first
Browse files- README.md +10 -0
- config.json +193 -0
- generation_config.json +8 -0
- preprocessor_config.json +26 -0
- pytorch_model.bin +3 -0
- remove-donut-tokens.ipynb +1314 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +9 -0
- tokenizer_config.json +20 -0
README.md
CHANGED
|
@@ -1,3 +1,13 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
| 4 |
+
|
| 5 |
+
# donut-base-ascii
|
| 6 |
+
|
| 7 |
+
This is `"naver-clova-ix/donut-base"` but with all non-ascii tokens removed. This means the model is good for basic English use cases where the text is primarily a-zA-Z0-9 and basic punctuation.
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
The original model, `"naver-clova-ix/donut-base"`, did not have a token for `"1"`, so that has also been added. The notebook remove-donut-tokens.ipynb details the whole process.
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
This has not been trained any more than the original model.
|
config.json
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_commit_hash": "a959cf33c20e09215873e338299c900f57047c61",
|
| 3 |
+
"_name_or_path": "naver-clova-ix/donut-base",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"VisionEncoderDecoderModel"
|
| 6 |
+
],
|
| 7 |
+
"decoder": {
|
| 8 |
+
"_name_or_path": "",
|
| 9 |
+
"activation_dropout": 0.0,
|
| 10 |
+
"activation_function": "gelu",
|
| 11 |
+
"add_cross_attention": true,
|
| 12 |
+
"add_final_layer_norm": true,
|
| 13 |
+
"architectures": null,
|
| 14 |
+
"attention_dropout": 0.0,
|
| 15 |
+
"bad_words_ids": null,
|
| 16 |
+
"begin_suppress_tokens": null,
|
| 17 |
+
"bos_token_id": 0,
|
| 18 |
+
"chunk_size_feed_forward": 0,
|
| 19 |
+
"classifier_dropout": 0.0,
|
| 20 |
+
"cross_attention_hidden_size": null,
|
| 21 |
+
"d_model": 1024,
|
| 22 |
+
"decoder_attention_heads": 16,
|
| 23 |
+
"decoder_ffn_dim": 4096,
|
| 24 |
+
"decoder_layerdrop": 0.0,
|
| 25 |
+
"decoder_layers": 4,
|
| 26 |
+
"decoder_start_token_id": null,
|
| 27 |
+
"diversity_penalty": 0.0,
|
| 28 |
+
"do_sample": false,
|
| 29 |
+
"dropout": 0.1,
|
| 30 |
+
"early_stopping": false,
|
| 31 |
+
"encoder_attention_heads": 16,
|
| 32 |
+
"encoder_ffn_dim": 4096,
|
| 33 |
+
"encoder_layerdrop": 0.0,
|
| 34 |
+
"encoder_layers": 12,
|
| 35 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 36 |
+
"eos_token_id": 2,
|
| 37 |
+
"exponential_decay_length_penalty": null,
|
| 38 |
+
"finetuning_task": null,
|
| 39 |
+
"forced_bos_token_id": null,
|
| 40 |
+
"forced_eos_token_id": 2,
|
| 41 |
+
"id2label": {
|
| 42 |
+
"0": "LABEL_0",
|
| 43 |
+
"1": "LABEL_1"
|
| 44 |
+
},
|
| 45 |
+
"init_std": 0.02,
|
| 46 |
+
"is_decoder": true,
|
| 47 |
+
"is_encoder_decoder": false,
|
| 48 |
+
"label2id": {
|
| 49 |
+
"LABEL_0": 0,
|
| 50 |
+
"LABEL_1": 1
|
| 51 |
+
},
|
| 52 |
+
"length_penalty": 1.0,
|
| 53 |
+
"max_length": 20,
|
| 54 |
+
"max_position_embeddings": 1536,
|
| 55 |
+
"min_length": 0,
|
| 56 |
+
"model_type": "mbart",
|
| 57 |
+
"no_repeat_ngram_size": 0,
|
| 58 |
+
"num_beam_groups": 1,
|
| 59 |
+
"num_beams": 1,
|
| 60 |
+
"num_hidden_layers": 12,
|
| 61 |
+
"num_return_sequences": 1,
|
| 62 |
+
"output_attentions": false,
|
| 63 |
+
"output_hidden_states": false,
|
| 64 |
+
"output_scores": false,
|
| 65 |
+
"pad_token_id": 1,
|
| 66 |
+
"prefix": null,
|
| 67 |
+
"problem_type": null,
|
| 68 |
+
"pruned_heads": {},
|
| 69 |
+
"remove_invalid_values": false,
|
| 70 |
+
"repetition_penalty": 1.0,
|
| 71 |
+
"return_dict": true,
|
| 72 |
+
"return_dict_in_generate": false,
|
| 73 |
+
"scale_embedding": true,
|
| 74 |
+
"sep_token_id": null,
|
| 75 |
+
"suppress_tokens": null,
|
| 76 |
+
"task_specific_params": null,
|
| 77 |
+
"temperature": 1.0,
|
| 78 |
+
"tf_legacy_loss": false,
|
| 79 |
+
"tie_encoder_decoder": false,
|
| 80 |
+
"tie_word_embeddings": true,
|
| 81 |
+
"tokenizer_class": null,
|
| 82 |
+
"top_k": 50,
|
| 83 |
+
"top_p": 1.0,
|
| 84 |
+
"torch_dtype": null,
|
| 85 |
+
"torchscript": false,
|
| 86 |
+
"transformers_version": "4.31.0",
|
| 87 |
+
"typical_p": 1.0,
|
| 88 |
+
"use_bfloat16": false,
|
| 89 |
+
"use_cache": true,
|
| 90 |
+
"vocab_size": 27513
|
| 91 |
+
},
|
| 92 |
+
"encoder": {
|
| 93 |
+
"_name_or_path": "",
|
| 94 |
+
"add_cross_attention": false,
|
| 95 |
+
"architectures": null,
|
| 96 |
+
"attention_probs_dropout_prob": 0.0,
|
| 97 |
+
"bad_words_ids": null,
|
| 98 |
+
"begin_suppress_tokens": null,
|
| 99 |
+
"bos_token_id": null,
|
| 100 |
+
"chunk_size_feed_forward": 0,
|
| 101 |
+
"cross_attention_hidden_size": null,
|
| 102 |
+
"decoder_start_token_id": null,
|
| 103 |
+
"depths": [
|
| 104 |
+
2,
|
| 105 |
+
2,
|
| 106 |
+
14,
|
| 107 |
+
2
|
| 108 |
+
],
|
| 109 |
+
"diversity_penalty": 0.0,
|
| 110 |
+
"do_sample": false,
|
| 111 |
+
"drop_path_rate": 0.1,
|
| 112 |
+
"early_stopping": false,
|
| 113 |
+
"embed_dim": 128,
|
| 114 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 115 |
+
"eos_token_id": null,
|
| 116 |
+
"exponential_decay_length_penalty": null,
|
| 117 |
+
"finetuning_task": null,
|
| 118 |
+
"forced_bos_token_id": null,
|
| 119 |
+
"forced_eos_token_id": null,
|
| 120 |
+
"hidden_act": "gelu",
|
| 121 |
+
"hidden_dropout_prob": 0.0,
|
| 122 |
+
"hidden_size": 1024,
|
| 123 |
+
"id2label": {
|
| 124 |
+
"0": "LABEL_0",
|
| 125 |
+
"1": "LABEL_1"
|
| 126 |
+
},
|
| 127 |
+
"image_size": [
|
| 128 |
+
2560,
|
| 129 |
+
1920
|
| 130 |
+
],
|
| 131 |
+
"initializer_range": 0.02,
|
| 132 |
+
"is_decoder": false,
|
| 133 |
+
"is_encoder_decoder": false,
|
| 134 |
+
"label2id": {
|
| 135 |
+
"LABEL_0": 0,
|
| 136 |
+
"LABEL_1": 1
|
| 137 |
+
},
|
| 138 |
+
"layer_norm_eps": 1e-05,
|
| 139 |
+
"length_penalty": 1.0,
|
| 140 |
+
"max_length": 20,
|
| 141 |
+
"min_length": 0,
|
| 142 |
+
"mlp_ratio": 4.0,
|
| 143 |
+
"model_type": "donut-swin",
|
| 144 |
+
"no_repeat_ngram_size": 0,
|
| 145 |
+
"num_beam_groups": 1,
|
| 146 |
+
"num_beams": 1,
|
| 147 |
+
"num_channels": 3,
|
| 148 |
+
"num_heads": [
|
| 149 |
+
4,
|
| 150 |
+
8,
|
| 151 |
+
16,
|
| 152 |
+
32
|
| 153 |
+
],
|
| 154 |
+
"num_layers": 4,
|
| 155 |
+
"num_return_sequences": 1,
|
| 156 |
+
"output_attentions": false,
|
| 157 |
+
"output_hidden_states": false,
|
| 158 |
+
"output_scores": false,
|
| 159 |
+
"pad_token_id": null,
|
| 160 |
+
"patch_size": 4,
|
| 161 |
+
"path_norm": true,
|
| 162 |
+
"prefix": null,
|
| 163 |
+
"problem_type": null,
|
| 164 |
+
"pruned_heads": {},
|
| 165 |
+
"qkv_bias": true,
|
| 166 |
+
"remove_invalid_values": false,
|
| 167 |
+
"repetition_penalty": 1.0,
|
| 168 |
+
"return_dict": true,
|
| 169 |
+
"return_dict_in_generate": false,
|
| 170 |
+
"sep_token_id": null,
|
| 171 |
+
"suppress_tokens": null,
|
| 172 |
+
"task_specific_params": null,
|
| 173 |
+
"temperature": 1.0,
|
| 174 |
+
"tf_legacy_loss": false,
|
| 175 |
+
"tie_encoder_decoder": false,
