, *optional*, defaults to `gready`):
42
+ Topk method used in routed gate.
43
+ n_group (`int`, *optional*, defaults to None):
44
+ Number of groups for routed experts.
45
+ topk_group (`int`, *optional*, defaults to None):
46
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
47
+ num_experts_per_tok (`int`, *optional*, defaults to None):
48
+ Number of selected experts, None means dense model.
49
+ moe_layer_freq (`int`, *optional*, defaults to 1):
50
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
51
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
52
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
53
+ \--k dense layers--/
54
+ norm_topk_prob (`bool`, *optional*, defaults to False):
55
+ Whether to normalize the weights of the routed experts.
56
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
57
+ Method of computing expert weights.
58
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
59
+ Auxiliary loss weight coefficient.
60
+ seq_aux = (`bool`, *optional*, defaults to True):
61
+ Whether to compute the auxiliary loss for each individual sample.
62
+ num_key_value_heads (`int`, *optional*):
63
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
64
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
65
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
66
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
67
+ by meanpooling all the original heads within that group. For more details checkout [this
68
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
69
+ `num_attention_heads`.
70
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
71
+ The non-linear activation function (function or string) in the decoder.
72
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
73
+ The maximum sequence length that this model might ever be used with.
74
+ initializer_range (`float`, *optional*, defaults to 0.02):
75
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
76
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
77
+ The epsilon used by the rms normalization layers.
78
+ use_cache (`bool`, *optional*, defaults to `True`):
79
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
80
+ relevant if `config.is_decoder=True`.
81
+ pad_token_id (`int`, *optional*):
82
+ Padding token id.
83
+ bos_token_id (`int`, *optional*, defaults to 1):
84
+ Beginning of stream token id.
85
+ eos_token_id (`int`, *optional*, defaults to 2):
86
+ End of stream token id.
87
+ pretraining_tp (`int`, *optional*, defaults to 1):
88
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
89
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
90
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
91
+ issue](https://github.com/pytorch/pytorch/issues/76232).
92
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
93
+ Whether to tie weight embeddings
94
+ rope_theta (`float`, *optional*, defaults to 10000.0):
95
+ The base period of the RoPE embeddings.
96
+ rope_scaling (`Dict`, *optional*):
97
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
98
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
99
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
100
+ `max_position_embeddings` to the expected new maximum.
101
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
102
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
103
+ attention_dropout (`float`, *optional*, defaults to 0.0):
104
+ The dropout ratio for the attention probabilities.
105
+
106
+ ```python
107
+ >>> from transformers import DeepseekV3Model, DeepseekV3Config
108
+
109
+ >>> # Initializing a Deepseek-V3 style configuration
110
+ >>> configuration = DeepseekV3Config()
111
+
112
+ >>> # Accessing the model configuration
113
