File size: 10,423 Bytes
bebee3a
 
 
 
628f568
bebee3a
628f568
bebee3a
 
 
 
 
 
 
 
 
 
 
628f568
bebee3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cebfb24
 
bebee3a
 
 
 
 
 
 
 
 
cebfb24
bebee3a
cebfb24
bebee3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628f568
bebee3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628f568
bebee3a
 
 
 
 
 
628f568
bebee3a
 
 
 
628f568
 
 
 
 
 
 
 
 
bebee3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628f568
 
 
 
 
 
 
 
 
bebee3a
 
628f568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
050e171
 
628f568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bebee3a
 
 
 
 
 
628f568
bebee3a
 
 
 
 
628f568
bebee3a
628f568
bebee3a
 
 
 
628f568
 
 
bebee3a
628f568
 
 
bebee3a
 
 
 
 
 
 
 
 
628f568
bebee3a
 
 
628f568
 
 
 
 
bebee3a
 
 
628f568
 
 
 
bebee3a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import numpy as np
from dataclasses import dataclass
import torch
from torch import nn
from typing import Optional, List, Dict, Tuple
from transformers.models.qwen3 import modeling_qwen3
from transformers.modeling_outputs import CausalLMOutputWithPast


@dataclass
class CausalLMOutputWithScores(CausalLMOutputWithPast):
    scores: Optional[torch.FloatTensor] = None
    query_embeds: Optional[torch.FloatTensor] = None
    doc_embeds: Optional[torch.FloatTensor] = None


def sanitize_input(text: str, special_tokens: Dict[str, str]) -> str:
    for token in special_tokens.values():
        text = text.replace(token, "")
    return text


def format_docs_prompts_func(
    query: str,
    docs: list[str],
    instruction: Optional[str] = None,
    special_tokens: Dict[str, str] = {},
    no_thinking: bool = True,
) -> str:
    query = sanitize_input(query, special_tokens)
    docs = [sanitize_input(doc, special_tokens) for doc in docs]

    prefix = (
        "<|im_start|>system\n"
        "You are a search relevance expert who can determine a ranking of the passages based on how relevant they are to the query. "
        "If the query is a question, how relevant a passage is depends on how well it answers the question. "
        "If not, try to analyze the intent of the query and assess how well each passage satisfies the intent. "
        "If an instruction is provided, you should follow the instruction when determining the ranking."
        "<|im_end|>\n<|im_start|>user\n"
    )
    suffix = "<|im_end|>\n<|im_start|>assistant\n"
    if no_thinking:
        suffix += "<think>\n\n</think>\n\n"

    doc_emb_token = special_tokens["doc_embed_token"]
    query_emb_token = special_tokens["query_embed_token"]

    prompt = (
        f"I will provide you with {len(docs)} passages, each indicated by a numerical identifier. "
        f"Rank the passages based on their relevance to query: {query}\n"
    )

    if instruction:
        prompt += f'<instruct>\n{instruction}\n</instruct>\n'

    doc_prompts = [f'<passage id="{i}">\n{doc}{doc_emb_token}\n</passage>' for i, doc in enumerate(docs)]
    prompt += "\n".join(doc_prompts) + "\n"
    prompt += f"<query>\n{query}{query_emb_token}\n</query>"

    return prefix + prompt + suffix


class JinaForRanking(modeling_qwen3.Qwen3ForCausalLM):
    def __init__(self, config):
        super().__init__(config)
        self.padding_side = "left"
        self.projector_dim = 512

        self.lm_head = nn.Identity()

        self.projector = nn.Sequential(
            nn.Linear(config.hidden_size, config.hidden_size // 2, bias=False),
            nn.ReLU(),
            nn.Linear(config.hidden_size // 2, self.projector_dim, bias=False),
        )

        self.post_init()

        self.special_tokens = {"query_embed_token": "<|rerank_token|>", "doc_embed_token": "<|embed_token|>"}
        self.doc_embed_token_id = 151670
        self.query_embed_token_id = 151671

    def forward(self, *args, **kwargs) -> CausalLMOutputWithScores:
        kwargs.pop("output_hidden_states", None)
        kwargs.pop("use_cache", None)
        assert kwargs.pop("labels", None) is None, "labels should not be passed to forward()"
        input_ids = kwargs.pop("input_ids", None)

        outputs = super().forward(
            *args,
            input_ids=input_ids,
            use_cache=False,
            output_hidden_states=True,
            **kwargs,
        )

        hidden_states = outputs.hidden_states[-1]
        batch_size, _, dim = hidden_states.shape

        query_embed_token_indexes = torch.eq(input_ids, self.query_embed_token_id)
        doc_embed_token_indexes = torch.eq(input_ids, self.doc_embed_token_id)

        doc_embeds = hidden_states[doc_embed_token_indexes].view(batch_size, -1, dim)
        query_embeds = hidden_states[query_embed_token_indexes].unsqueeze(1)

        doc_embeds = self.projector(doc_embeds)
        query_embeds = self.projector(query_embeds)

        query_embeds_expanded = query_embeds.expand_as(doc_embeds)
        scores = torch.nn.functional.cosine_similarity(doc_embeds, query_embeds_expanded, dim=-1).squeeze(-1)

        return CausalLMOutputWithScores(
            loss=None,
            logits=None,
            scores=scores,
            query_embeds=query_embeds,
            doc_embeds=doc_embeds,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def _ensure_tokenizer(self):
        if not hasattr(self, "_tokenizer"):
            from transformers import AutoTokenizer