|
| 176 |
+
"tie_word_embeddings": true,
|
| 177 |
+
"tokenizer_class": null,
|
| 178 |
+
"top_k": 50,
|
| 179 |
+
"top_p": 1.0,
|
| 180 |
+
"torch_dtype": null,
|
| 181 |
+
"torchscript": false,
|
| 182 |
+
"transformers_version": "4.31.0",
|
| 183 |
+
"typical_p": 1.0,
|
| 184 |
+
"use_absolute_embeddings": false,
|
| 185 |
+
"use_bfloat16": false,
|
| 186 |
+
"window_size": 10
|
| 187 |
+
},
|
| 188 |
+
"is_encoder_decoder": true,
|
| 189 |
+
"model_type": "vision-encoder-decoder",
|
| 190 |
+
"tie_word_embeddings": false,
|
| 191 |
+
"torch_dtype": "float32",
|
| 192 |
+
"transformers_version": null
|
| 193 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 0,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"forced_eos_token_id": 2,
|
| 6 |
+
"pad_token_id": 1,
|
| 7 |
+
"transformers_version": "4.31.0"
|
| 8 |
+
}
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_align_long_axis": true,
|
| 3 |
+
"do_normalize": true,
|
| 4 |
+
"do_pad": true,
|
| 5 |
+
"do_rescale": true,
|
| 6 |
+
"do_resize": true,
|
| 7 |
+
"do_thumbnail": true,
|
| 8 |
+
"image_mean": [
|
| 9 |
+
0.5,
|
| 10 |
+
0.5,
|
| 11 |
+
0.5
|
| 12 |
+
],
|
| 13 |
+
"image_processor_type": "DonutImageProcessor",
|
| 14 |
+
"image_std": [
|
| 15 |
+
0.5,
|
| 16 |
+
0.5,
|
| 17 |
+
0.5
|
| 18 |
+
],
|
| 19 |
+
"processor_class": "DonutProcessor",
|
| 20 |
+
"resample": 2,
|
| 21 |
+
"rescale_factor": 0.00392156862745098,
|
| 22 |
+
"size": {
|
| 23 |
+
"height": 2560,
|
| 24 |
+
"width": 1920
|
| 25 |
+
}
|
| 26 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fcab57be6038f4f02e4b6ad305715c3ef6adb262353424e53e06666228242512
|
| 3 |
+
size 686243033
|
remove-donut-tokens.ipynb
ADDED
|
@@ -0,0 +1,1314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {
|
| 7 |
+
"id": "IQxLmB8NW6pf"
|
| 8 |
+
},
|
| 9 |
+
"outputs": [],
|
| 10 |
+
"source": [
|
| 11 |
+
"from transformers import AutoTokenizer\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"model_name = \"naver-clova-ix/donut-base\"\n",
|
| 14 |
+
"\n",
|
| 15 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)"
|
| 16 |
+
]
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"cell_type": "code",
|
| 20 |
+
"execution_count": 2,
|
| 21 |
+
"metadata": {},
|
| 22 |
+
"outputs": [
|
| 23 |
+
{
|
| 24 |
+
"name": "stdout",
|
| 25 |
+
"output_type": "stream",
|
| 26 |
+
"text": [
|
| 27 |
+
"57525\n"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"data": {
|
| 32 |
+
"text/plain": [
|
| 33 |
+
"XLMRobertaTokenizerFast(name_or_path='naver-clova-ix/donut-base', vocab_size=57522, model_max_length=1000000000000000019884624838656, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'sep_token': '</s>', 'pad_token': '<pad>', 'cls_token': '<s>', 'mask_token': AddedToken(\"<mask>\", rstrip=False, lstrip=True, single_word=False, normalized=True), 'additional_special_tokens': ['<s_iitcdip>', '<s_synthdog>']}, clean_up_tokenization_spaces=True)"
|
| 34 |
+
]
|
| 35 |
+
},
|
| 36 |
+
"execution_count": 2,
|
| 37 |
+
"metadata": {},
|
| 38 |
+
"output_type": "execute_result"
|
| 39 |
+
}
|
| 40 |
+
],
|
| 41 |
+
"source": [
|
| 42 |
+
"tokenizer.save_pretrained(\"old_tokenizer\")\n",
|
| 43 |
+
"\n",
|
| 44 |
+
"print(len(tokenizer))\n",
|
| 45 |
+
"tokenizer"
|
| 46 |
+
]
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"cell_type": "markdown",
|
| 50 |
+
"metadata": {
|
| 51 |
+
"id": "Q8tn9ryurY2L"
|
| 52 |
+
},
|
| 53 |
+
"source": [
|
| 54 |
+
"# Modifying the sentencepiece file\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"\n",
|
| 57 |
+
"Reference: https://blog.ceshine.net/post/trim-down-sentencepiece-vocabulary/"
|
| 58 |
+
]
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"cell_type": "code",
|
| 62 |
+
"execution_count": 3,
|
| 63 |
+
"metadata": {
|
| 64 |
+
"colab": {
|
| 65 |
+
"base_uri": "https://localhost:8080/"
|
| 66 |
+
},
|
| 67 |
+
"id": "HDKf6E35pQ8F",
|
| 68 |
+
"outputId": "2f399f62-7796-463a-b0e1-59ec14357d2c"
|
| 69 |
+
},
|
| 70 |
+
"outputs": [
|
| 71 |
+
{
|
| 72 |
+
"data": {
|
| 73 |
+
"text/plain": [
|
| 74 |
+
"57520"
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
"execution_count": 3,
|
| 78 |
+
"metadata": {},
|
| 79 |
+
"output_type": "execute_result"
|
| 80 |
+
}
|
| 81 |
+
],
|
| 82 |
+
"source": [
|
| 83 |
+
"from transformers.convert_slow_tokenizer import import_protobuf\n",
|
| 84 |
+
"\n",
|
| 85 |
+
"model_pb2 = import_protobuf()\n",
|
| 86 |
+
"\n",
|
| 87 |
+
"m = model_pb2.ModelProto()\n",
|
| 88 |
+
"m.ParseFromString(open(\"./old_tokenizer/sentencepiece.bpe.model\", 'rb').read())\n",
|
| 89 |
+
"len(m.pieces)"
|
| 90 |
+
]
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"cell_type": "markdown",
|
| 94 |
+
"metadata": {
|
| 95 |
+
"id": "elf0xBimspjR"
|
| 96 |
+
},
|
| 97 |
+
"source": [
|
| 98 |
+
"Because m.pieces is a Protocol Buffers field, we can not merely point it to a new list. Instead, we need to use the field’s methods to manipulate its content:"
|
| 99 |
+
]
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"cell_type": "code",
|
| 103 |
+
"execution_count": 4,
|
| 104 |
+
"metadata": {
|
| 105 |
+
"id": "oXfLQmYwsavB"
|
| 106 |
+
},
|
| 107 |
+
"outputs": [],
|
| 108 |
+
"source": [
|
| 109 |
+
"kept_pieces = []\n",
|
| 110 |
+
"\n",
|
| 111 |
+
"\n",
|
| 112 |
+
"for p in m.pieces:\n",
|
| 113 |
+
"\n",
|
| 114 |
+
" # WRITE YOUR OWN RULE FOR WHAT TOKENS TO KEEP\n",
|
| 115 |
+
" if p.piece.lstrip(\"▁\").isascii():\n",
|
| 116 |
+
" kept_pieces.append(p)"
|
| 117 |
+
]
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"cell_type": "code",
|
| 121 |
+
"execution_count": 5,
|
| 122 |
+
"metadata": {},
|
| 123 |
+
"outputs": [],
|
| 124 |
+
"source": [
|
| 125 |
+
"i = 0\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"kept_tokens = set([x.piece for x in kept_pieces])\n",
|
| 128 |
+
"\n",
|
| 129 |
+
"# go backwards from end\n",
|
| 130 |
+
"# until at start\n",
|
| 131 |
+
"while i < len(m.pieces):\n",
|
| 132 |
+
" \n",
|
| 133 |
+
" idx = len(m.pieces) - i - 1\n",
|
| 134 |
+
"\n",
|
| 135 |
+
" if m.pieces[idx].piece not in kept_tokens:\n",
|
| 136 |
+
" m.pieces.pop(idx)\n",
|
| 137 |
+
" else:\n",
|
| 138 |
+
" i += 1\n"
|
| 139 |
+
]
|
| 140 |
+
},
|
| 141 |
+
{
|
| 142 |
+
"cell_type": "code",
|
| 143 |
+
"execution_count": 6,
|
| 144 |
+
"metadata": {},
|
| 145 |
+
"outputs": [
|
| 146 |
+
{
|
| 147 |
+
"data": {
|
| 148 |
+
"text/plain": [
|
| 149 |
+
"27510"
|
| 150 |
+
]
|
| 151 |
+
},
|
| 152 |
+
"execution_count": 6,
|
| 153 |
+
"metadata": {},
|
| 154 |
+
"output_type": "execute_result"
|
| 155 |
+
}
|
| 156 |
+
],
|
| 157 |
+
"source": [
|
| 158 |
+
"len(m.pieces)"
|
| 159 |
+
]
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"cell_type": "markdown",
|
| 163 |
+
"metadata": {},
|
| 164 |
+
"source": [
|
| 165 |
+
"# The Donut tokenizer doesn't have the \"1\" token\n",
