File size: 26,909 Bytes
c2b8f87
 
 
 
4a1d1db
 
c2b8f87
 
4a1d1db
 
 
 
 
 
c2b8f87
 
 
4a1d1db
c2b8f87
 
4a1d1db
c2b8f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1d1db
c2b8f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1d1db
c2b8f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1d1db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2b8f87
 
4a1d1db
 
c2b8f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1d1db
 
 
 
 
bf5878a
4a1d1db
 
bf5878a
4a1d1db
 
 
 
 
 
bf5878a
 
 
4a1d1db
bf5878a
 
 
 
4a1d1db
 
 
c2b8f87
 
 
 
 
4a1d1db
c2b8f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1d1db
c2b8f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1d1db
c2b8f87
 
 
 
 
 
 
 
4a1d1db
c2b8f87
 
 
 
 
 
 
 
 
 
4a1d1db
c2b8f87
 
 
 
 
 
 
4a1d1db
c2b8f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1d1db
c2b8f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1d1db
c2b8f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1d1db
c2b8f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1d1db
c2b8f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1d1db
c2b8f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1d1db
 
c2b8f87
4a1d1db
 
c2b8f87
 
 
 
 
 
 
 
 
5f3fd49
c2b8f87
 
 
4a1d1db
c2b8f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1d1db
 
 
 
 
 
c2b8f87
4a1d1db
 
 
c2b8f87
 
 
 
 
 
 
4a1d1db
 
 
c2b8f87
 
5f3fd49
 
4a1d1db
 
 
 
 
 
 
 
c2b8f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn

from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from transformers.modeling_utils import PreTrainedModel
from transformers.models.siglip.modeling_siglip import SiglipMLP
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)

from .configuration_onevision_encoder import OneVisionEncoderConfig


try:
    from flash_attn import flash_attn_func

    _flash_attn_available = True
except ImportError:
    _flash_attn_available = False

logger = logging.get_logger(__name__)


# ---------------------------------------------------------------------------
# Model Docstrings
# ---------------------------------------------------------------------------

ONEVISION_ENCODER_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`OneVisionEncoderConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

ONEVISION_ENCODER_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch_size, num_channels, num_frames, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`].
        visible_indices (`torch.Tensor`, *optional*):
            Indices of visible patches for masking. Used in MAE-style pretraining or inference.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


# ---------------------------------------------------------------------------
# Helper Functions & Layers
# ---------------------------------------------------------------------------


def get_norm_layer(config):
    if config.layer_norm_type == "rms_norm":
        return nn.RMSNorm(config.hidden_size, eps=config.layer_norm_eps)
    else:
        return nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)


def rotate_half(x):
    """
    Interleaved rotation to match Source model's implementation.
    (x1, x2, x3, x4) -> (-x2, x1, -x4, x3)
    """
    x_even = x[..., ::2]
    x_odd = x[..., 1::2]
    return torch.stack((-x_odd, x_even), dim=-1).flatten(-2)


def apply_rotary_pos_emb(q, k, freqs):
    # q, k: (B, H, L, D)
    # freqs: (B, L, D)

    # We need to broadcast freqs to match heads
    # (B, L, D) -> (B, 1, L, D)

    # !!! CRITICAL FIX: Cast cos/sin to q.dtype (bf16/fp16) immediately
    # freqs are typically float32, so cos() returns float32.
    # Without this cast, (q * cos) upcasts q to float32, causing FlashAttention to fail.
    cos = freqs.cos().unsqueeze(1).to(q.dtype)
    sin = freqs.sin().unsqueeze(1).to(q.dtype)

    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


class VideoRotaryEmbeddingSplit466(nn.Module):
    """
    3D (T,H,W) Rotary frequency constructor with 4:6:6 split.
    """

    def __init__(self, config: OneVisionEncoderConfig):
        super().__init__()
        head_dim = config.hidden_size // config.num_attention_heads
        base = config.rope_theta

        assert head_dim % 2 == 0, "head_dim must be even for rotary."
        assert head_dim % 16 == 0, "head_dim must be divisible by 16."
        half = head_dim // 2
        assert half % 16 == 0, "head_dim//2 must also be divisible by 16 to split into 4:6:6."

