Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Delete loading script
Browse files
prost.py
DELETED
|
@@ -1,85 +0,0 @@
|
|
| 1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and Cory Paik
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the 'License');
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an 'AS IS' BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
# ==============================================================================
|
| 15 |
-
""" Physical Reasoning about Objects Through Space and Time (PROST)
|
| 16 |
-
|
| 17 |
-
PROST is a probing dataset to evaluate the ability of pretrained LMs to
|
| 18 |
-
understand and reason about the physical world.
|
| 19 |
-
"""
|
| 20 |
-
import json
|
| 21 |
-
import datasets
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
_CITATION = """\
|
| 25 |
-
@inproceedings{aroca-ouellette-etal-2021-prost,
|
| 26 |
-
title = "{PROST}: {P}hysical Reasoning about Objects through Space and Time",
|
| 27 |
-
author = "Aroca-Ouellette, St{\'e}phane and
|
| 28 |
-
Paik, Cory and
|
| 29 |
-
Roncone, Alessandro and
|
| 30 |
-
Kann, Katharina",
|
| 31 |
-
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
|
| 32 |
-
month = aug,
|
| 33 |
-
year = "2021",
|
| 34 |
-
address = "Online",
|
| 35 |
-
publisher = "Association for Computational Linguistics",
|
| 36 |
-
url = "https://aclanthology.org/2021.findings-acl.404",
|
| 37 |
-
pages = "4597--4608",
|
| 38 |
-
}
|
| 39 |
-
"""
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
_DESCRIPTION = """\
|
| 43 |
-
*Physical Reasoning about Objects Through Space and Time* (PROST) is a probing dataset to evaluate the ability of pretrained LMs to understand and reason about the physical world. PROST consists of 18,736 cloze-style multiple choice questions from 14 manually curated templates, covering 10 physical reasoning concepts: direction, mass, height, circumference, stackable, rollable, graspable, breakable, slideable, and bounceable.
|
| 44 |
-
"""
|
| 45 |
-
|
| 46 |
-
_HOMEPAGE = 'https://github.com/nala-cub/prost'
|
| 47 |
-
_LICENSE = 'Apache 2.0'
|
| 48 |
-
|
| 49 |
-
_URL = 'https://huggingface.co/datasets/corypaik/prost/resolve/main/data'
|
| 50 |
-
|
| 51 |
-
_URLs = {'default': f'{_URL}/default.jsonl'}
|
| 52 |
-
|
| 53 |
-
MC_LABELS = list('ABCD')
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
class Prost(datasets.GeneratorBasedBuilder):
|
| 57 |
-
|
| 58 |
-
VERSION = datasets.Version('1.0.1')
|
| 59 |
-
|
| 60 |
-
def _info(self):
|
| 61 |
-
features = datasets.Features({
|
| 62 |
-
'A': datasets.Value('string'),
|
| 63 |
-
'B': datasets.Value('string'),
|
| 64 |
-
'C': datasets.Value('string'),
|
| 65 |
-
'D': datasets.Value('string'),
|
| 66 |
-
'context': datasets.Value('string'),
|
| 67 |
-
'question': datasets.Value('string'),
|
| 68 |
-
'ex_question': datasets.Value('string'),
|
| 69 |
-
'group': datasets.Value('string'),
|
| 70 |
-
'label': datasets.ClassLabel(names=MC_LABELS),
|
| 71 |
-
'name': datasets.Value('string'),})
|
| 72 |
-
return datasets.DatasetInfo(description=_DESCRIPTION, features=features,
|
| 73 |
-
supervised_keys=None, homepage=_HOMEPAGE,
|
| 74 |
-
license=_LICENSE, citation=_CITATION)
|
| 75 |
-
|
| 76 |
-
def _split_generators(self, dl_manager):
|
| 77 |
-
""" Returns SplitGenerators."""
|
| 78 |
-
path = dl_manager.download_and_extract(_URLs[self.config.name])
|
| 79 |
-
kwargs = {'path': path}
|
| 80 |
-
return [datasets.SplitGenerator(datasets.Split.TEST, gen_kwargs=kwargs)]
|
| 81 |
-
|
| 82 |
-
def _generate_examples(self, path):
|
| 83 |
-
with open(path, 'r') as f:
|
| 84 |
-
for _id, line in enumerate(f.readlines()):
|
| 85 |
-
yield _id, json.loads(line)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|