|
| 166 |
+
"\n",
|
| 167 |
+
"It has tokens for \" 1\", \"10\", and \"1.1\", but certain scenarios result in the UNK token being used"
|
| 168 |
+
]
|
| 169 |
+
},
|
| 170 |
+
{
|
| 171 |
+
"cell_type": "code",
|
| 172 |
+
"execution_count": 7,
|
| 173 |
+
"metadata": {},
|
| 174 |
+
"outputs": [
|
| 175 |
+
{
|
| 176 |
+
"name": "stdout",
|
| 177 |
+
"output_type": "stream",
|
| 178 |
+
"text": [
|
| 179 |
+
"3\n"
|
| 180 |
+
]
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"data": {
|
| 184 |
+
"text/plain": [
|
| 185 |
+
"[0, 56881, 3, 2]"
|
| 186 |
+
]
|
| 187 |
+
},
|
| 188 |
+
"execution_count": 7,
|
| 189 |
+
"metadata": {},
|
| 190 |
+
"output_type": "execute_result"
|
| 191 |
+
}
|
| 192 |
+
],
|
| 193 |
+
"source": [
|
| 194 |
+
"print(tokenizer.unk_token_id)\n",
|
| 195 |
+
"\n",
|
| 196 |
+
"# This results in the token turning into an unknown token (3)\n",
|
| 197 |
+
"tokenizer(\">1\").input_ids"
|
| 198 |
+
]
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"cell_type": "code",
|
| 202 |
+
"execution_count": 8,
|
| 203 |
+
"metadata": {},
|
| 204 |
+
"outputs": [
|
| 205 |
+
{
|
| 206 |
+
"data": {
|
| 207 |
+
"text/plain": [
|
| 208 |
+
"[0, 39772, 3, 9447, 3, 54915, 3, 2]"
|
| 209 |
+
]
|
| 210 |
+
},
|
| 211 |
+
"execution_count": 8,
|
| 212 |
+
"metadata": {},
|
| 213 |
+
"output_type": "execute_result"
|
| 214 |
+
}
|
| 215 |
+
],
|
| 216 |
+
"source": [
|
| 217 |
+
"# Whenever a character is before the number 1, there is a decent chance the 1 will turn into UNK (id = 3)\n",
|
| 218 |
+
"tokenizer(\"10.1 )1 a1\").input_ids"
|
| 219 |
+
]
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"cell_type": "markdown",
|
| 223 |
+
"metadata": {},
|
| 224 |
+
"source": [
|
| 225 |
+
"## Adding 1 into the sentencepiece model"
|
| 226 |
+
]
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"cell_type": "code",
|
| 230 |
+
"execution_count": 9,
|
| 231 |
+
"metadata": {},
|
| 232 |
+
"outputs": [],
|
| 233 |
+
"source": [
|
| 234 |
+
"from copy import deepcopy\n",
|
| 235 |
+
"\n",
|
| 236 |
+
"# copy the last piece\n",
|
| 237 |
+
"piece1 = deepcopy(m.pieces[-1])\n",
|
| 238 |
+
"\n",
|
| 239 |
+
"# modify the values of the following variables\n",
|
| 240 |
+
"piece1.piece = \"1\"\n",
|
| 241 |
+
"piece1.score = -10\n",
|
| 242 |
+
"\n",
|
| 243 |
+
"# include it in the models list of pieces\n",
|
| 244 |
+
"m.pieces.extend([piece1])"
|
| 245 |
+
]
|
| 246 |
+
},
|
| 247 |
+
{
|
| 248 |
+
"cell_type": "code",
|
| 249 |
+
"execution_count": 10,
|
| 250 |
+
"metadata": {
|
| 251 |
+
"id": "OrQk2mvZKWg-"
|
| 252 |
+
},
|
| 253 |
+
"outputs": [],
|
| 254 |
+
"source": [
|
| 255 |
+
"# create temporary sentencepiece file\n",
|
| 256 |
+
"\n",
|
| 257 |
+
"with open(\"temp_sentencepiece.bpe.model\", 'wb') as f:\n",
|
| 258 |
+
" f.write(m.SerializeToString())"
|
| 259 |
+
]
|
| 260 |
+
},
|
| 261 |
+
{
|
| 262 |
+
"cell_type": "code",
|
| 263 |
+
"execution_count": 11,
|
| 264 |
+
"metadata": {},
|
| 265 |
+
"outputs": [],
|
| 266 |
+
"source": [
|
| 267 |
+
"from transformers import XLMRobertaTokenizer\n",
|
| 268 |
+
"\n",
|
| 269 |
+
"new_tokenizer = XLMRobertaTokenizer(vocab_file=\"temp_sentencepiece.bpe.model\")"
|
| 270 |
+
]
|
| 271 |
+
},
|
| 272 |
+
{
|
| 273 |
+
"cell_type": "code",
|
| 274 |
+
"execution_count": 12,
|
| 275 |
+
"metadata": {},
|
| 276 |
+
"outputs": [
|
| 277 |
+
{
|
| 278 |
+
"data": {
|
| 279 |
+
"text/plain": [
|
| 280 |
+
"(27513, 57525)"
|
| 281 |
+
]
|
| 282 |
+
},
|
| 283 |
+
"execution_count": 12,
|
| 284 |
+
"metadata": {},
|
| 285 |
+
"output_type": "execute_result"
|
| 286 |
+
}
|
| 287 |
+
],
|
| 288 |
+
"source": [
|
| 289 |
+
"len(new_tokenizer), len(tokenizer)"
|
| 290 |
+
]
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"cell_type": "code",
|
| 294 |
+
"execution_count": 13,
|
| 295 |
+
"metadata": {},
|
| 296 |
+
"outputs": [
|
| 297 |
+
{
|
| 298 |
+
"data": {
|
| 299 |
+
"text/plain": [
|
| 300 |
+
"('donut-base-ascii/tokenizer_config.json',\n",
|
| 301 |
+
" 'donut-base-ascii/special_tokens_map.json',\n",
|
| 302 |
+
" 'donut-base-ascii/sentencepiece.bpe.model',\n",
|
| 303 |
+
" 'donut-base-ascii/added_tokens.json')"
|
| 304 |
+
]
|
| 305 |
+
},
|
| 306 |
+
"execution_count": 13,
|
| 307 |
+
"metadata": {},
|
| 308 |
+
"output_type": "execute_result"
|
| 309 |
+
}
|
| 310 |
+
],
|
| 311 |
+
"source": [
|
| 312 |
+
"# the special tokens are in the model, but due to a quirk, they need to be added again\n",
|
| 313 |
+
"\n",
|
| 314 |
+
"new_tokenizer.add_special_tokens(new_tokenizer.special_tokens_map)\n",
|
| 315 |
+
"\n",
|
| 316 |
+
"new_tokenizer.save_pretrained('donut-base-ascii')"
|
| 317 |
+
]
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"cell_type": "code",
|
| 321 |
+
"execution_count": 14,
|
| 322 |
+
"metadata": {},
|
| 323 |
+
"outputs": [
|
| 324 |
+
{
|
| 325 |
+
"data": {
|
| 326 |
+
"text/plain": [
|
| 327 |
+
"(27513, 57525)"
|
| 328 |
+
]
|
| 329 |
+
},
|
| 330 |
+
"execution_count": 14,
|
| 331 |
+
"metadata": {},
|
| 332 |
+
"output_type": "execute_result"
|
| 333 |
+
}
|
| 334 |
+
],
|
| 335 |
+
"source": [
|
| 336 |
+
"len(new_tokenizer), len(tokenizer)"
|
| 337 |
+
]
|
| 338 |
+
},
|
| 339 |
+
{
|
| 340 |
+
"cell_type": "code",
|
| 341 |
+
"execution_count": 15,
|
| 342 |
+
"metadata": {},
|
| 343 |
+
"outputs": [],
|
| 344 |
+
"source": [
|
| 345 |
+
"# reload to get all features\n",
|
| 346 |
+
"\n",
|
| 347 |
+
"new_tokenizer = AutoTokenizer.from_pretrained(\"donut-base-ascii\")"
|
| 348 |
+
]
|
| 349 |
+
},
|
| 350 |
+
{
|
| 351 |
+
"cell_type": "code",
|
| 352 |
+
"execution_count": 16,
|
| 353 |
+
"metadata": {},
|
| 354 |
+
"outputs": [],
|
| 355 |
+
"source": [
|
| 356 |
+
"old_mapping = tokenizer.vocab\n",
|
| 357 |
+
"\n",
|
| 358 |
+
"new_mapping = new_tokenizer.vocab\n",
|
| 359 |
+
"\n",
|
| 360 |
+
"sorted_new_mapping = sorted(new_mapping.items(), key=lambda x: x[1])# sort by id, ascending\n",
|
| 361 |
+
"\n",
|
| 362 |
+
"# `embed_indexes` will have the old index value stored at the new index\n",
|
| 363 |
+
"# e.g. embed_indexes[i] = j means the new embedding id at i has the same value\n",
|
| 364 |
+
"# as the old embedding id of j\n",
|
| 365 |
+
"embed_indexes = [old_mapping[tok] for tok, _ in sorted_new_mapping[:-2]]"
|
| 366 |
+
]
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"cell_type": "code",
|
| 370 |
+
"execution_count": 17,
|
| 371 |
+
"metadata": {},
|
| 372 |
+
"outputs": [
|
| 373 |
+
{
|
| 374 |
+
"data": {
|
| 375 |
+
"text/plain": [
|
| 376 |
+
"[('1', 27511), ('<mask>', 27512)]"
|
| 377 |
+
]
|
| 378 |
+
},
|
| 379 |
+
"execution_count": 17,
|
| 380 |
+
"metadata": {},
|
| 381 |
+
"output_type": "execute_result"
|
| 382 |
+
}
|
| 383 |
+
],
|
| 384 |
+
"source": [
|
| 385 |
+
"# embed_indexes ignores the last two because\n",
