File size: 10,423 Bytes
bebee3a 628f568 bebee3a 628f568 bebee3a 628f568 bebee3a cebfb24 bebee3a cebfb24 bebee3a cebfb24 bebee3a 628f568 bebee3a 628f568 bebee3a 628f568 bebee3a 628f568 bebee3a 628f568 bebee3a 628f568 050e171 628f568 bebee3a 628f568 bebee3a 628f568 bebee3a 628f568 bebee3a 628f568 bebee3a 628f568 bebee3a 628f568 bebee3a 628f568 bebee3a 628f568 bebee3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import numpy as np
from dataclasses import dataclass
import torch
from torch import nn
from typing import Optional, List, Dict, Tuple
from transformers.models.qwen3 import modeling_qwen3
from transformers.modeling_outputs import CausalLMOutputWithPast
@dataclass
class CausalLMOutputWithScores(CausalLMOutputWithPast):
scores: Optional[torch.FloatTensor] = None
query_embeds: Optional[torch.FloatTensor] = None
doc_embeds: Optional[torch.FloatTensor] = None
def sanitize_input(text: str, special_tokens: Dict[str, str]) -> str:
for token in special_tokens.values():
text = text.replace(token, "")
return text
def format_docs_prompts_func(
query: str,
docs: list[str],
instruction: Optional[str] = None,
special_tokens: Dict[str, str] = {},
no_thinking: bool = True,
) -> str:
query = sanitize_input(query, special_tokens)
docs = [sanitize_input(doc, special_tokens) for doc in docs]
prefix = (
"<|im_start|>system\n"
"You are a search relevance expert who can determine a ranking of the passages based on how relevant they are to the query. "
"If the query is a question, how relevant a passage is depends on how well it answers the question. "
"If not, try to analyze the intent of the query and assess how well each passage satisfies the intent. "
"If an instruction is provided, you should follow the instruction when determining the ranking."
"<|im_end|>\n<|im_start|>user\n"
)
suffix = "<|im_end|>\n<|im_start|>assistant\n"
if no_thinking:
suffix += "<think>\n\n</think>\n\n"
doc_emb_token = special_tokens["doc_embed_token"]
query_emb_token = special_tokens["query_embed_token"]
prompt = (
f"I will provide you with {len(docs)} passages, each indicated by a numerical identifier. "
f"Rank the passages based on their relevance to query: {query}\n"
)
if instruction:
prompt += f'<instruct>\n{instruction}\n</instruct>\n'
doc_prompts = [f'<passage id="{i}">\n{doc}{doc_emb_token}\n</passage>' for i, doc in enumerate(docs)]
prompt += "\n".join(doc_prompts) + "\n"
prompt += f"<query>\n{query}{query_emb_token}\n</query>"
return prefix + prompt + suffix
class JinaForRanking(modeling_qwen3.Qwen3ForCausalLM):
def __init__(self, config):
super().__init__(config)
self.padding_side = "left"
self.projector_dim = 512
self.lm_head = nn.Identity()
self.projector = nn.Sequential(
nn.Linear(config.hidden_size, config.hidden_size // 2, bias=False),
nn.ReLU(),
nn.Linear(config.hidden_size // 2, self.projector_dim, bias=False),
)
self.post_init()
self.special_tokens = {"query_embed_token": "<|rerank_token|>", "doc_embed_token": "<|embed_token|>"}
self.doc_embed_token_id = 151670
self.query_embed_token_id = 151671
def forward(self, *args, **kwargs) -> CausalLMOutputWithScores:
kwargs.pop("output_hidden_states", None)
kwargs.pop("use_cache", None)
assert kwargs.pop("labels", None) is None, "labels should not be passed to forward()"
input_ids = kwargs.pop("input_ids", None)
outputs = super().forward(
*args,
input_ids=input_ids,
use_cache=False,
output_hidden_states=True,
**kwargs,
)
hidden_states = outputs.hidden_states[-1]
batch_size, _, dim = hidden_states.shape
query_embed_token_indexes = torch.eq(input_ids, self.query_embed_token_id)
doc_embed_token_indexes = torch.eq(input_ids, self.doc_embed_token_id)
doc_embeds = hidden_states[doc_embed_token_indexes].view(batch_size, -1, dim)
query_embeds = hidden_states[query_embed_token_indexes].unsqueeze(1)
doc_embeds = self.projector(doc_embeds)
query_embeds = self.projector(query_embeds)
query_embeds_expanded = query_embeds.expand_as(doc_embeds)
scores = torch.nn.functional.cosine_similarity(doc_embeds, query_embeds_expanded, dim=-1).squeeze(-1)
return CausalLMOutputWithScores(
loss=None,
logits=None,
scores=scores,
query_embeds=query_embeds,
doc_embeds=doc_embeds,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def _ensure_tokenizer(self):
if not hasattr(self, "_tokenizer"):
from transformers import AutoTokenizer
self._tokenizer = AutoTokenizer.from_pretrained(self.name_or_path, trust_remote_code=True)
