--- tags: - spacy - token-classification - text-classification language: - en model-index: - name: en_generic results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9421775682 - name: NER Recall type: recall value: 0.9493801653 - name: NER F Score type: f_score value: 0.9457651539 --- | Feature | Description | | --- | --- | | **Name** | `en_generic` | | **Version** | `0.0.3` | | **spaCy** | `>=3.7.5,<3.8.0` | | **Default Pipeline** | `tok2vec`, `ner`, `textcat` | | **Components** | `tok2vec`, `ner`, `textcat` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme
View label scheme (29 labels for 2 components) | Component | Labels | | --- | --- | | **`ner`** | `BRAND`, `COLOR`, `DISPLAY`, `GENDER`, `MATERIAL`, `MEMORY`, `MISC`, `MODEL_IDENTIFIER`, `PROCESSOR`, `PRODUCT_TYPE`, `SEASON`, `SIZE_MEASUREMENT`, `STYLE_FIT`, `TECH_FEATURE` | | **`textcat`** | `292`, `325`, `328`, `297`, `4745`, `267`, `204`, `207`, `2331`, `211`, `212`, `6228`, `187`, `5598`, `2271` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 94.58 | | `ENTS_P` | 94.22 | | `ENTS_R` | 94.94 | | `CATS_SCORE` | 97.49 | | `CATS_MICRO_P` | 97.14 | | `CATS_MICRO_R` | 97.14 | | `CATS_MICRO_F` | 97.14 | | `CATS_MACRO_P` | 97.89 | | `CATS_MACRO_R` | 97.15 | | `CATS_MACRO_F` | 97.49 | | `CATS_MACRO_AUC` | 99.84 | | `TOK2VEC_LOSS` | 22259553.65 | | `NER_LOSS` | 723658.37 | | `TEXTCAT_LOSS` | 20.50 |