        self.head_dim = head_dim
        self.half = half

        unit = half // 16
        self.t_size = 4 * unit
        self.h_size = 6 * unit
        self.w_size = 6 * unit

        self.register_buffer(
            "inv_freq_t",
            1.0 / (base ** (torch.arange(self.t_size, dtype=torch.float32) / self.t_size)),
            persistent=False,
        )
        self.register_buffer(
            "inv_freq_h",
            1.0 / (base ** (torch.arange(self.h_size, dtype=torch.float32) / self.h_size)),
            persistent=False,
        )
        self.register_buffer(
            "inv_freq_w",
            1.0 / (base ** (torch.arange(self.w_size, dtype=torch.float32) / self.w_size)),
            persistent=False,
        )

    def forward(self, t: int, h: int, w: int, device=None):
        if device is None:
            device = self.inv_freq_t.device

        inv_t = self.inv_freq_t.to(device=device)
        inv_h = self.inv_freq_h.to(device=device)
        inv_w = self.inv_freq_w.to(device=device)

        ft = torch.outer(torch.arange(t, device=device, dtype=torch.float32), inv_t)
        fh = torch.outer(torch.arange(h, device=device, dtype=torch.float32), inv_h)
        fw = torch.outer(torch.arange(w, device=device, dtype=torch.float32), inv_w)

        t_ids = torch.arange(t, device=device).repeat_interleave(h * w)
        h_ids = torch.arange(h, device=device).repeat_interleave(w).repeat(t)
        w_ids = torch.arange(w, device=device).repeat(h).repeat(t)

        freqs = torch.cat([ft[t_ids], fh[h_ids], fw[w_ids]], dim=-1)
        return freqs

    def forward_from_positions(self, patch_positions: torch.Tensor) -> torch.Tensor:
        """
        Compute rotary position embeddings from explicit patch positions.

        Args:
            patch_positions: [batch_size, seq_len, 3] tensor with [t, h, w] positions for each patch

        Returns:
            freqs: [batch_size, seq_len, half] tensor of position frequencies
        """
        device = patch_positions.device
        inv_t = self.inv_freq_t.to(device=device)
        inv_h = self.inv_freq_h.to(device=device)
        inv_w = self.inv_freq_w.to(device=device)

        t_pos = patch_positions[..., 0].float()  # [batch_size, seq_len]
        h_pos = patch_positions[..., 1].float()  # [batch_size, seq_len]
        w_pos = patch_positions[..., 2].float()  # [batch_size, seq_len]

        # Use einsum for batched outer product: [batch_size, seq_len] x [dim] -> [batch_size, seq_len, dim]
        ft = torch.einsum("bs,d->bsd", t_pos, inv_t)
        fh = torch.einsum("bs,d->bsd", h_pos, inv_h)
        fw = torch.einsum("bs,d->bsd", w_pos, inv_w)

        return torch.cat([ft, fh, fw], dim=-1)


class Siglip2MultiheadAttentionPoolingHead(nn.Module):
    """
    Multi-Head Attention Pooling with a learned probe (PMA-style).
    """

    def __init__(self, config: OneVisionEncoderConfig):
        super().__init__()
        self.embed_dim = config.hidden_size
        self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
        self.attention = nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
        self.norm = nn.RMSNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.mlp = SiglipMLP(config)

    def forward(self, hidden_states):
        batch_size = hidden_states.shape[0]
        probe = self.probe.repeat(batch_size, 1, 1)

        attn_output, _ = self.attention(probe, hidden_states, hidden_states)

        residual = attn_output
        attn_output = self.norm(attn_output)
        attn_output = residual + self.mlp(attn_output)

        return attn_output[:, 0]


# ---------------------------------------------------------------------------
# Modeling Components
# ---------------------------------------------------------------------------


class OneVisionEncoderEmbeddings(nn.Module):
    def __init__(self, config: OneVisionEncoderConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.patch_embedding = nn.Conv2d(
            in_channels=config.num_channels,
            out_channels=self.embed_dim,
            kernel_size=self.patch_size,
            stride=self.patch_size,
            bias=False,
        )

    def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
        # Handle 4D (B, C, H, W) or 5D (B, C, T, H, W) inputs
        if pixel_values.dim() == 4:
            pixel_values = pixel_values.unsqueeze(2)  # (B, C, 1, H, W)

        batch_size, channels, t_frames, height, width = pixel_values.shape

        # Merge time into batch for Conv2d
        x_2d = pixel_values.permute(0, 2, 1, 3, 4).reshape(batch_size * t_frames, channels, height, width)

        # Patch Embed
        embeddings = self.patch_embedding(x_2d)  # (B*T, C, Hp, Wp)
        embeddings = embeddings.flatten(2).transpose(1, 2)  # (B*T, L_frame, C)

        # Flatten all patches
        total_patches = t_frames * (height // self.patch_size) * (width // self.patch_size)
        embeddings = embeddings.reshape(batch_size, total_patches, self.embed_dim)

        return embeddings


class OneVisionEncoderAttention(nn.Module):
    """Multi-headed attention with RoPE support"""

    def __init__(self, config: OneVisionEncoderConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
            )

        self.scale = self.head_dim**-0.5
        self.dropout = config.attention_dropout

        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        rotary_pos_emb: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        batch_size, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        # (B, L, H, D) -> Transpose to (B, H, L, D)
        query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)

        if rotary_pos_emb is not None:
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states, rotary_pos_emb)