if self._tokenizer.pad_token is None:
self._tokenizer.pad_token = self._tokenizer.unk_token
self._tokenizer.pad_token_id = self._tokenizer.convert_tokens_to_ids(self._tokenizer.pad_token)
self._tokenizer.padding_side = 'left'
def _truncate_texts(
self,
query: str,
documents: List[str],
max_query_length: int = 512,
max_doc_length: int = 2048,
) -> Tuple[str, List[str], List[int], int]:
self._ensure_tokenizer()
docs = []
doc_lengths = []
for doc in documents:
doc_tokens = self._tokenizer(doc, truncation=True, max_length=max_doc_length)
if len(doc_tokens['input_ids']) >= max_doc_length:
doc = self._tokenizer.decode(doc_tokens['input_ids'])
doc_lengths.append(len(doc_tokens['input_ids']))
docs.append(doc)
query_tokens = self._tokenizer(query, truncation=True, max_length=max_query_length)
if len(query_tokens['input_ids']) >= max_query_length:
query = self._tokenizer.decode(query_tokens['input_ids'])
query_length = len(query_tokens['input_ids'])
return query, docs, doc_lengths, query_length
def _compute_single_batch(
self,
query: str,
docs: List[str],
instruction: Optional[str] = None,
) -> CausalLMOutputWithScores:
self._ensure_tokenizer()
device = next(self.parameters()).device
prompt = format_docs_prompts_func(
query,
docs,
instruction=instruction,
special_tokens=self.special_tokens,
no_thinking=True,
)
batch = self._tokenizer(
text=[prompt],
padding=True,
padding_side="left",
return_tensors="pt",
).to(device)
return self.forward(**batch)
def _calculate_cosine_scores(
self,
query_embeddings: np.ndarray,
doc_embeddings: np.ndarray,
) -> np.ndarray:
return np.dot(query_embeddings, doc_embeddings.T) / (
np.linalg.norm(query_embeddings) * np.linalg.norm(doc_embeddings, axis=1)
)
@torch.no_grad()
def rerank(
self,
query: str,
documents: List[str],
top_n: Optional[int] = None,
return_embeddings: bool = False,
max_doc_length: int = 2048,
max_query_length: int = 512,
) -> List[dict]:
"""
Rerank documents by relevance to a query.
Args:
query: Search query string
documents: List of document strings to rank
top_n: Return only top N results (default: all)
return_embeddings: Include embeddings in output (default: False)
Returns:
List of dicts with keys:
- document: Original document text
- relevance_score: Similarity score (higher = more relevant)
- index: Position in input documents list
- embedding: Doc embedding if return_embeddings=True, else None
"""
self._ensure_tokenizer()
# Derived from model configuration
max_length = self._tokenizer.model_max_length
# Derive block_size from max_length to fit documents efficiently
# Heuristic: allow ~125 docs per batch for typical doc sizes
block_size = 125
query, docs, doc_lengths, query_length = self._truncate_texts(query, documents, max_query_length, max_doc_length)
length_capacity = max_length - 2 * query_length
block_docs = []
doc_embeddings = []
query_embeddings = []
block_weights = []
for length, doc in zip(doc_lengths, docs):
block_docs.append(doc)
length_capacity -= length
if len(block_docs) >= block_size or length_capacity <= max_doc_length:
outputs = self._compute_single_batch(query, block_docs, instruction=None)
doc_embeddings.extend(outputs.doc_embeds[0].cpu().float().numpy())
query_embeddings.append(outputs.query_embeds[0].cpu().float().numpy())
scores = outputs.scores.view(-1).cpu().float().numpy()
block_weights.append(((1.0 + scores) / 2.0).max())
block_docs = []
length_capacity = max_length - 2 * query_length
if len(block_docs) > 0:
outputs = self._compute_single_batch(query, block_docs, instruction=None)
doc_embeddings.extend(outputs.doc_embeds[0].cpu().float().numpy())
query_embeddings.append(outputs.query_embeds[0].cpu().float().numpy())
scores = outputs.scores.view(-1).cpu().float().numpy()
block_weights.append(((1.0 + scores) / 2.0).max())
query_embeddings = np.array(query_embeddings)
doc_embeddings = np.array(doc_embeddings)
query_embeddings = np.average(query_embeddings, axis=0, weights=block_weights)
scores = self._calculate_cosine_scores(query_embeddings, doc_embeddings)
scores_argsort = np.argsort(scores[0])[::-1]
# Derive top_n: if not specified, return all documents
if top_n is None:
top_n = len(documents)
else:
top_n = min(top_n, len(documents))
return [
{
'document': documents[scores_argsort[i]],
'relevance_score': scores[0][scores_argsort[i]],
'index': scores_argsort[i],
'embedding': doc_embeddings[scores_argsort[i]] if return_embeddings else None,
}
for i in range(top_n)
]
|