|
| 386 |
+
"# the second to last one is brand new.\n",
|
| 387 |
+
"\n",
|
| 388 |
+
"# these two embeddings will get added later\n",
|
| 389 |
+
"sorted_new_mapping[-2:]"
|
| 390 |
+
]
|
| 391 |
+
},
|
| 392 |
+
{
|
| 393 |
+
"cell_type": "code",
|
| 394 |
+
"execution_count": 26,
|
| 395 |
+
"metadata": {},
|
| 396 |
+
"outputs": [
|
| 397 |
+
{
|
| 398 |
+
"name": "stdout",
|
| 399 |
+
"output_type": "stream",
|
| 400 |
+
"text": [
|
| 401 |
+
"torch.Size([27511, 1024])\n"
|
| 402 |
+
]
|
| 403 |
+
}
|
| 404 |
+
],
|
| 405 |
+
"source": [
|
| 406 |
+
"from transformers import VisionEncoderDecoderModel\n",
|
| 407 |
+
"\n",
|
| 408 |
+
"model_name = \"naver-clova-ix/donut-base\"\n",
|
| 409 |
+
"model = VisionEncoderDecoderModel.from_pretrained(model_name)\n",
|
| 410 |
+
"\n",
|
| 411 |
+
"old_embeds = model.decoder.model.decoder.embed_tokens.weight.data\n",
|
| 412 |
+
"old_embeds\n",
|
| 413 |
+
"\n",
|
| 414 |
+
"new_embeds = old_embeds[embed_indexes, :].clone()\n",
|
| 415 |
+
"\n",
|
| 416 |
+
"print(new_embeds.shape)"
|
| 417 |
+
]
|
| 418 |
+
},
|
| 419 |
+
{
|
| 420 |
+
"cell_type": "code",
|
| 421 |
+
"execution_count": 19,
|
| 422 |
+
"metadata": {},
|
| 423 |
+
"outputs": [
|
| 424 |
+
{
|
| 425 |
+
"name": "stdout",
|
| 426 |
+
"output_type": "stream",
|
| 427 |
+
"text": [
|
| 428 |
+
"torch.Size([1024])\n",
|
| 429 |
+
"torch.Size([1024])\n"
|
| 430 |
+
]
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"data": {
|
| 434 |
+
"text/plain": [
|
| 435 |
+
"torch.Size([27513, 1024])"
|
| 436 |
+
]
|
| 437 |
+
},
|
| 438 |
+
"execution_count": 19,
|
| 439 |
+
"metadata": {},
|
| 440 |
+
"output_type": "execute_result"
|
| 441 |
+
}
|
| 442 |
+
],
|
| 443 |
+
"source": [
|
| 444 |
+
"import torch\n",
|
| 445 |
+
"\n",
|
| 446 |
+
"# setting the embedding for the new token to be the same as \" 1\"\n",
|
| 447 |
+
"# during training, they will differentiate\n",
|
| 448 |
+
"embed_1 = old_embeds[old_mapping[\"▁1\"]].clone()\n",
|
| 449 |
+
"print(embed_1.shape)\n",
|
| 450 |
+
"\n",
|
| 451 |
+
"embed_mask = old_embeds[old_mapping[\"<mask>\"]].clone()\n",
|
| 452 |
+
"print(embed_mask.shape)\n",
|
| 453 |
+
"\n",
|
| 454 |
+
"new_embeds = torch.vstack([new_embeds, embed_1.unsqueeze(0), embed_mask.unsqueeze(0)])\n",
|
| 455 |
+
"\n",
|
| 456 |
+
"new_embeds.shape"
|
| 457 |
+
]
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"cell_type": "markdown",
|
| 461 |
+
"metadata": {},
|
| 462 |
+
"source": [
|
| 463 |
+
"## Put embeddings back into model"
|
| 464 |
+
]
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"cell_type": "code",
|
| 468 |
+
"execution_count": 20,
|
| 469 |
+
"metadata": {},
|
| 470 |
+
"outputs": [],
|
| 471 |
+
"source": [
|
| 472 |
+
"model.decoder.model.decoder.embed_tokens.weight.data = new_embeds\n",
|
| 473 |
+
"\n",
|
| 474 |
+
"model.decoder.config.update({\n",
|
| 475 |
+
" \"vocab_size\": new_embeds.shape[0]\n",
|
| 476 |
+
"})\n",
|
| 477 |
+
"\n",
|
| 478 |
+
"model.save_pretrained(\"donut-base-ascii\")"
|
| 479 |
+
]
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"cell_type": "markdown",
|
| 483 |
+
"metadata": {},
|
| 484 |
+
"source": [
|
| 485 |
+
"# Making sure the embeddings are correct"
|
| 486 |
+
]
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"cell_type": "code",
|
| 490 |
+
"execution_count": 21,
|
| 491 |
+
"metadata": {},
|
| 492 |
+
"outputs": [
|
| 493 |
+
{
|
| 494 |
+
"name": "stdout",
|
| 495 |
+
"output_type": "stream",
|
| 496 |
+
"text": [
|
| 497 |
+
"[0, 37199, 35816, 34554, 2]\n",
|
| 498 |
+
"[0, 14026, 13045, 12147, 2]\n"
|
| 499 |
+
]
|
| 500 |
+
}
|
| 501 |
+
],
|
| 502 |
+
"source": [
|
| 503 |
+
"old_ids = tokenizer(\"hello there\").input_ids\n",
|
| 504 |
+
"print(old_ids)\n",
|
| 505 |
+
"\n",
|
| 506 |
+
"new_ids = new_tokenizer(\"hello there\").input_ids\n",
|
| 507 |
+
"print(new_ids)"
|
| 508 |
+
]
|
| 509 |
+
},
|
| 510 |
+
{
|
| 511 |
+
"cell_type": "code",
|
| 512 |
+
"execution_count": 22,
|
| 513 |
+
"metadata": {},
|
| 514 |
+
"outputs": [
|
| 515 |
+
{
|
| 516 |
+
"data": {
|
| 517 |
+
"text/plain": [
|
| 518 |
+
"tensor(True)"
|
| 519 |
+
]
|
| 520 |
+
},
|
| 521 |
+
"execution_count": 22,
|
| 522 |
+
"metadata": {},
|
| 523 |
+
"output_type": "execute_result"
|
| 524 |
+
}
|
| 525 |
+
],
|
| 526 |
+
"source": [
|
| 527 |
+
"import torch\n",
|
| 528 |
+
"\n",
|
| 529 |
+
"old_embeddings = torch.stack([old_embeds[i] for i in old_ids])\n",
|
| 530 |
+
"new_embeddings = torch.stack([new_embeds[i] for i in new_ids])\n",
|
| 531 |
+
"\n",
|
| 532 |
+
"torch.all(torch.eq(old_embeddings, new_embeddings))"
|
| 533 |
+
]
|
| 534 |
+
},
|
| 535 |
+
{
|
| 536 |
+
"cell_type": "markdown",
|
| 537 |
+
"metadata": {},
|
| 538 |
+
"source": [
|
| 539 |
+
"## Add image processor so that all files are together"
|
| 540 |
+
]
|
| 541 |
+
},
|
| 542 |
+
{
|
| 543 |
+
"cell_type": "code",
|
| 544 |
+
"execution_count": 27,
|
| 545 |
+
"metadata": {},
|
| 546 |
+
"outputs": [
|
| 547 |
+
{
|
| 548 |
+
"name": "stderr",
|
| 549 |
+
"output_type": "stream",
|
| 550 |
+
"text": [
|
| 551 |
+
"Could not find image processor class in the image processor config or the model config. Loading based on pattern matching with the model's feature extractor configuration.\n"
|
| 552 |
+
]
|
| 553 |
+
},
|
| 554 |
+
{
|
| 555 |
+
"data": {
|
| 556 |
+
"text/plain": [
|
| 557 |
+
"['donut-base-ascii/preprocessor_config.json']"
|
| 558 |
+
]
|
| 559 |
+
},
|
| 560 |
+
"execution_count": 27,
|
| 561 |
+
"metadata": {},
|
| 562 |
+
"output_type": "execute_result"
|
| 563 |
+
}
|
| 564 |
+
],
|
| 565 |
+
"source": [
|
| 566 |
+
"from transformers import AutoImageProcessor\n",
|
| 567 |
+
"\n",
|
| 568 |
+
"proc = AutoImageProcessor.from_pretrained(model_name)\n",
|
| 569 |
+
"proc.save_pretrained(\"donut-base-ascii\")"
|
| 570 |
+
]
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"cell_type": "markdown",
|
| 574 |
+
"metadata": {},
|
| 575 |
+
"source": [
|
| 576 |
+
"## Check that the new token for 1 works\n",
|
| 577 |
+
"\n",
|
| 578 |
+
"\n",
|
| 579 |
+
"unk_token_id = 3, so that shouldn't be present! Instead it should have 27511, the new token for \"1\""
|
| 580 |
+
]
|
| 581 |
+
},
|
| 582 |
+
{
|
| 583 |
+
"cell_type": "code",
|
| 584 |
+
"execution_count": 24,
|
| 585 |
+
"metadata": {},
|
| 586 |
+
"outputs": [
|
| 587 |
+
{
|
| 588 |
+
"data": {
|
| 589 |
+
"text/plain": [
|
| 590 |
+
"[0, 15793, 27511, 4056, 27511, 26020, 27511, 2]"
|
| 591 |
+
]
|
| 592 |
+
},
|
| 593 |
+
"execution_count": 24,
|
| 594 |
+
"metadata": {},
|
| 595 |
+
"output_type": "execute_result"
|
| 596 |
+
}
|
| 597 |
+
],
|
| 598 |
+
"source": [
|
| 599 |
+
"new_tokenizer(\"10.1 )1 a1\").input_ids"
|
| 600 |
+
]
|
| 601 |
+
}
|
| 602 |
+
],
|
| 603 |
+
"metadata": {
|
| 604 |
+
"colab": {
|
| 605 |
+
"provenance": []
|
| 606 |
+
},
|
| 607 |
+
"kernelspec": {
|
| 608 |
+
"display_name": "Python 3",
|
| 609 |
+
"name": "python3"
|
| 610 |
+
},
|
| 611 |
+
"language_info": {
|
| 612 |
+
"codemirror_mode": {
|
| 613 |
+
"name": "ipython",
|
| 614 |
+
"version": 3
|
| 615 |
+
},
|
| 616 |
+
"file_extension": ".py",
|
| 617 |
+
"mimetype": "text/x-python",
|
| 618 |
+
"name": "python",
|
| 619 |
+
"nbconvert_exporter": "python",
|
| 620 |
+
"pygments_lexer": "ipython3",
|
| 621 |
+
"version": "3.10.10"
|
| 622 |
+
},
|
| 623 |
+
"widgets": {
|
| 624 |
+
"application/vnd.jupyter.widget-state+json": {
|
| 625 |
+
"0199dce34d0b4101ab2da9cd761f17ea": {
|
| 626 |
+
"model_module": "@jupyter-widgets/controls",
|
| 627 |
+
"model_module_version": "1.5.0",
|
| 628 |
+
"model_name": "HTMLModel",
|
| 629 |
+
"state": {
|
| 630 |
+
"_dom_classes": [],
|
| 631 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 632 |
+
"_model_module_version": "1.5.0",
|
| 633 |
+
"_model_name": "HTMLModel",
|
| 634 |
+
"_view_count": null,
|
| 635 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 636 |
+
"_view_module_version": "1.5.0",
|
| 637 |
+
"_view_name": "HTMLView",
|
| 638 |
+
"description": "",
|
| 639 |
+
"description_tooltip": null,
|
| 640 |
+
"layout": "IPY_MODEL_9ac895ad7a3d4af4b75076fc1e8433ac",
|
| 641 |
+
"placeholder": "",
|
| 642 |
+
"style": "IPY_MODEL_f97ecaf1a1af41029bb2d79334e83b3d",
|
| 643 |
+
"value": " 4.74k/4.74k [00:00<00:00, 230kB/s]"
|
| 644 |
+
}
|
| 645 |
+
},
|
| 646 |
+
"01d989190ff34c499ef4eb023a982a13": {
|
| 647 |
+
"model_module": "@jupyter-widgets/controls",
|
| 648 |
+
"model_module_version": "1.5.0",
|
| 649 |
+
"model_name": "DescriptionStyleModel",
|
| 650 |
+
"state": {
|
| 651 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 652 |
+
"_model_module_version": "1.5.0",
|
| 653 |
+
"_model_name": "DescriptionStyleModel",
|
| 654 |
+
"_view_count": null,
|
| 655 |
+
"_view_module": "@jupyter-widgets/base",
|
| 656 |
+
"_view_module_version": "1.2.0",
|
| 657 |
+
"_view_name": "StyleView",
|
| 658 |
+
"description_width": ""
|
| 659 |
+
}
|
| 660 |
+
},
|
| 661 |
+
"3dcafb3def654095a3a02644eb1b79b6": {
|
| 662 |
+
"model_module": "@jupyter-widgets/controls",
|
| 663 |
+
"model_module_version": "1.5.0",
|
| 664 |
+
"model_name": "ProgressStyleModel",
|
| 665 |
+
"state": {
|
| 666 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 667 |
+
"_model_module_version": "1.5.0",
|
| 668 |
+
"_model_name": "ProgressStyleModel",
|
| 669 |
+
"_view_count": null,
|
| 670 |
+
"_view_module": "@jupyter-widgets/base",
|
| 671 |
+
"_view_module_version": "1.2.0",
|
| 672 |
+
"_view_name": "StyleView",
|
| 673 |
+
"bar_color": null,
|
| 674 |
+
"description_width": ""
|
| 675 |
+
}
|
| 676 |
+
},
|
| 677 |
+
"493c720b2da54790a6b8e3ec0ee44f8d": {
|
| 678 |
+
"model_module": "@jupyter-widgets/base",
|
| 679 |
+
"model_module_version": "1.2.0",
|
| 680 |
+
"model_name": "LayoutModel",
|
| 681 |
+
"state": {
|
| 682 |
+
"_model_module": "@jupyter-widgets/base",
|
| 683 |
+
"_model_module_version": "1.2.0",
|
| 684 |
+
"_model_name": "LayoutModel",
|
| 685 |
+
"_view_count": null,
|
| 686 |
+
"_view_module": "@jupyter-widgets/base",
|
| 687 |
+
"_view_module_version": "1.2.0",
|
| 688 |
+
"_view_name": "LayoutView",
|
| 689 |
+
"align_content": null,
|
| 690 |
+
"align_items": null,
|
| 691 |
+
"align_self": null,
|
| 692 |
+
"border": null,
|
| 693 |
+
"bottom": null,
|
| 694 |
+
"display": null,
|
| 695 |
+
"flex": null,
|
| 696 |
+
"flex_flow": null,
|
| 697 |
+
"grid_area": null,
|
| 698 |
+
"grid_auto_columns": null,
|
| 699 |
+
"grid_auto_flow": null,
|
| 700 |
+
"grid_auto_rows": null,
|
| 701 |
+
"grid_column": null,
|
| 702 |
+
"grid_gap": null,
|
| 703 |
+
"grid_row": null,
|
| 704 |
+
"grid_template_areas": null,
|
| 705 |
+
"grid_template_columns": null,
|
| 706 |
+
"grid_template_rows": null,
|
| 707 |
+
"height": null,
|
| 708 |
+
"justify_content": null,
|
| 709 |
+
"justify_items": null,
|
| 710 |
+
"left": null,
|
| 711 |
+
"margin": null,
|
| 712 |
+
"max_height": null,
|
| 713 |
+
"max_width": null,
|
| 714 |
+
"min_height": null,
|
| 715 |
+
"min_width": null,
|
| 716 |
+
"object_fit": null,
|
| 717 |
+
"object_position": null,
|
| 718 |
+
"order": null,
|
| 719 |
+
"overflow": null,
|
| 720 |
+
"overflow_x": null,
|
| 721 |
+
"overflow_y": null,
|
| 722 |
+
"padding": null,
|
| 723 |
+
"right": null,
|
| 724 |
+
"top": null,
|
| 725 |
+
"visibility": null,
|
| 726 |
+
"width": null
|
| 727 |
+
}
|
| 728 |
+
},
|
| 729 |
+
"4aa596c990844b06b1081f373235cbe9": {
|
| 730 |
+
"model_module": "@jupyter-widgets/controls",
|
| 731 |
+
"model_module_version": "1.5.0",
|
| 732 |
+
"model_name": "FloatProgressModel",
|
| 733 |
+
"state": {
|
| 734 |
+
"_dom_classes": [],
|
| 735 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 736 |
+
"_model_module_version": "1.5.0",
|
| 737 |
+
"_model_name": "FloatProgressModel",
|
| 738 |
+
"_view_count": null,
|
| 739 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 740 |
+
"_view_module_version": "1.5.0",
|
| 741 |
+
"_view_name": "ProgressView",
|
| 742 |
+
"bar_style": "success",
|
| 743 |
+
"description": "",
|
| 744 |
+
"description_tooltip": null,
|
| 745 |
+
"layout": "IPY_MODEL_493c720b2da54790a6b8e3ec0ee44f8d",
|
| 746 |
+
"max": 4742,
|
| 747 |
+
"min": 0,
|
| 748 |
+
"orientation": "horizontal",
|
| 749 |
+
"style": "IPY_MODEL_3dcafb3def654095a3a02644eb1b79b6",
|
| 750 |
+
"value": 4742
|
| 751 |
+
}
|
| 752 |
+
},
|
| 753 |
+
"66b76b6edce045b480ebed513ba1ab6e": {
|
| 754 |
+
"model_module": "@jupyter-widgets/base",
|
| 755 |
+
"model_module_version": "1.2.0",
|
| 756 |
+
"model_name": "LayoutModel",
|
| 757 |
+
"state": {
|
| 758 |
+
"_model_module": "@jupyter-widgets/base",
|
| 759 |
+
"_model_module_version": "1.2.0",
|
| 760 |
+
"_model_name": "LayoutModel",
|
| 761 |
+
"_view_count": null,
|
| 762 |
+
"_view_module": "@jupyter-widgets/base",
|
| 763 |
+
"_view_module_version": "1.2.0",
|
| 764 |
+
"_view_name": "LayoutView",
|
| 765 |
+
"align_content": null,
|
| 766 |
+
"align_items": null,
|
| 767 |
+
"align_self": null,
|
| 768 |
+
"border": null,
|
| 769 |
+
"bottom": null,
|
| 770 |
+
"display": null,
|
| 771 |
+
"flex": null,
|
| 772 |
+
"flex_flow": null,
|
| 773 |
+
"grid_area": null,
|
| 774 |
+
"grid_auto_columns": null,
|
| 775 |
+
"grid_auto_flow": null,
|
| 776 |
+
"grid_auto_rows": null,
|
| 777 |
+
"grid_column": null,
|
| 778 |
+
"grid_gap": null,
|
| 779 |
+
"grid_row": null,
|
| 780 |
+
"grid_template_areas": null,
|
| 781 |
+
"grid_template_columns": null,
|
| 782 |
+
"grid_template_rows": null,
|
| 783 |
+
"height": null,
|
| 784 |
+
"justify_content": null,
|
| 785 |
+
"justify_items": null,
|
| 786 |
+
"left": null,
|
| 787 |
+
"margin": null,
|
| 788 |
+
"max_height": null,
|
| 789 |
+
"max_width": null,
|
| 790 |
+
"min_height": null,
|
| 791 |
+
"min_width": null,
|
| 792 |
+
"object_fit": null,
|
| 793 |
+
"object_position": null,
|
| 794 |
+
"order": null,
|
| 795 |
+
"overflow": null,
|
| 796 |
+
"overflow_x": null,
|
| 797 |
+
"overflow_y": null,
|
| 798 |
+
"padding": null,
|
| 799 |
+
"right": null,
|
| 800 |
+
"top": null,
|
| 801 |
+
"visibility": null,
|
| 802 |
+
"width": null
|
| 803 |
+
}
|
| 804 |
+
},
|
| 805 |
+
"6b432819bf504227a04a10a749a848e9": {
|
| 806 |
+
"model_module": "@jupyter-widgets/base",
|
| 807 |
+
"model_module_version": "1.2.0",
|
| 808 |
+
"model_name": "LayoutModel",
|
| 809 |
+
"state": {
|
| 810 |
+
"_model_module": "@jupyter-widgets/base",
|
| 811 |
+
"_model_module_version": "1.2.0",
|
| 812 |
+
"_model_name": "LayoutModel",
|
| 813 |
+
"_view_count": null,
|
| 814 |
+
"_view_module": "@jupyter-widgets/base",
|
| 815 |
+
"_view_module_version": "1.2.0",
|
| 816 |
+
"_view_name": "LayoutView",
|
| 817 |
+
"align_content": null,
|
| 818 |
+
"align_items": null,
|
| 819 |
+
"align_self": null,
|
| 820 |
+
"border": null,
|
| 821 |
+
"bottom": null,
|
| 822 |
+
"display": null,
|
| 823 |
+
"flex": null,
|
| 824 |
+
"flex_flow": null,
|
| 825 |
+
"grid_area": null,
|
| 826 |
+
"grid_auto_columns": null,
|
| 827 |
+
"grid_auto_flow": null,
|
| 828 |
+
"grid_auto_rows": null,
|
| 829 |
+
"grid_column": null,
|
| 830 |
+
"grid_gap": null,
|
| 831 |
+
"grid_row": null,
|
| 832 |
+
"grid_template_areas": null,
|
| 833 |
+
"grid_template_columns": null,
|
| 834 |
+
"grid_template_rows": null,
|
| 835 |
+
"height": null,
|
| 836 |
+
"justify_content": null,
|
| 837 |
+
"justify_items": null,
|
| 838 |
+
"left": null,
|
| 839 |
+
"margin": null,
|
| 840 |
+
"max_height": null,
|
| 841 |
+
"max_width": null,
|
| 842 |
+
"min_height": null,
|
| 843 |
+
"min_width": null,
|
| 844 |
+
"object_fit": null,
|
| 845 |
+
"object_position": null,
|
| 846 |
+
"order": null,
|
| 847 |
+
"overflow": null,
|
| 848 |
+
"overflow_x": null,
|
| 849 |
+
"overflow_y": null,
|
| 850 |
+
"padding": null,
|
| 851 |
+
"right": null,
|
| 852 |
+
"top": null,
|
| 853 |
+
"visibility": null,
|
| 854 |
+
"width": null
|
| 855 |
+
}
|
| 856 |
+
},
|
| 857 |
+
"6e87b5a1db834af09c4507881ce12fd8": {
|
| 858 |
+
"model_module": "@jupyter-widgets/controls",
|
| 859 |
+
"model_module_version": "1.5.0",
|
| 860 |
+
"model_name": "DescriptionStyleModel",
|
| 861 |
+
"state": {
|
| 862 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 863 |
+
"_model_module_version": "1.5.0",
|
| 864 |
+
"_model_name": "DescriptionStyleModel",
|
| 865 |
+
"_view_count": null,
|
| 866 |
+
"_view_module": "@jupyter-widgets/base",
|
| 867 |
+
"_view_module_version": "1.2.0",
|
| 868 |
+
"_view_name": "StyleView",
|
| 869 |
+
"description_width": ""
|
| 870 |
+
}
|
| 871 |
+
},
|
| 872 |
+
"70ec1c59c5c34b448d91ad895137b7c0": {
|
| 873 |
+
"model_module": "@jupyter-widgets/controls",
|
| 874 |
+
"model_module_version": "1.5.0",
|
| 875 |
+
"model_name": "ProgressStyleModel",
|
| 876 |
+
"state": {
|
| 877 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 878 |
+
"_model_module_version": "1.5.0",
|
| 879 |
+
"_model_name": "ProgressStyleModel",
|
| 880 |
+
"_view_count": null,
|
| 881 |
+
"_view_module": "@jupyter-widgets/base",
|
| 882 |
+
"_view_module_version": "1.2.0",
|
| 883 |
+
"_view_name": "StyleView",
|
| 884 |
+
"bar_color": null,
|
| 885 |
+
"description_width": ""
|
| 886 |
+
}
|
| 887 |
+
},
|
| 888 |
+
"77506fb9c6404b74a5f8d82fa323a275": {
|
| 889 |
+
"model_module": "@jupyter-widgets/controls",
|
| 890 |
+
"model_module_version": "1.5.0",
|
| 891 |
+
"model_name": "HTMLModel",
|
| 892 |
+
"state": {
|
| 893 |
+
"_dom_classes": [],
|
| 894 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 895 |
+
"_model_module_version": "1.5.0",
|
| 896 |
+
"_model_name": "HTMLModel",
|
| 897 |
+
"_view_count": null,
|
| 898 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 899 |
+
"_view_module_version": "1.5.0",
|
| 900 |
+
"_view_name": "HTMLView",
|
| 901 |
+
"description": "",
|
| 902 |
+
"description_tooltip": null,
|
| 903 |
+
"layout": "IPY_MODEL_a9f316334ef9440a979c332a0ae8e7cd",
|
| 904 |
+
"placeholder": "",
|
| 905 |
+
"style": "IPY_MODEL_01d989190ff34c499ef4eb023a982a13",
|
| 906 |
+
"value": "Downloading pytorch_model.bin: 100%"
|
| 907 |
+
}
|
| 908 |
+
},
|
| 909 |
+
"78760960021e43ce85e63f08c55b821d": {
|
| 910 |
+
"model_module": "@jupyter-widgets/controls",
|
| 911 |
+
"model_module_version": "1.5.0",
|
| 912 |
+
"model_name": "HBoxModel",
|
| 913 |
+
"state": {
|
| 914 |
+
"_dom_classes": [],
|
| 915 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 916 |
+
"_model_module_version": "1.5.0",
|
| 917 |
+
"_model_name": "HBoxModel",
|
| 918 |
+
"_view_count": null,
|
| 919 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 920 |
+
"_view_module_version": "1.5.0",
|
| 921 |
+
"_view_name": "HBoxView",
|
| 922 |
+
"box_style": "",
|
| 923 |
+
"children": [
|
| 924 |
+
"IPY_MODEL_8dd9d54bf1a3499c9d075d7dd34e8f3a",
|
| 925 |
+
"IPY_MODEL_4aa596c990844b06b1081f373235cbe9",
|
| 926 |
+
"IPY_MODEL_0199dce34d0b4101ab2da9cd761f17ea"
|
| 927 |
+
],
|
| 928 |
+
"layout": "IPY_MODEL_66b76b6edce045b480ebed513ba1ab6e"
|
| 929 |
+
}
|
| 930 |
+
},
|
| 931 |
+
"80ce735e6b314dcb92fab111b26a43d6": {
|
| 932 |
+
"model_module": "@jupyter-widgets/base",
|
| 933 |
+
"model_module_version": "1.2.0",
|
| 934 |
+
"model_name": "LayoutModel",
|
| 935 |
+
"state": {
|
| 936 |
+
"_model_module": "@jupyter-widgets/base",
|
| 937 |
+
"_model_module_version": "1.2.0",
|
| 938 |
+
"_model_name": "LayoutModel",
|
| 939 |
+
"_view_count": null,
|
| 940 |
+
"_view_module": "@jupyter-widgets/base",
|
| 941 |
+
"_view_module_version": "1.2.0",
|
| 942 |
+
"_view_name": "LayoutView",
|
| 943 |
+
"align_content": null,
|
| 944 |
+
"align_items": null,
|
| 945 |
+
"align_self": null,
|
| 946 |
+
"border": null,
|
| 947 |
+
"bottom": null,
|
| 948 |
+
"display": null,
|
| 949 |
+
"flex": null,
|
| 950 |
+
"flex_flow": null,
|
| 951 |
+
"grid_area": null,
|
| 952 |
+
"grid_auto_columns": null,
|
| 953 |
+
"grid_auto_flow": null,
|
| 954 |
+
"grid_auto_rows": null,
|
| 955 |
+
"grid_column": null,
|
| 956 |
+
"grid_gap": null,
|
| 957 |
+
"grid_row": null,
|
| 958 |
+
"grid_template_areas": null,
|
| 959 |
+
"grid_template_columns": null,
|
| 960 |
+
"grid_template_rows": null,
|
| 961 |
+
"height": null,
|
| 962 |
+
"justify_content": null,
|
| 963 |
+
"justify_items": null,
|
| 964 |
+
"left": null,
|
| 965 |
+
"margin": null,
|
| 966 |
+
"max_height": null,
|
| 967 |
+
"max_width": null,
|
| 968 |
+
"min_height": null,
|
| 969 |
+
"min_width": null,
|
| 970 |
+
"object_fit": null,
|
| 971 |
+
"object_position": null,
|
| 972 |
+
"order": null,
|
| 973 |
+
"overflow": null,
|
| 974 |
+
"overflow_x": null,
|
| 975 |
+
"overflow_y": null,