        # Calculate attention scores
        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale

        if attention_mask is not None:
            if attention_mask.size() != (batch_size, 1, q_len, q_len):
                if attention_mask.dim() == 3:
                    attention_mask = attention_mask.unsqueeze(1)
            attn_weights = attn_weights + attention_mask

        # FIX: Remove dtype=torch.float32 to stay in original dtype (bf16/fp16)
        attn_weights = nn.functional.softmax(attn_weights, dim=-1)
        attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

        attn_output = torch.matmul(attn_weights, value_states)

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights if output_attentions else None


class OneVisionEncoderFlashAttention2(nn.Module):
    """
    Multi-headed attention with RoPE support using Flash Attention 2.
    This module implements the same attention mechanism as OneVisionEncoderAttention but uses
    Flash Attention for improved performance and memory efficiency.
    """

    def __init__(self, config: OneVisionEncoderConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
            )

        self.scale = self.head_dim**-0.5
        self.dropout = config.attention_dropout

        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        rotary_pos_emb: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """
        Forward pass using Flash Attention 2.
        """
        batch_size, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        # Flash Attention requires (B, L, H, D) format
        query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim)
        key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim)
        value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim)

        # Apply RoPE if provided
        if rotary_pos_emb is not None:
            # Transpose for RoPE application: (B, L, H, D) -> (B, H, L, D)
            query_states = query_states.transpose(1, 2)
            key_states = key_states.transpose(1, 2)
            # NOTE: apply_rotary_pos_emb now ensures NO float32 cast happens
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states, rotary_pos_emb)
            # Transpose back: (B, H, L, D) -> (B, L, H, D)
            query_states = query_states.transpose(1, 2)
            key_states = key_states.transpose(1, 2)

        # Flash Attention forward pass
        if not _flash_attn_available:
            raise ImportError("flash_attn is not installed. Please install it to use OneVisionEncoderFlashAttention2.")

        attn_output = flash_attn_func(
            query_states,
            key_states,
            value_states,
            dropout_p=self.dropout if self.training else 0.0,
            softmax_scale=self.scale,
            causal=False,
        )

        # Reshape to (B, L, embed_dim)
        attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)

        # No extra casting here.
        attn_output = self.out_proj(attn_output)

        return attn_output, None


ONEVISION_ENCODER_ATTENTION_CLASSES = {
    "eager": OneVisionEncoderAttention,
    "flash_attention_2": OneVisionEncoderFlashAttention2,
}


class OneVisionEncoderEncoderLayer(nn.Module):
    def __init__(self, config: OneVisionEncoderConfig):
        super().__init__()
        self.embed_dim = config.hidden_size
        # Get attention implementation from config, default to "flash_attention_2"
        attn_implementation = getattr(config, "_attn_implementation", "flash_attention_2")
        if attn_implementation not in ONEVISION_ENCODER_ATTENTION_CLASSES:
            # Fallback to eager if flash_attention_2 is not available
            if not _flash_attn_available and attn_implementation == "flash_attention_2":
                attn_implementation = "eager"
            else:
                raise ValueError(
                    f"Unknown attention implementation: {attn_implementation}. "
                    f"Available implementations: {list(ONEVISION_ENCODER_ATTENTION_CLASSES.keys())}"
                )
        self.self_attn = ONEVISION_ENCODER_ATTENTION_CLASSES[attn_implementation](config)
        self.layer_norm1 = get_norm_layer(config)
        self.mlp = SiglipMLP(config)
        self.layer_norm2 = get_norm_layer(config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        rotary_pos_emb: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        residual = hidden_states
        hidden_states = self.layer_norm1(hidden_states)

        hidden_states, attn_weights = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            rotary_pos_emb=rotary_pos_emb,
            output_attentions=output_attentions,
        )
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.layer_norm2(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states, attn_weights) if output_attentions else (hidden_states,)
        return outputs


class OneVisionEncoderEncoder(nn.Module):
    def __init__(self, config: OneVisionEncoderConfig):
        super().__init__()
        self.config = config
        self.layers = nn.ModuleList([OneVisionEncoderEncoderLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        rotary_pos_emb: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ) -> Union[tuple, BaseModelOutput]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        for layer in self.layers:
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_outputs = layer(
                hidden_states,
                attention_mask=attention_mask,
                rotary_pos_emb=rotary_pos_emb,
                output_attentions=output_attentions,
            )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)

        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


# ---------------------------------------------------------------------------
# Main Models
# ---------------------------------------------------------------------------