+ >>> configuration = model.config
114
+ ```"""
115
+
116
+ model_type = "deepseek_v3"
117
+ keys_to_ignore_at_inference = ["past_key_values"]
118
+
119
+ def __init__(
120
+ self,
121
+ vocab_size=129280,
122
+ hidden_size=7168,
123
+ intermediate_size=18432,
124
+ moe_intermediate_size = 2048,
125
+ num_hidden_layers=61,
126
+ num_nextn_predict_layers=1,
127
+ num_attention_heads=128,
128
+ num_key_value_heads=128,
129
+ n_shared_experts = 1,
130
+ n_routed_experts = 256,
131
+ ep_size = 1,
132
+ routed_scaling_factor = 2.5,
133
+ kv_lora_rank = 512,
134
+ q_lora_rank = 1536,
135
+ qk_rope_head_dim = 64,
136
+ v_head_dim = 128,
137
+ qk_nope_head_dim = 128,
138
+ topk_method = 'noaux_tc',
139
+ n_group = 8,
140
+ topk_group = 4,
141
+ num_experts_per_tok = 8,
142
+ moe_layer_freq = 1,
143
+ first_k_dense_replace = 3,
144
+ norm_topk_prob = True,
145
+ scoring_func = 'sigmoid',
146
+ aux_loss_alpha = 0.001,
147
+ seq_aux = True,
148
+ hidden_act="silu",
149
+ max_position_embeddings=4096,
150
+ initializer_range=0.02,
151
+ rms_norm_eps=1e-6,
152
+ use_cache=True,
153
+ pad_token_id=None,
154
+ bos_token_id=0,
155
+ eos_token_id=1,
156
+ pretraining_tp=1,
157
+ tie_word_embeddings=False,
158
+ rope_theta=10000.0,
159
+ rope_scaling=None,
160
+ attention_bias=False,
161
+ attention_dropout=0.0,
162
+ **kwargs,
163
+ ):
164
+ self.vocab_size = vocab_size
165
+ self.max_position_embeddings = max_position_embeddings
166
+ self.hidden_size = hidden_size
167
+ self.intermediate_size = intermediate_size
168
+ self.moe_intermediate_size = moe_intermediate_size
169
+ self.num_hidden_layers = num_hidden_layers
170
+ self.num_nextn_predict_layers = num_nextn_predict_layers
171
+ self.num_attention_heads = num_attention_heads
172
+ self.n_shared_experts = n_shared_experts
173
+ self.n_routed_experts = n_routed_experts
174
+ self.ep_size = ep_size
175
+ self.routed_scaling_factor = routed_scaling_factor
176
+ self.kv_lora_rank = kv_lora_rank
177
+ self.q_lora_rank = q_lora_rank
178
+ self.qk_rope_head_dim = qk_rope_head_dim
179
+ self.v_head_dim = v_head_dim
180
+ self.qk_nope_head_dim = qk_nope_head_dim
181
+ self.topk_method = topk_method
182
+ self.n_group = n_group
183
+ self.topk_group = topk_group
184
+ self.num_experts_per_tok = num_experts_per_tok
185
+ self.moe_layer_freq = moe_layer_freq
186
+ self.first_k_dense_replace = first_k_dense_replace
187
+ self.norm_topk_prob = norm_topk_prob
188
+ self.scoring_func = scoring_func
189
+ self.aux_loss_alpha = aux_loss_alpha
190
+ self.seq_aux = seq_aux
191
+ # for backward compatibility
192
+ if num_key_value_heads is None:
193
+ num_key_value_heads = num_attention_heads
194
+
195
+ self.num_key_value_heads = num_key_value_heads
196
+ self.hidden_act = hidden_act
197
+ self.initializer_range = initializer_range
198
+ self.rms_norm_eps = rms_norm_eps
199
+ self.pretraining_tp = pretraining_tp
200
+ self.use_cache = use_cache
201
+ self.rope_theta = rope_theta
202
+ self.rope_scaling = rope_scaling
203
+ self.attention_bias = attention_bias
204
+ self.attention_dropout = attention_dropout
205
+
206
+ super().__init__(
207
+ pad_token_id=pad_token_id,
208
+ bos_token_id=bos_token_id,
209
+ eos_token_id=eos_token_id,
210
+ tie_word_embeddings=tie_word_embeddings,
211
+ **kwargs,
212
+ )
generation_config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "eos_token_id": 163586,
3
+ "max_length": 262144,
4
+ "transformers_version": "4.57.1"
5
+ }
hf_quant_config.json ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "producer": {
3
+ "name": "modelopt",
4
+ "version": "0.40.0.dev66+gbe64f6b1d.d20251119"
5
+ },
6
+ "quantization": {
7
+ "quant_algo": "NVFP4",
8
+ "kv_cache_quant_algo": "FP8",
9
+ "group_size": 16,
10