            self._tokenizer = AutoTokenizer.from_pretrained(self.name_or_path, trust_remote_code=True)

            if self._tokenizer.pad_token is None:
                self._tokenizer.pad_token = self._tokenizer.unk_token
                self._tokenizer.pad_token_id = self._tokenizer.convert_tokens_to_ids(self._tokenizer.pad_token)

            self._tokenizer.padding_side = 'left'

    def _truncate_texts(
        self,
        query: str,
        documents: List[str],
        max_query_length: int = 512,
        max_doc_length: int = 2048,
    ) -> Tuple[str, List[str], List[int], int]:
        self._ensure_tokenizer()

        docs = []
        doc_lengths = []
        for doc in documents:
            doc_tokens = self._tokenizer(doc, truncation=True, max_length=max_doc_length)
            if len(doc_tokens['input_ids']) >= max_doc_length:
                doc = self._tokenizer.decode(doc_tokens['input_ids'])
            doc_lengths.append(len(doc_tokens['input_ids']))
            docs.append(doc)

        query_tokens = self._tokenizer(query, truncation=True, max_length=max_query_length)
        if len(query_tokens['input_ids']) >= max_query_length:
            query = self._tokenizer.decode(query_tokens['input_ids'])

        query_length = len(query_tokens['input_ids'])

        return query, docs, doc_lengths, query_length

    def _compute_single_batch(
        self,
        query: str,
        docs: List[str],
        instruction: Optional[str] = None,
    ) -> CausalLMOutputWithScores:
        self._ensure_tokenizer()
        device = next(self.parameters()).device

        prompt = format_docs_prompts_func(
            query,
            docs,
            instruction=instruction,
            special_tokens=self.special_tokens,
            no_thinking=True,
        )

        batch = self._tokenizer(
            text=[prompt],
            padding=True,
            padding_side="left",
            return_tensors="pt",
        ).to(device)

        return self.forward(**batch)

    def _calculate_cosine_scores(
        self,
        query_embeddings: np.ndarray,
        doc_embeddings: np.ndarray,
    ) -> np.ndarray:
        return np.dot(query_embeddings, doc_embeddings.T) / (
            np.linalg.norm(query_embeddings) * np.linalg.norm(doc_embeddings, axis=1)
        )

    @torch.no_grad()
    def rerank(
        self,
        query: str,
        documents: List[str],
        top_n: Optional[int] = None,
        return_embeddings: bool = False,
        max_doc_length: int = 2048,
        max_query_length: int = 512,
    ) -> List[dict]:
        """
        Rerank documents by relevance to a query.

        Args:
            query: Search query string
            documents: List of document strings to rank
            top_n: Return only top N results (default: all)
            return_embeddings: Include embeddings in output (default: False)

        Returns:
            List of dicts with keys:
                - document: Original document text
                - relevance_score: Similarity score (higher = more relevant)
                - index: Position in input documents list
                - embedding: Doc embedding if return_embeddings=True, else None
        """
        self._ensure_tokenizer()

        # Derived from model configuration
        max_length = self._tokenizer.model_max_length

        # Derive block_size from max_length to fit documents efficiently
        # Heuristic: allow ~125 docs per batch for typical doc sizes
        block_size = 125

        query, docs, doc_lengths, query_length = self._truncate_texts(query, documents, max_query_length, max_doc_length)

        length_capacity = max_length - 2 * query_length

        block_docs = []
        doc_embeddings = []
        query_embeddings = []
        block_weights = []

        for length, doc in zip(doc_lengths, docs):
            block_docs.append(doc)
            length_capacity -= length

            if len(block_docs) >= block_size or length_capacity <= max_doc_length:
                outputs = self._compute_single_batch(query, block_docs, instruction=None)

                doc_embeddings.extend(outputs.doc_embeds[0].cpu().float().numpy())
                query_embeddings.append(outputs.query_embeds[0].cpu().float().numpy())
                scores = outputs.scores.view(-1).cpu().float().numpy()
                block_weights.append(((1.0 + scores) / 2.0).max())

                block_docs = []
                length_capacity = max_length - 2 * query_length

        if len(block_docs) > 0:
            outputs = self._compute_single_batch(query, block_docs, instruction=None)

            doc_embeddings.extend(outputs.doc_embeds[0].cpu().float().numpy())
            query_embeddings.append(outputs.query_embeds[0].cpu().float().numpy())
            scores = outputs.scores.view(-1).cpu().float().numpy()
            block_weights.append(((1.0 + scores) / 2.0).max())

        query_embeddings = np.array(query_embeddings)
        doc_embeddings = np.array(doc_embeddings)

        query_embeddings = np.average(query_embeddings, axis=0, weights=block_weights)

        scores = self._calculate_cosine_scores(query_embeddings, doc_embeddings)

        scores_argsort = np.argsort(scores[0])[::-1]

        # Derive top_n: if not specified, return all documents
        if top_n is None:
            top_n = len(documents)
        else:
            top_n = min(top_n, len(documents))

        return [
            {
                'document': documents[scores_argsort[i]],
                'relevance_score': scores[0][scores_argsort[i]],
                'index': scores_argsort[i],
                'embedding': doc_embeddings[scores_argsort[i]] if return_embeddings else None,
            }
            for i in range(top_n)
        ]