@add_start_docstrings(
    "The bare OneVision Encoder Model outputting raw hidden-states without any specific head on top.",
    ONEVISION_ENCODER_START_DOCSTRING,
)
class OneVisionEncoderPreTrainedModel(PreTrainedModel):
    config_class = OneVisionEncoderConfig
    base_model_prefix = "onevision_encoder"
    supports_gradient_checkpointing = True
    _no_split_modules = ["OneVisionEncoderEncoderLayer"]
    _supports_flash_attn_2 = True

    def _init_weights(self, module):
        """Initialize the weights"""
        std = self.config.initializer_range
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, (nn.LayerNorm, nn.RMSNorm)):
            # Fix: RMSNorm doesn't have bias, must check hasattr first
            module.weight.data.fill_(1.0)
            if hasattr(module, "bias") and module.bias is not None:
                module.bias.data.zero_()


@add_start_docstrings(
    "OneVision Encoder Model with a vision transformer encoder.",
    ONEVISION_ENCODER_START_DOCSTRING,
)
class OneVisionEncoderModel(OneVisionEncoderPreTrainedModel):
    def __init__(self, config: OneVisionEncoderConfig):
        super().__init__(config)
        self.config = config

        self.embeddings = OneVisionEncoderEmbeddings(config)
        self.layernorm_pre = get_norm_layer(config)
        self.encoder = OneVisionEncoderEncoder(config)
        self.video_rope = VideoRotaryEmbeddingSplit466(config)

        if config.use_head:
            self.layernorm_post = get_norm_layer(config)
            self.head = Siglip2MultiheadAttentionPoolingHead(config)
        else:
            self.layernorm_post = None
            self.head = None

        self.post_init()

    @add_start_docstrings_to_model_forward(ONEVISION_ENCODER_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=OneVisionEncoderConfig)
    def forward(
        self,
        pixel_values: torch.Tensor,
        visible_indices: Optional[torch.Tensor] = None,
        patch_positions: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple, BaseModelOutputWithPooling]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from transformers import AutoModel, AutoImageProcessor
        >>> from PIL import Image

        >>> model = AutoModel.from_pretrained("lmms-lab-encoder/onevision-encoder-large", trust_remote_code=True)
        >>> preprocessor = AutoImageProcessor.from_pretrained("lmms-lab-encoder/onevision-encoder-large", trust_remote_code=True)
        >>> image = Image.open("path/to/your/image.jpg")  # Replace with your image path
        >>> pixel_values = preprocessor(images=image, return_tensors="pt")["pixel_values"]
        >>> outputs = model(pixel_values)
        >>> last_hidden_states = outputs.last_hidden_state
        >>> pooled_output = outputs.pooler_output
        ```
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Determine video dimensions for RoPE
        # Note: pixel_values passed to embeddings can be 4D or 5D
        if pixel_values.dim() == 5:
            # Use config.rope_temporal_size if set, otherwise use actual frame count
            t_frames = (
                self.config.rope_temporal_size if self.config.rope_temporal_size is not None else pixel_values.shape[2]
            )
            height = pixel_values.shape[3]
            width = pixel_values.shape[4]
        else:
            t_frames = 1
            height = pixel_values.shape[2]
            width = pixel_values.shape[3]

        # 1. Embeddings
        hidden_states = self.embeddings(pixel_values)
        batch_size, total_patches, _ = hidden_states.shape

        # 2. Visible Indices Handling
        if visible_indices is None:
            visible_indices = (
                torch.arange(total_patches, device=pixel_values.device).unsqueeze(0).expand(batch_size, -1)
            )

        # 3. RoPE Construction
        if patch_positions is not None:
            freqs_visible = self.video_rope.forward_from_positions(patch_positions)
        else:
            freqs_full = self.video_rope(
                t=t_frames,
                h=height // self.config.patch_size,
                w=width // self.config.patch_size,
                device=pixel_values.device,
            )
            freqs_visible = freqs_full[visible_indices]

        # Concatenate D/2 + D/2 -> D for applying rope
        freqs_visible = torch.cat([freqs_visible, freqs_visible], dim=-1)

        # 4. Pre-Norm & Encoder
        hidden_states = self.layernorm_pre(hidden_states)

        # fix: gather hidden_states to match freqs_visible when using sparse visible_indices
        num_visible = visible_indices.shape[1]
        if num_visible != total_patches:
            # sparse mode: select only visible patches
            hidden_states = hidden_states.gather(
                1, visible_indices.unsqueeze(-1).expand(-1, -1, hidden_states.shape[-1])
            )

        encoder_outputs = self.encoder(
            hidden_states,
            attention_mask=None,
            rotary_pos_emb=freqs_visible,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = encoder_outputs[0]

        # Apply post-norm if configured
        if self.layernorm_post is not None:
            sequence_output = self.layernorm_post(sequence_output)

        # 5. Pooling Head
        pooled_output = None
        if self.head is not None:
            pooled_output = self.head(sequence_output)

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )