File size: 3,466 Bytes
7235d74
 
 
 
 
 
 
 
 
 
 
 
 
074f00a
7235d74
 
 
 
 
 
 
 
 
 
 
66a2908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7235d74
 
 
 
 
 
 
 
 
 
 
 
66a2908
 
7235d74
66a2908
7235d74
 
 
 
66a2908
 
 
 
 
 
 
 
7235d74
 
 
 
 
 
074f00a
 
7235d74
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch
import json
import base64
import io
from PIL import Image
from diffusers import DPMSolverMultistepScheduler, StableDiffusionXLInpaintPipeline

# Set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

if device.type != 'cuda':
    raise ValueError("Need to run on GPU")

class EndpointHandler:
    def __init__(self, path="mrcuddle/URPM-Inpaint-Hyper-SDXL"):
        """Load the SDXL Inpainting model."""
        self.pipeline = StableDiffusionXLInpaintPipeline.from_pretrained(
            path, torch_dtype=torch.float16
        )
        self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(self.pipeline.scheduler.config)
        self.pipeline = self.pipeline.to(device)
    
    def __call__(self, data: dict):
        """Custom call function for Hugging Face Inference Endpoints."""
        try:
            # Extract inputs from JSON payload
            inputs = data.get("inputs", "")
            encoded_image = data.get("image", None)
            encoded_mask_image = data.get("mask_image", None)

            # Extract optional parameters with default values
            num_inference_steps = data.get("num_inference_steps", 25)
            guidance_scale = data.get("guidance_scale", 7.5)
            negative_prompt = data.get("negative_prompt", None)
            height = data.get("height", None)
            width = data.get("width", None)

            # Ensure both images are provided
            if not encoded_image or not encoded_mask_image:
                raise ValueError("Both 'image' and 'mask_image' are required in base64 format.")

            # Decode base64 images
            image = self.decode_base64_image(encoded_image)
            mask_image = self.decode_base64_image(encoded_mask_image)

            print("\n--- Running Inference ---")
            print(f"Prompt: {inputs}")
            print(f"Steps: {num_inference_steps}, Guidance Scale: {guidance_scale}")
            print(f"Negative Prompt: {negative_prompt}")
            print(f"Image Size: {image.size}, Mask Size: {mask_image.size}")

            # Run inference
            output_image = self.pipeline(
                prompt=inputs,
                image=image,
                mask_image=mask_image,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                num_images_per_prompt=1,
                negative_prompt=negative_prompt,
                height=height,
                width=width
            ).images[0]

            # Return base64-encoded image
            return json.dumps({"output": self.encode_base64_image(output_image)})

        except Exception as e:
            return json.dumps({"error": str(e)})
    
    def decode_base64_image(self, image_string):
        """Decode base64-encoded image to a PIL Image."""
        try:
            base64_image = base64.b64decode(image_string)
            buffer = io.BytesIO(base64_image)
            return Image.open(buffer).convert("RGB")
        except Exception as e:
            raise ValueError(f"Failed to decode base64 image: {e}")

    def encode_base64_image(self, image):
        """Encode PIL image to base64."""
        buffered = io.BytesIO()
        image.save(buffered, format="PNG")
        return base64.b64encode(buffered.getvalue()).decode("utf-8")

# Create an instance of EndpointHandler
handler = EndpointHandler()

def handle(data: dict):
    return handler(data)