+ "exclude_modules": [
11
+ "lm_head",
12
+ "model.layers.0*",
13
+ "model.layers.1.mlp.shared_experts*",
14
+ "model.layers.1.self_attn*",
15
+ "model.layers.10.mlp.shared_experts*",
16
+ "model.layers.10.self_attn*",
17
+ "model.layers.11.mlp.shared_experts*",
18
+ "model.layers.11.self_attn*",
19
+ "model.layers.12.mlp.shared_experts*",
20
+ "model.layers.12.self_attn*",
21
+ "model.layers.13.mlp.shared_experts*",
22
+ "model.layers.13.self_attn*",
23
+ "model.layers.14.mlp.shared_experts*",
24
+ "model.layers.14.self_attn*",
25
+ "model.layers.15.mlp.shared_experts*",
26
+ "model.layers.15.self_attn*",
27
+ "model.layers.16.mlp.shared_experts*",
28
+ "model.layers.16.self_attn*",
29
+ "model.layers.17.mlp.shared_experts*",
30
+ "model.layers.17.self_attn*",
31
+ "model.layers.18.mlp.shared_experts*",
32
+ "model.layers.18.self_attn*",
33
+ "model.layers.19.mlp.shared_experts*",
34
+ "model.layers.19.self_attn*",
35
+ "model.layers.2.mlp.shared_experts*",
36
+ "model.layers.2.self_attn*",
37
+ "model.layers.20.mlp.shared_experts*",
38
+ "model.layers.20.self_attn*",
39
+ "model.layers.21.mlp.shared_experts*",
40
+ "model.layers.21.self_attn*",
41
+ "model.layers.22.mlp.shared_experts*",
42
+ "model.layers.22.self_attn*",
43
+ "model.layers.23.mlp.shared_experts*",
44
+ "model.layers.23.self_attn*",
45
+ "model.layers.24.mlp.shared_experts*",
46
+ "model.layers.24.self_attn*",
47
+ "model.layers.25.mlp.shared_experts*",
48
+ "model.layers.25.self_attn*",
49
+ "model.layers.26.mlp.shared_experts*",
50
+ "model.layers.26.self_attn*",
51
+ "model.layers.27.mlp.shared_experts*",
52
+ "model.layers.27.self_attn*",
53
+ "model.layers.28.mlp.shared_experts*",
54
+ "model.layers.28.self_attn*",
55
+ "model.layers.29.mlp.shared_experts*",
56
+ "model.layers.29.self_attn*",
57
+ "model.layers.3.mlp.shared_experts*",
58
+ "model.layers.3.self_attn*",
59
+ "model.layers.30.mlp.shared_experts*",
60
+ "model.layers.30.self_attn*",
61
+ "model.layers.31.mlp.shared_experts*",
62
+ "model.layers.31.self_attn*",
63
+ "model.layers.32.mlp.shared_experts*",
64
+ "model.layers.32.self_attn*",
65
+ "model.layers.33.mlp.shared_experts*",
66
+ "model.layers.33.self_attn*",
67
+ "model.layers.34.mlp.shared_experts*",
68
+ "model.layers.34.self_attn*",
69
+ "model.layers.35.mlp.shared_experts*",
70
+ "model.layers.35.self_attn*",
71
+ "model.layers.36.mlp.shared_experts*",
72
+ "model.layers.36.self_attn*",
73
+ "model.layers.37.mlp.shared_experts*",
74
+ "model.layers.37.self_attn*",
75
+ "model.layers.38.mlp.shared_experts*",
76
+ "model.layers.38.self_attn*",
77
+ "model.layers.39.mlp.shared_experts*",
78
+ "model.layers.39.self_attn*",
79
+ "model.layers.4.mlp.shared_experts*",
80
+ "model.layers.4.self_attn*",
81
+ "model.layers.40.mlp.shared_experts*",
82
+ "model.layers.40.self_attn*",
83
+ "model.layers.41.mlp.shared_experts*",
84
+ "model.layers.41.self_attn*",
85
+ "model.layers.42.mlp.shared_experts*",
86
+ "model.layers.42.self_attn*",
87
+ "model.layers.43.mlp.shared_experts*",
88
+ "model.layers.43.self_attn*",
89
+ "model.layers.44.mlp.shared_experts*",
90
+ "model.layers.44.self_attn*",
91
+ "model.layers.45.mlp.shared_experts*",
92
+ "model.layers.45.self_attn*",
93
+ "model.layers.46.mlp.shared_experts*",
94
+ "model.layers.46.self_attn*",
95
+ "model.layers.47.mlp.shared_experts*",
96
+ "model.layers.47.self_attn*",
97
+ "model.layers.48.mlp.shared_experts*",
98
+ "model.layers.48.self_attn*",
99
+ "model.layers.49.mlp.shared_experts*",
100
+ "model.layers.49.self_attn*",
101
+ "model.layers.5.mlp.shared_experts*",
102
+ "model.layers.5.self_attn*",
103
+ "model.layers.50.mlp.shared_experts*",
104
+ "model.layers.50.self_attn*",
105
+ "model.layers.51.mlp.shared_experts*",