|
| 976 |
+
"padding": null,
|
| 977 |
+
"right": null,
|
| 978 |
+
"top": null,
|
| 979 |
+
"visibility": null,
|
| 980 |
+
"width": null
|
| 981 |
+
}
|
| 982 |
+
},
|
| 983 |
+
"824c138272c94f4086f9035f97b082c3": {
|
| 984 |
+
"model_module": "@jupyter-widgets/controls",
|
| 985 |
+
"model_module_version": "1.5.0",
|
| 986 |
+
"model_name": "FloatProgressModel",
|
| 987 |
+
"state": {
|
| 988 |
+
"_dom_classes": [],
|
| 989 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 990 |
+
"_model_module_version": "1.5.0",
|
| 991 |
+
"_model_name": "FloatProgressModel",
|
| 992 |
+
"_view_count": null,
|
| 993 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 994 |
+
"_view_module_version": "1.5.0",
|
| 995 |
+
"_view_name": "ProgressView",
|
| 996 |
+
"bar_style": "success",
|
| 997 |
+
"description": "",
|
| 998 |
+
"description_tooltip": null,
|
| 999 |
+
"layout": "IPY_MODEL_cd5a87bcb60a44e194b3db834f200061",
|
| 1000 |
+
"max": 809168699,
|
| 1001 |
+
"min": 0,
|
| 1002 |
+
"orientation": "horizontal",
|
| 1003 |
+
"style": "IPY_MODEL_70ec1c59c5c34b448d91ad895137b7c0",
|
| 1004 |
+
"value": 809168699
|
| 1005 |
+
}
|
| 1006 |
+
},
|
| 1007 |
+
"8dd9d54bf1a3499c9d075d7dd34e8f3a": {
|
| 1008 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1009 |
+
"model_module_version": "1.5.0",
|
| 1010 |
+
"model_name": "HTMLModel",
|
| 1011 |
+
"state": {
|
| 1012 |
+
"_dom_classes": [],
|
| 1013 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1014 |
+
"_model_module_version": "1.5.0",
|
| 1015 |
+
"_model_name": "HTMLModel",
|
| 1016 |
+
"_view_count": null,
|
| 1017 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1018 |
+
"_view_module_version": "1.5.0",
|
| 1019 |
+
"_view_name": "HTMLView",
|
| 1020 |
+
"description": "",
|
| 1021 |
+
"description_tooltip": null,
|
| 1022 |
+
"layout": "IPY_MODEL_f98d3c18e9454ed2be3197330e5d84b1",
|
| 1023 |
+
"placeholder": "",
|
| 1024 |
+
"style": "IPY_MODEL_6e87b5a1db834af09c4507881ce12fd8",
|
| 1025 |
+
"value": "Downloading (…)lve/main/config.json: 100%"
|
| 1026 |
+
}
|
| 1027 |
+
},
|
| 1028 |
+
"9ac895ad7a3d4af4b75076fc1e8433ac": {
|
| 1029 |
+
"model_module": "@jupyter-widgets/base",
|
| 1030 |
+
"model_module_version": "1.2.0",
|
| 1031 |
+
"model_name": "LayoutModel",
|
| 1032 |
+
"state": {
|
| 1033 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1034 |
+
"_model_module_version": "1.2.0",
|
| 1035 |
+
"_model_name": "LayoutModel",
|
| 1036 |
+
"_view_count": null,
|
| 1037 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1038 |
+
"_view_module_version": "1.2.0",
|
| 1039 |
+
"_view_name": "LayoutView",
|
| 1040 |
+
"align_content": null,
|
| 1041 |
+
"align_items": null,
|
| 1042 |
+
"align_self": null,
|
| 1043 |
+
"border": null,
|
| 1044 |
+
"bottom": null,
|
| 1045 |
+
"display": null,
|
| 1046 |
+
"flex": null,
|
| 1047 |
+
"flex_flow": null,
|
| 1048 |
+
"grid_area": null,
|
| 1049 |
+
"grid_auto_columns": null,
|
| 1050 |
+
"grid_auto_flow": null,
|
| 1051 |
+
"grid_auto_rows": null,
|
| 1052 |
+
"grid_column": null,
|
| 1053 |
+
"grid_gap": null,
|
| 1054 |
+
"grid_row": null,
|
| 1055 |
+
"grid_template_areas": null,
|
| 1056 |
+
"grid_template_columns": null,
|
| 1057 |
+
"grid_template_rows": null,
|
| 1058 |
+
"height": null,
|
| 1059 |
+
"justify_content": null,
|
| 1060 |
+
"justify_items": null,
|
| 1061 |
+
"left": null,
|
| 1062 |
+
"margin": null,
|
| 1063 |
+
"max_height": null,
|
| 1064 |
+
"max_width": null,
|
| 1065 |
+
"min_height": null,
|
| 1066 |
+
"min_width": null,
|
| 1067 |
+
"object_fit": null,
|
| 1068 |
+
"object_position": null,
|
| 1069 |
+
"order": null,
|
| 1070 |
+
"overflow": null,
|
| 1071 |
+
"overflow_x": null,
|
| 1072 |
+
"overflow_y": null,
|
| 1073 |
+
"padding": null,
|
| 1074 |
+
"right": null,
|
| 1075 |
+
"top": null,
|
| 1076 |
+
"visibility": null,
|
| 1077 |
+
"width": null
|
| 1078 |
+
}
|
| 1079 |
+
},
|
| 1080 |
+
"a9f316334ef9440a979c332a0ae8e7cd": {
|
| 1081 |
+
"model_module": "@jupyter-widgets/base",
|
| 1082 |
+
"model_module_version": "1.2.0",
|
| 1083 |
+
"model_name": "LayoutModel",
|
| 1084 |
+
"state": {
|
| 1085 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1086 |
+
"_model_module_version": "1.2.0",
|
| 1087 |
+
"_model_name": "LayoutModel",
|
| 1088 |
+
"_view_count": null,
|
| 1089 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1090 |
+
"_view_module_version": "1.2.0",
|
| 1091 |
+
"_view_name": "LayoutView",
|
| 1092 |
+
"align_content": null,
|
| 1093 |
+
"align_items": null,
|
| 1094 |
+
"align_self": null,
|
| 1095 |
+
"border": null,
|
| 1096 |
+
"bottom": null,
|
| 1097 |
+
"display": null,
|
| 1098 |
+
"flex": null,
|
| 1099 |
+
"flex_flow": null,
|
| 1100 |
+
"grid_area": null,
|
| 1101 |
+
"grid_auto_columns": null,
|
| 1102 |
+
"grid_auto_flow": null,
|
| 1103 |
+
"grid_auto_rows": null,
|
| 1104 |
+
"grid_column": null,
|
| 1105 |
+
"grid_gap": null,
|
| 1106 |
+
"grid_row": null,
|
| 1107 |
+
"grid_template_areas": null,
|
| 1108 |
+
"grid_template_columns": null,
|
| 1109 |
+
"grid_template_rows": null,
|
| 1110 |
+
"height": null,
|
| 1111 |
+
"justify_content": null,
|
| 1112 |
+
"justify_items": null,
|
| 1113 |
+
"left": null,
|
| 1114 |
+
"margin": null,
|
| 1115 |
+
"max_height": null,
|
| 1116 |
+
"max_width": null,
|
| 1117 |
+
"min_height": null,
|
| 1118 |
+
"min_width": null,
|
| 1119 |
+
"object_fit": null,
|
| 1120 |
+
"object_position": null,
|
| 1121 |
+
"order": null,
|
| 1122 |
+
"overflow": null,
|
| 1123 |
+
"overflow_x": null,
|
| 1124 |
+
"overflow_y": null,
|
| 1125 |
+
"padding": null,
|
| 1126 |
+
"right": null,
|
| 1127 |
+
"top": null,
|
| 1128 |
+
"visibility": null,
|
| 1129 |
+
"width": null
|
| 1130 |
+
}
|
| 1131 |
+
},
|
| 1132 |
+
"c35a984617774c8fbde92917bcae872e": {
|
| 1133 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1134 |
+
"model_module_version": "1.5.0",
|
| 1135 |
+
"model_name": "HBoxModel",
|
| 1136 |
+
"state": {
|
| 1137 |
+
"_dom_classes": [],
|
| 1138 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1139 |
+
"_model_module_version": "1.5.0",
|
| 1140 |
+
"_model_name": "HBoxModel",
|
| 1141 |
+
"_view_count": null,
|
| 1142 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1143 |
+
"_view_module_version": "1.5.0",
|
| 1144 |
+
"_view_name": "HBoxView",
|
| 1145 |
+
"box_style": "",
|
| 1146 |
+
"children": [
|
| 1147 |
+
"IPY_MODEL_77506fb9c6404b74a5f8d82fa323a275",
|
| 1148 |
+
"IPY_MODEL_824c138272c94f4086f9035f97b082c3",
|
| 1149 |
+
"IPY_MODEL_e0dedfb1d27d4b1aa4c090477d985257"
|
| 1150 |
+
],
|
| 1151 |
+
"layout": "IPY_MODEL_6b432819bf504227a04a10a749a848e9"
|
| 1152 |
+
}
|
| 1153 |
+
},
|
| 1154 |
+
"c53794a14c3049d193260cffca0a6aaa": {
|
| 1155 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1156 |
+
"model_module_version": "1.5.0",
|
| 1157 |
