--- pretty_name: "IsoNet++ Benchmark" tags: - graphs - graph-retrieval - subgraph-isomorphism - graph-mining - graph-datasets task_categories: - graph-ml - other license: "cc-by-4.0" --- # IsoNet++ Benchmark Dataset The **IsoNet++ Benchmark** is a *subgraph retrieval* benchmark derived from TUDataset graph datasets including: - **AIDS** - **MUTAG** - **PTC** (FM, FR, MM, MR) The benchmark is used to evaluate models that learn **graph representations** for: - Graph similarity search - Subgraph matching - Retrieval at scale This benchmark was introduced to evaluate the **IsoNet++** model. --- ## Dataset Structure ``` isonetpp-benchmark/ ├─ corpus/ # Searchable graph collections │ ├─ aids240k_corpus_subgraphs.pkl │ ├─ mutag240k_corpus_subgraphs.pkl │ ├─ ptc_fm240k_corpus_subgraphs.pkl │ ├─ ptc_fr240k_corpus_subgraphs.pkl │ ├─ ptc_mm240k_corpus_subgraphs.pkl │ └─ ptc_mr240k_corpus_subgraphs.pkl └─ splits/ # Query → relevance evaluation sets ├─ train/ │ ├─ train__query_subgraphs.pkl │ └─ train__rel_nx_is_subgraph_iso.pkl ├─ val/ │ ├─ val__query_subgraphs.pkl │ └─ val__rel_nx_is_subgraph_iso.pkl └─ test/ ├─ test__query_subgraphs.pkl └─ test__rel_nx_is_subgraph_iso.pkl ``` Where `` ∈ `{aids240k, mutag240k, ptc_fm240k, ptc_fr240k, ptc_mm240k, ptc_mr240k}`. --- ## Data Format All `.pkl` files use Python `pickle` serialization: | File Pattern | Description | |-------------|-------------| | `*_corpus_subgraphs.pkl` | List of NetworkX graphs representing the retrieval corpus | | `*_query_subgraphs.pkl` | List of NetworkX graphs serving as query graphs | | `*_rel_nx_is_subgraph_iso.pkl` | Binary labels from exact subgraph isomorphism (NetworkX VF2) | --- ## Load Examples ### Load Corpus ```python from huggingface_hub import hf_hub_download import pickle path = hf_hub_download( "structlearning/isonetpp-benchmark", filename="large_dataset/corpus/aids240k_corpus_subgraphs.pkl", repo_type="dataset" ) with open(path, "rb") as f: corpus_graphs = pickle.load(f) ``` ### Load Query Split ```python from huggingface_hub import hf_hub_download import pickle queries = pickle.load(open( hf_hub_download("structlearning/isonetpp-benchmark", filename="large_dataset/splits/train/train_aids240k_query_subgraphs.pkl", repo_type="dataset"), "rb" )) labels = pickle.load(open( hf_hub_download("structlearning/isonetpp-benchmark", filename="large_dataset/splits/train/train_aids240k_rel_nx_is_subgraph_iso.pkl", repo_type="dataset"), "rb" )) ``` --- ## Intended Use This dataset is suitable for: - Graph retrieval model evaluation - Learning subgraph-aware representations - Benchmarking hashing, GNN-based retrieval systems - Reproducing IsoNet++ results --- ## Citation If you use this dataset in research, please cite: ``` @inproceedings{ramachandraniteratively, title={Iteratively Refined Early Interaction Alignment for Subgraph Matching based Graph Retrieval}, author={Ramachandran, Ashwin and Raj, Vaibhav and Roy, Indradyumna and Chakrabarti, Soumen and De, Abir}, booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems} } ``` --- ## License This dataset is released under **CC-BY-4.0**.