106
+ "model.layers.51.self_attn*",
107
+ "model.layers.52.mlp.shared_experts*",
108
+ "model.layers.52.self_attn*",
109
+ "model.layers.53.mlp.shared_experts*",
110
+ "model.layers.53.self_attn*",
111
+ "model.layers.54.mlp.shared_experts*",
112
+ "model.layers.54.self_attn*",
113
+ "model.layers.55.mlp.shared_experts*",
114
+ "model.layers.55.self_attn*",
115
+ "model.layers.56.mlp.shared_experts*",
116
+ "model.layers.56.self_attn*",
117
+ "model.layers.57.mlp.shared_experts*",
118
+ "model.layers.57.self_attn*",
119
+ "model.layers.58.mlp.shared_experts*",
120
+ "model.layers.58.self_attn*",
121
+ "model.layers.59.mlp.shared_experts*",
122
+ "model.layers.59.self_attn*",
123
+ "model.layers.6.mlp.shared_experts*",
124
+ "model.layers.6.self_attn*",
125
+ "model.layers.60.mlp.shared_experts*",
126
+ "model.layers.60.self_attn*",
127
+ "model.layers.7.mlp.shared_experts*",
128
+ "model.layers.7.self_attn*",
129
+ "model.layers.8.mlp.shared_experts*",
130
+ "model.layers.8.self_attn*",
131
+ "model.layers.9.mlp.shared_experts*",
132
+ "model.layers.9.self_attn*"
133
+ ]
134
+ }
135
+ }
model-00001-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0065c2ded569519c0b800245c7ac5dabbee794c660c19fb0434c246f8c89af39
3
+ size 4999471752
model-00002-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c898b8b06b51a18c9eac7d3d34cbdc419f15be07a8c8d09d3ffe5c5c4af5c5b3
3
+ size 4996099728
model-00003-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1789d63d20f95e791730a3164491cc9c9a9d88cf319839c69a57a6caad7c4961
3
+ size 4994675824
model-00004-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17c566d943a52889b51ad80ab3b51450b004d2821d57b0d75c1a76597c94ae68
3
+ size 4996099808
model-00005-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e620c071a2ff20ddbb0fb5102c788a0a9319386ef69088f5f3689cbdc5f8784
3
+ size 4994675744
model-00006-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1848b2b37a91dbe73f6517737367c767e6c744ba6ce5fbdd7400da88a295386
3
+ size 4996099896
model-00007-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1709bd5d9a85e059dbdf9e853292bab3dbae83620dbf959f80f7792829ccc49d
3
+ size 4994675648
model-00008-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68ae1ec90815c73326255692c749336d8e2445cd59b0a686314bb156656e5277
3
+ size 4996099992
model-00009-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34d982ef0577772766bdef2850ab7897aef49847e64f44d75510b4da89a518a8
3
+ size 4994675560
model-00010-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:594cb42695e282b92a6617a0725be7419fc29b5feed74669548928f3bc059b06
3
+ size 4996100072
model-00011-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69930f460407d09827005794ef32f1dbc3b410397113b6c0405fb7b564221127
3
+ size 4994675480
model-00012-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:260a8b9d974591b59ff64677d1c96249bf3c596f7ed6997b6cb1950b14be7990
3
+ size 4996100160
model-00013-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba0fb566f566874f46e820c4b02c46c3e3b8aa6429f3ef57de97190a992e43b6
3
+ size 4994675416
model-00014-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75879f08917a21bf874be5c896ff21bbc8239650ba71cf185eba154a283b9141
3
+ size 4996100224
model-00015-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49c21ba4702a91ef74105d8af0b55f50987787839d2b11680a6caa05424cca1d
3
+ size 4994675416
model-00016-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef51064876412b2482e4cbecc2109f75cb25eba16f25501c0813d0a95005dcdd
3
+ size 4996100216
model-00017-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db4e7964f19818e294e2ea1ed6e445a7751120f9daf48ff41a33253a4616d51d
3
+ size 4994675424