+
"model_name": "DescriptionStyleModel",
|
| 1158 |
+
"state": {
|
| 1159 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1160 |
+
"_model_module_version": "1.5.0",
|
| 1161 |
+
"_model_name": "DescriptionStyleModel",
|
| 1162 |
+
"_view_count": null,
|
| 1163 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1164 |
+
"_view_module_version": "1.2.0",
|
| 1165 |
+
"_view_name": "StyleView",
|
| 1166 |
+
"description_width": ""
|
| 1167 |
+
}
|
| 1168 |
+
},
|
| 1169 |
+
"cd5a87bcb60a44e194b3db834f200061": {
|
| 1170 |
+
"model_module": "@jupyter-widgets/base",
|
| 1171 |
+
"model_module_version": "1.2.0",
|
| 1172 |
+
"model_name": "LayoutModel",
|
| 1173 |
+
"state": {
|
| 1174 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1175 |
+
"_model_module_version": "1.2.0",
|
| 1176 |
+
"_model_name": "LayoutModel",
|
| 1177 |
+
"_view_count": null,
|
| 1178 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1179 |
+
"_view_module_version": "1.2.0",
|
| 1180 |
+
"_view_name": "LayoutView",
|
| 1181 |
+
"align_content": null,
|
| 1182 |
+
"align_items": null,
|
| 1183 |
+
"align_self": null,
|
| 1184 |
+
"border": null,
|
| 1185 |
+
"bottom": null,
|
| 1186 |
+
"display": null,
|
| 1187 |
+
"flex": null,
|
| 1188 |
+
"flex_flow": null,
|
| 1189 |
+
"grid_area": null,
|
| 1190 |
+
"grid_auto_columns": null,
|
| 1191 |
+
"grid_auto_flow": null,
|
| 1192 |
+
"grid_auto_rows": null,
|
| 1193 |
+
"grid_column": null,
|
| 1194 |
+
"grid_gap": null,
|
| 1195 |
+
"grid_row": null,
|
| 1196 |
+
"grid_template_areas": null,
|
| 1197 |
+
"grid_template_columns": null,
|
| 1198 |
+
"grid_template_rows": null,
|
| 1199 |
+
"height": null,
|
| 1200 |
+
"justify_content": null,
|
| 1201 |
+
"justify_items": null,
|
| 1202 |
+
"left": null,
|
| 1203 |
+
"margin": null,
|
| 1204 |
+
"max_height": null,
|
| 1205 |
+
"max_width": null,
|
| 1206 |
+
"min_height": null,
|
| 1207 |
+
"min_width": null,
|
| 1208 |
+
"object_fit": null,
|
| 1209 |
+
"object_position": null,
|
| 1210 |
+
"order": null,
|
| 1211 |
+
"overflow": null,
|
| 1212 |
+
"overflow_x": null,
|
| 1213 |
+
"overflow_y": null,
|
| 1214 |
+
"padding": null,
|
| 1215 |
+
"right": null,
|
| 1216 |
+
"top": null,
|
| 1217 |
+
"visibility": null,
|
| 1218 |
+
"width": null
|
| 1219 |
+
}
|
| 1220 |
+
},
|
| 1221 |
+
"e0dedfb1d27d4b1aa4c090477d985257": {
|
| 1222 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1223 |
+
"model_module_version": "1.5.0",
|
| 1224 |
+
"model_name": "HTMLModel",
|
| 1225 |
+
"state": {
|
| 1226 |
+
"_dom_classes": [],
|
| 1227 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1228 |
+
"_model_module_version": "1.5.0",
|
| 1229 |
+
"_model_name": "HTMLModel",
|
| 1230 |
+
"_view_count": null,
|
| 1231 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1232 |
+
"_view_module_version": "1.5.0",
|
| 1233 |
+
"_view_name": "HTMLView",
|
| 1234 |
+
"description": "",
|
| 1235 |
+
"description_tooltip": null,
|
| 1236 |
+
"layout": "IPY_MODEL_80ce735e6b314dcb92fab111b26a43d6",
|
| 1237 |
+
"placeholder": "",
|
| 1238 |
+
"style": "IPY_MODEL_c53794a14c3049d193260cffca0a6aaa",
|
| 1239 |
+
"value": " 809M/809M [00:07<00:00, 116MB/s]"
|
| 1240 |
+
}
|
| 1241 |
+
},
|
| 1242 |
+
"f97ecaf1a1af41029bb2d79334e83b3d": {
|
| 1243 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1244 |
+
"model_module_version": "1.5.0",
|
| 1245 |
+
"model_name": "DescriptionStyleModel",
|
| 1246 |
+
"state": {
|
| 1247 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1248 |
+
"_model_module_version": "1.5.0",
|
| 1249 |
+
"_model_name": "DescriptionStyleModel",
|
| 1250 |
+
"_view_count": null,
|
| 1251 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1252 |
+
"_view_module_version": "1.2.0",
|
| 1253 |
+
"_view_name": "StyleView",
|
| 1254 |
+
"description_width": ""
|
| 1255 |
+
}
|
| 1256 |
+
},
|
| 1257 |
+
"f98d3c18e9454ed2be3197330e5d84b1": {
|
| 1258 |
+
"model_module": "@jupyter-widgets/base",
|
| 1259 |
+
"model_module_version": "1.2.0",
|
| 1260 |
+
"model_name": "LayoutModel",
|
| 1261 |
+
"state": {
|
| 1262 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1263 |
+
"_model_module_version": "1.2.0",
|
| 1264 |
+
"_model_name": "LayoutModel",
|
| 1265 |
+
"_view_count": null,
|
| 1266 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1267 |
+
"_view_module_version": "1.2.0",
|
| 1268 |
+
"_view_name": "LayoutView",
|
| 1269 |
+
"align_content": null,
|
| 1270 |
+
"align_items": null,
|
| 1271 |
+
"align_self": null,
|
| 1272 |
+
"border": null,
|
| 1273 |
+
"bottom": null,
|
| 1274 |
+
"display": null,
|
| 1275 |
+
"flex": null,
|
| 1276 |
+
"flex_flow": null,
|
| 1277 |
+
"grid_area": null,
|
| 1278 |
+
"grid_auto_columns": null,
|
| 1279 |
+
"grid_auto_flow": null,
|
| 1280 |
+
"grid_auto_rows": null,
|
| 1281 |
+
"grid_column": null,
|
| 1282 |
+
"grid_gap": null,
|
| 1283 |
+
"grid_row": null,
|
| 1284 |
+
"grid_template_areas": null,
|
| 1285 |
+
"grid_template_columns": null,
|
| 1286 |
+
"grid_template_rows": null,
|
| 1287 |
+
"height": null,
|
| 1288 |
+
"justify_content": null,
|
| 1289 |
+
"justify_items": null,
|
| 1290 |
+
"left": null,
|
| 1291 |
+
"margin": null,
|
| 1292 |
+
"max_height": null,
|
| 1293 |
+
"max_width": null,
|
| 1294 |
+
"min_height": null,
|
| 1295 |
+
"min_width": null,
|
| 1296 |
+
"object_fit": null,
|
| 1297 |
+
"object_position": null,
|
| 1298 |
+
"order": null,
|
| 1299 |
+
"overflow": null,
|
| 1300 |
+
"overflow_x": null,
|
| 1301 |
+
"overflow_y": null,
|
| 1302 |
+
"padding": null,
|
| 1303 |
+
"right": null,
|
| 1304 |
+
"top": null,
|
| 1305 |
+
"visibility": null,
|
| 1306 |
+
"width": null
|
| 1307 |
+
}
|
| 1308 |
+
}
|
| 1309 |
+
}
|
| 1310 |
+
}
|
| 1311 |
+
},
|
| 1312 |
+
"nbformat": 4,
|
| 1313 |
+
"nbformat_minor": 0
|
| 1314 |
+
}
|
sentencepiece.bpe.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0a2a67edafddbb4e6a16de0e91b4b87c76cddf14b88f5db874ba628ca6813717
|
| 3 |
+
size 719223
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"cls_token": "<s>",
|
| 4 |
+
"eos_token": "</s>",
|
| 5 |
+
"mask_token": "<mask>",
|
| 6 |
+
"pad_token": "<pad>",
|
| 7 |
+
"sep_token": "</s>",
|
| 8 |
+
"unk_token": "<unk>"
|
| 9 |
+
}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"clean_up_tokenization_spaces": true,
|
| 4 |
+
"cls_token": "<s>",
|
| 5 |
+
"eos_token": "</s>",
|
| 6 |
+
"mask_token": {
|
| 7 |
+
"__type": "AddedToken",
|
| 8 |
+
"content": "<mask>",
|
| 9 |
+
"lstrip": true,
|
| 10 |
+
"normalized": true,
|
| 11 |
+
"rstrip": false,
|
| 12 |
+
"single_word": false
|
| 13 |
+
},
|
| 14 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 15 |
+
"pad_token": "<pad>",
|
| 16 |
+
"sep_token": "</s>",
|
| 17 |
+
"sp_model_kwargs": {},
|
| 18 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
| 19 |
+
"unk_token": "<unk>"
|
| 20 |
+
}
|