--- license: mit task_categories: - image-to-text language: - en tags: - handwritten-digits - math-education - ocr - optical-character-recognition - handwriting-recognition size_categories: - n<1K configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: session_id dtype: string - name: question_id dtype: string - name: timestamp dtype: string - name: operand_a dtype: int64 - name: operand_b dtype: int64 - name: operation dtype: string - name: correct_answer dtype: int64 - name: difficulty dtype: string - name: ocr_prediction dtype: string - name: ocr_parsed_number dtype: int64 - name: is_correct dtype: bool - name: ocr_model_name dtype: string - name: ocr_processing_time dtype: float64 - name: ocr_confidence dtype: float64 - name: session_duration dtype: int64 - name: session_total_questions dtype: int64 - name: app_version dtype: string - name: hardware dtype: string - name: handwriting_image dtype: image - name: session_accuracy dtype: float64 - name: session_total_ocr_time dtype: float64 - name: session_avg_ocr_time dtype: float64 splits: - name: train num_bytes: 4495607.125 num_examples: 1447 download_size: 4332050 dataset_size: 4495607.125 --- # CalcTrainer Dataset 🧮 Handwritten mathematical answers collected from the [CalcTrainer](https://huggingface.co/spaces/hoololi/CalcTrainer) interactive math training application. ## Dataset Fields ### Core Data | Field | Type | Description | |-------|------|-------------| | `handwriting_image` | Image | Handwritten answer image (~100x100px) | | `ocr_prediction` | string | Raw OCR output text | | `ocr_parsed_number` | int32 | Cleaned numeric value from OCR | | `is_correct` | bool | Whether OCR matches correct answer | ### Mathematical Context | Field | Type | Description | |-------|------|-------------| | `operand_a` | int32 | First number (e.g., 7 in "7 × 3") | | `operand_b` | int32 | Second number (e.g., 3 in "7 × 3") | | `operation` | string | Operation: `+`, `-`, `×`, `÷` | | `correct_answer` | int32 | Expected correct answer | | `difficulty` | string | `Facile` (Easy) or `Difficile` (Hard) | ### OCR Metrics | Field | Type | Description | |-------|------|-------------| | `ocr_model_name` | string | OCR model used (e.g., "microsoft/trocr-base-handwritten") | | `ocr_processing_time` | float32 | Processing time in seconds | | `hardware` | string | Hardware used for OCR | ### Session Info | Field | Type | Description | |-------|------|-------------| | `session_id` | string | Unique session identifier | | `question_id` | string | Unique question identifier | | `timestamp` | string | When the session was completed | | `session_duration` | int32 | Session length (30 or 60 seconds) | | `session_accuracy` | float32 | Overall session accuracy percentage | | `session_avg_ocr_time` | float32 | Average OCR time per image in session | ## Usage ```python from datasets import load_dataset dataset = load_dataset("hoololi/CalcTrainer_dataset") train_data = dataset["train"] # Example: Access first item item = train_data[0] print(f"Math problem: {item['operand_a']} {item['operation']} {item['operand_b']} = {item['correct_answer']}") print(f"OCR predicted: '{item['ocr_prediction']}' → {item['ocr_parsed_number']}") print(f"Correct: {item['is_correct']}") ``` ## Data Source Real handwriting samples from users solving math problems in the CalcTrainer application. Users write answers on a digital canvas during timed math sessions. **Generated from**: [CalcTrainer Interactive Math Training](https://huggingface.co/spaces/hoololi/CalcTrainer) 🧮