model-00018-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f211a299d7e5b2ea3d327954d6d1e6cd5012bf88a51b08dbb7965250275e70c
3
+ size 4996100216
model-00019-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04d907c7ad5312354dfd2d477c936638b62881723efd32249108bafaf77feaad
3
+ size 4994676936
model-00020-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40375f900fac3e70c84e69639e0a1fe479a8c6fa218231bba663cf5a94fdbfe6
3
+ size 4996102640
model-00021-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ba303a440792ab37a51151e485887608b90567390a00026cfd47e3282645839
3
+ size 4994677704
model-00022-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8c89f011829c7d575599e1ce55016d897cb8cb856ae4fcdc835980dfad9d64d
3
+ size 4996102632
model-00023-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de2ef499a7a739075c70781ca5cbfc162b7670290fcf1326b574a6332aac12e9
3
+ size 4994677712
model-00024-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b83ce76babcce707e80be70f9d2b9a2da8062427e53150ef206663b061764fa5
3
+ size 4996102632
model-00025-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caa89edd59ed5045f912860890c6b7db34c2e48d0ff20dd366aa64899b80ef9d
3
+ size 4994677704
model-00026-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:935b66202811d8c575209f45ee726f46ec8758c5a252305e49835896bb958a77
3
+ size 4996102640
model-00027-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:312bac8c5f3e45a31ed8c11bbbd2715099e60ae5a477928ead04aff1d24d3def
3
+ size 4994677704
model-00028-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3679dc57662dbf5f4d5e2874c4fffe2474642e810de7630c0baf4152a0ab6341
3
+ size 4996102632
model-00029-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b2ef7b6edfb64c5ef3b831831a2efe5a1ae52ffdd9c5c1e45e2f539a2a0d388
3
+ size 4994677712
model-00030-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71a2043916fce2cf824b2e4551fb5833ed95b3ec323f62ae9a98c921ddb1876b
3
+ size 4996102632
model-00031-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:312da86b41f1070e56f6e233a5572db67c8e509781e1307dd39fe93cc2a201d9
3
+ size 4994677704
model-00032-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf310f065b50c64a51f4938113aa5c831ff9a15ea52a77f1ae7be6809285510d
3
+ size 4996102640
model-00033-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ceeeddb974a738246a07949d1155b4882adec914a252196473ce326b9f68b8f
3
+ size 4994677704
model-00034-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28b4d2c3ec16ffa2ad884728fdd57dbed149ca5354920ac365b604716045125c
3
+ size 4996102632
model-00035-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:349e755fd0f37ae43af44a36f116ce523c4db512e290f2e84c46153864c25b7f
3
+ size 4994677712
model-00036-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb2f8944925eadd3ae5b6053f9446cdc63d6d87f047818967700eecb0dc36a50
3
+ size 4976834600
model-00037-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26ff24de45eb025b8602c08fc74fda6be3ee3f73d293ae239e4c2e3136e13e54
3
+ size 4997429720
model-00038-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad91ed25976754a7d159a8f5c32715023215e5d3e722b84bc5ea3cd00b0c5c0
3
+ size 4984592456
model-00039-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cc7524fe27ba7b8ca433514875c444af83005f30d8e568d91f9935e2be722c2
3
+ size 4997930104
model-00040-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2820f62e17e5dd6ed35271c60c982f72ac89982eeed8eef71dfde65002d9584
3
+ size 4994678960
model-00041-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19e9f8c97a65a0569802ac3b70e0e6a51e6733afc7b1a6e1bf349ea22e669af5
3
+ size 4996101384
model-00042-of-00119.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a50ea606d235edd493f59a5bf321027394c85961503ad1e95982661deb52a4fe
3
+ size 4994678784