--- dataset_info: features: - name: title dtype: string - name: paper_category dtype: string - name: error_category dtype: string - name: error_location dtype: string - name: error_severity dtype: string - name: error_annotation dtype: string splits: - name: train num_bytes: 35801 num_examples: 91 download_size: 22781 dataset_size: 35801 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-4.0 language: - en size_categories: - n<1K --- # SPOT-MetaData > Metadata & Annotations for **Scientific Paper ErrOr DeTection** (SPOT) > *SPOT contains 83 papers and 91 human-validated errors to test academic verification capabilities.* ## 📖 Overview SPOT-MetaData contains all of the **annotations** for the SPOT benchmark—**no** paper PDFs or parsed content are included here. This lightweight repo is intended for anyone who needs to work with the ground-truth error labels, categories, locations, and severity ratings. Parse contents are available at: [link](https://huggingface.co/datasets/amphora/SPOT). For codes see: [link](https://github.com/guijinSON/SPOT). > **Benchmark at a glance** > - **83** published manuscripts > - **91** confirmed errors (errata or retractions) > - **10** scientific domains (Math, Physics, Biology, …) > - **6** error types (Equation/Proof, Fig-duplication, Data inconsistency, …) > - Average paper length: ~12 000 tokens & 18 figures ## 📜 License This repository (metadata & annotations) is released under the CC-BY-4.0 license.